Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -y, x, z | (4) y, -x, z | (5) -x, y, -z | (6) x, -y, -z | (7) y, x, -z | (8) -y, -x, -z | (9) -x + 1/2, -y + 1/2, -z | (10) x + 1/2, y + 1/2, -z | (11) y + 1/2, -x + 1/2, -z | (12) -y + 1/2, x + 1/2, -z | (13) x + 1/2, -y + 1/2, z | (14) -x + 1/2, y + 1/2, z | (15) -y + 1/2, -x + 1/2, z | (16) y + 1/2, x + 1/2, z |
| hk0 : h + k = 2n 0kl : k = 2n h00 : h = 2n
|
| | Special: as above, plus
|
| x, x + 1/2, z | -x, -x + 1/2, z | -x + 1/2, x, z | x + 1/2, -x, z | -x, x + 1/2, -z | x, -x + 1/2, -z | x + 1/2, x, -z | -x + 1/2, -x, -z |
| no extra conditions |
| x, 0, 1/2 | -x, 0, 1/2 | 0, x, 1/2 | 0, -x, 1/2 | -x + 1/2, 1/2, 1/2 | x + 1/2, 1/2, 1/2 | 1/2, -x + 1/2, 1/2 | 1/2, x + 1/2, 1/2 |
| hkl : h + k = 2n
|
| x, 0, 0 | -x, 0, 0 | 0, x, 0 | 0, -x, 0 | -x + 1/2, 1/2, 0 | x + 1/2, 1/2, 0 | 1/2, -x + 1/2, 0 | 1/2, x + 1/2, 0 |
| hkl : h + k = 2n
|
| x, x, 1/2 | -x, -x, 1/2 | -x, x, 1/2 | x, -x, 1/2 | -x + 1/2, -x + 1/2, 1/2 | x + 1/2, x + 1/2, 1/2 | x + 1/2, -x + 1/2, 1/2 | -x + 1/2, x + 1/2, 1/2 |
| hkl : h + k = 2n
|
| x, x, 0 | -x, -x, 0 | -x, x, 0 | x, -x, 0 | -x + 1/2, -x + 1/2, 0 | x + 1/2, x + 1/2, 0 | x + 1/2, -x + 1/2, 0 | -x + 1/2, x + 1/2, 0 |
| hkl : h + k = 2n
|
| 0, 1/2, z | 1/2, 0, z | 0, 1/2, -z | 1/2, 0, -z |
| hkl : h + k = 2n
|
| 0, 0, z | 0, 0, -z | 1/2, 1/2, -z | 1/2, 1/2, z |
| hkl : h + k = 2n
|
| 1/4, 1/4, 1/2 | 3/4, 3/4, 1/2 | 3/4, 1/4, 1/2 | 1/4, 3/4, 1/2 |
| hkl : h, k = 2n
|
| 1/4, 1/4, 0 | 3/4, 3/4, 0 | 3/4, 1/4, 0 | 1/4, 3/4, 0 |
| hkl : h, k = 2n
|
| | hkl : h + k = 2n
|
| | hkl : h + k = 2n
|
| | hkl : h + k = 2n
|
| | hkl : h + k = 2n
|