Origin at -4 1 g
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1; y ≤ 1/2 - x |
(1) 1 | (2) 2 0, 0, z | (3) -4+ 0, 0, z; 0, 0, 0 | (4) -4- 0, 0, z; 0, 0, 0 |
(5) 2(0, 1/2, 0) 1/4, y, 0 | (6) 2(1/2, 0, 0) x, 1/4, 0 | (7) m x + 1/2, -x, z | (8) g(1/2, 1/2, 0) x, x, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) y, -x, -z | (4) -y, x, -z | (5) -x + 1/2, y + 1/2, -z | (6) x + 1/2, -y + 1/2, -z | (7) -y + 1/2, -x + 1/2, z | (8) y + 1/2, x + 1/2, z |
| h00 : h = 2n
|
| | Special: as above, plus
|
| x, x + 1/2, z | -x, -x + 1/2, z | x + 1/2, -x, -z | -x + 1/2, x, -z |
| no extra conditions |
| 0, 0, z | 0, 0, -z | 1/2, 1/2, -z | 1/2, 1/2, z |
| hkl : h + k = 2n
|
| | hk0 : h + k = 2n
|
| | hkl : h + k = 2n
|
| | hkl : h + k = 2n
|
Symmetry of special projections
Along [001] p4gm a' = a b' = b Origin at 0, 0, z | Along [100] p2mg a' = b b' = c Origin at x, 1/4, 0 | Along [110] p1m1 a' = 1/2(-a + b) b' = c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
I | | [2] P-411 (P-4, 81) | 1; 2; 3; 4 |
| | [2] P21m (Cmm2, 35) | 1; 2; 7; 8 |
| | [2] P2211 (P21212, 18) | 1; 2; 5; 6 |
IIb | [2] P-421c (c' = 2c) (114) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P-421m (c' = 2c) (113); [9] P-421m (a' = 3a, b' = 3b) (113) |
Minimal non-isomorphic supergroups
I | [2] P4/mbm (127); [2] P4/nmm (129); [2] P42/mnm (136); [2] P42/ncm (138) |
II | [2] C-42m (P-4m2, 115); [2] I-42m (121) |