Origin on 32
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/3 | ||||||||
Vertices |
|
Symmetry operations
(1) 1 | (2) 3+(0, 0, 2/3) 0, 0, z | (3) 3-(0, 0, 1/3) 0, 0, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | ||||||
General: | ||||||||
|
| 000l : l = 3n |
Symmetry of special projections
Along [001] p3 a' = a b' = b Origin at 0, 0, z | Along [100] p1 a' = 1/2(a + 2b) b' = c Origin at x, 0, 0 | Along [210] p1 a' = 1/2b b' = c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | [3] P1 (1) | 1 |
IIa | none |
IIb | none |
Maximal isomorphic subgroups of lowest index
IIc | [2] P31 (c' = 2c) (144); [3] H32 (a' = 3a, b' = 3b) (P32, 145); [7] P32 (c' = 7c) (145) |
Minimal non-isomorphic supergroups
I | [2] P3212 (153); [2] P3221 (154); [2] P65 (170); [2] P62 (171) |
II | [3] R3 (obverse) (146); [3] R3 (reverse) (146); [3] P3 (c' = 1/3c) (143) |