P4nc C4v6 4mm Tetragonal info
No. 104 P4nc Patterson symmetry P4/mmm

symmetry group diagram

Origin on 4 1 n

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry operations

(1)  1   (2)  2   0, 0, z(3)  4+   0, 0, z(4)  4-   0, 0, z
(5)  n(1/2, 0, 1/2)   x1/4z(6)  n(0, 1/21/2)   1/4yz(7)  c   x + 1/2-xz(8)  n(1/21/21/2)   xxz

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
8 c 1
(1) xyz(2) -x-yz(3) -yxz(4) y-xz
(5) x + 1/2-y + 1/2z + 1/2(6) -x + 1/2y + 1/2z + 1/2(7) -y + 1/2-x + 1/2z + 1/2(8) y + 1/2x + 1/2z + 1/2
0kl : k + l = 2n
hhl : l = 2n
00l : l = 2n
h00 : h = 2n
    Special: as above, plus
4 b  2 . . 
0, 1/2z 1/2, 0, z 1/2, 0, z + 1/2 0, 1/2z + 1/2
hkl : h + kl = 2n
2 a  4 . . 
0, 0, z 1/21/2z + 1/2
hkl : h + k + l = 2n

Symmetry of special projections

Along [001]   p4gm
a' = a   b' = b   
Origin at 0, 0, z
Along [100]   c1m1
a' = b   b' = c   
Origin at x, 0, 0
Along [110]   p1m1
a' = 1/2(-a + b)   b' = 1/2c   
Origin at xx, 0

Maximal non-isomorphic subgroups

I [2] P411 (P4, 75)1; 2; 3; 4
  [2] P21c (Ccc2, 37)1; 2; 7; 8
  [2] P2n1 (Pnn2, 34)1; 2; 5; 6
IIa none
IIbnone

Maximal isomorphic subgroups of lowest index

IIc[3] P4nc (c' = 3c) (104); [9] P4nc (a' = 3ab' = 3b) (104)

Minimal non-isomorphic supergroups

I[2] P4/nnc (126); [2] P4/mnc (128)
II[2] C4cc (P4cc, 103); [2] I4mm (107); [2] P4bm (c' = 1/2c) (100)








































to end of page
to top of page