Origin on 2[2 1 0] at 32 1 (1, 1, 2)
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/6 |
Vertices | 0, 0, 0 | 1, 0, 0 | 1, 1, 0 | 0, 1, 0 | 0, 0, 1/6 | 1, 0, 1/6 | 1, 1, 1/6 | 0, 1, 1/6 |
|
(1) 1 | (2) 3+(0, 0, 2/3) 0, 0, z | (3) 3-(0, 0, 1/3) 0, 0, z |
(4) 2 x, -x, 1/6 | (5) 2 x, 2x, 1/3 | (6) 2 2x, x, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -y, x - y, z + 2/3 | (3) -x + y, -x, z + 1/3 | (4) -y, -x, -z + 1/3 | (5) -x + y, y, -z + 2/3 | (6) x, x - y, -z |
| 000l : l = 3n
|
| | Special: as above, plus
|
| x, -x, 1/6 | x, 2x, 5/6 | (-2x), -x, 1/2 |
| no extra conditions |
| x, -x, 2/3 | x, 2x, 1/3 | (-2x), -x, 0 |
| no extra conditions |
Symmetry of special projections
Along [001] p3m1 a' = a b' = b Origin at 0, 0, z | Along [100] p11m a' = 1/2(a + 2b) b' = c Origin at x, 0, 1/3 | Along [210] p2 a' = 1/2b b' = c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | | [2] P3211 (P32, 145) | 1; 2; 3 |
| | [3] P112 (C2, 5) | 1; 4 | | [3] P112 (C2, 5) | 1; 5 | | [3] P112 (C2, 5) | 1; 6 |
|
IIb | [3] H3212 (a' = 3a, b' = 3b) (P3221, 154) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P3112 (c' = 2c) (151); [4] P3212 (a' = 2a, b' = 2b) (153); [7] P3212 (c' = 7c) (153) |
Minimal non-isomorphic supergroups
I | [2] P6522 (179); [2] P6222 (180) |
II | [3] H3212 (P3221, 154); [3] P312 (c' = 1/3c) (149) |