Origin on 4 1 n
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
Symmetry operations
(1) 1 | (2) 2 0, 0, z | (3) 4+ 0, 0, z | (4) 4- 0, 0, z |
(5) n(1/2, 0, 1/2) x, 1/4, z | (6) n(0, 1/2, 1/2) 1/4, y, z | (7) c x + 1/2, -x, z | (8) n(1/2, 1/2, 1/2) x, x, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||||||
General: | |||||||||||||
|
| 0kl : k + l = 2n hhl : l = 2n 00l : l = 2n h00 : h = 2n |
Special: as above, plus | |||||||||
|
| hkl : h + k, l = 2n | |||||||
|
| hkl : h + k + l = 2n |
Symmetry of special projections
Along [001] p4gm a' = a b' = b Origin at 0, 0, z | Along [100] c1m1 a' = b b' = c Origin at x, 0, 0 | Along [110] p1m1 a' = 1/2(-a + b) b' = 1/2c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
I | [2] P411 (P4, 75) | 1; 2; 3; 4 | |
[2] P21c (Ccc2, 37) | 1; 2; 7; 8 | ||
[2] P2n1 (Pnn2, 34) | 1; 2; 5; 6 |
IIa | none |
IIb | none |
Maximal isomorphic subgroups of lowest index
IIc | [3] P4nc (c' = 3c) (104); [9] P4nc (a' = 3a, b' = 3b) (104) |
Minimal non-isomorphic supergroups
I | [2] P4/nnc (126); [2] P4/mnc (128) |
II | [2] C4cc (P4cc, 103); [2] I4mm (107); [2] P4bm (c' = 1/2c) (100) |