Origin at -4 c 1
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4 |
(1) 1 | (2) 2 0, 0, z | (3) -4+ 0, 0, z; 0, 0, 0 | (4) -4- 0, 0, z; 0, 0, 0 |
(5) c x, 0, z | (6) c 0, y, z | (7) 2 x, x, 1/4 | (8) 2 x, -x, 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) y, -x, -z | (4) -y, x, -z | (5) x, -y, z + 1/2 | (6) -x, y, z + 1/2 | (7) y, x, -z + 1/2 | (8) -y, -x, -z + 1/2 |
| 0kl : l = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| 0, 1/2, z | 1/2, 0, -z | 0, 1/2, z + 1/2 | 1/2, 0, -z + 1/2 |
| hkl : l = 2n hk0 : h + k = 2n
|
| 1/2, 1/2, z | 1/2, 1/2, -z | 1/2, 1/2, z + 1/2 | 1/2, 1/2, -z + 1/2 |
| hkl : l = 2n
|
| 0, 0, z | 0, 0, -z | 0, 0, z + 1/2 | 0, 0, -z + 1/2 |
| hkl : l = 2n
|
| x, x, 3/4 | -x, -x, 3/4 | x, -x, 1/4 | -x, x, 1/4 |
| no extra conditions |
| x, x, 1/4 | -x, -x, 1/4 | x, -x, 3/4 | -x, x, 3/4 |
| no extra conditions |
| 1/2, 1/2, 0 | 1/2, 1/2, 1/2 |
| hkl : l = 2n
|
| | hkl : l = 2n
|
| 1/2, 1/2, 1/4 | 1/2, 1/2, 3/4 |
| hkl : l = 2n
|
| | hkl : l = 2n
|
Symmetry of special projections
Along [001] p4mm a' = a b' = b Origin at 0, 0, z | Along [100] p1m1 a' = b b' = 1/2c Origin at x, 0, 0 | Along [110] p2mm a' = 1/2(-a + b) b' = c Origin at x, x, 1/4 |
Maximal non-isomorphic subgroups
I | | [2] P-411 (P-4, 81) | 1; 2; 3; 4 |
| | [2] P2c1 (Pcc2, 27) | 1; 2; 5; 6 |
| | [2] P212 (C222, 21) | 1; 2; 7; 8 |
IIb | [2] C-4c21 (a' = 2a, b' = 2b) (P-421c, 114); [2] C-4c2 (a' = 2a, b' = 2b) (P-42c, 112) |
Maximal isomorphic subgroups of lowest index
IIc | [3] P-4c2 (c' = 3c) (116); [9] P-4c2 (a' = 3a, b' = 3b) (116) |
Minimal non-isomorphic supergroups
I | [2] P4/mcc (124); [2] P4/ncc (130); [2] P42/mcm (132); [2] P42/ncm (138) |
II | [2] C-4c2 (P-42c, 112); [2] I-4c2 (120); [2] P-4m2 (c' = 1/2c) (115) |