Origin at -4 3 m
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; -1/4 ≤ z ≤ 1/4; y ≤ min(x, 1/2 - x); -y ≤ z ≤ y | ||||
Vertices |
|
Symmetry operations
For (0, 0, 0)+ set
(1) 1 | (2) 2 0, 0, z | (3) 2 0, y, 0 | (4) 2 x, 0, 0 |
(5) 3+ x, x, x | (6) 3+ -x, x, -x | (7) 3+ x, -x, -x | (8) 3+ -x, -x, x |
(9) 3- x, x, x | (10) 3- x, -x, -x | (11) 3- -x, -x, x | (12) 3- -x, x, -x |
(13) m x, x, z | (14) m x, -x, z | (15) -4+ 0, 0, z; 0, 0, 0 | (16) -4- 0, 0, z; 0, 0, 0 |
(17) m x, y, y | (18) -4+ x, 0, 0; 0, 0, 0 | (19) -4- x, 0, 0; 0, 0, 0 | (20) m x, y, -y |
(21) m x, y, x | (22) -4- 0, y, 0; 0, 0, 0 | (23) m -x, y, x | (24) -4+ 0, y, 0; 0, 0, 0 |
For (0, 1/2, 1/2)+ set
(1) t(0, 1/2, 1/2) | (2) 2(0, 0, 1/2) 0, 1/4, z | (3) 2(0, 1/2, 0) 0, y, 1/4 | (4) 2 x, 1/4, 1/4 |
(5) 3+(1/3, 1/3, 1/3) x - 1/3, x - 1/6, x | (6) 3+ -x, x + 1/2, -x | (7) 3+(-1/3, 1/3, 1/3) x + 1/3, -x - 1/6, -x | (8) 3+ -x, -x + 1/2, x |
(9) 3-(1/3, 1/3, 1/3) x - 1/6, x + 1/6, x | (10) 3-(-1/3, 1/3, 1/3) x + 1/6, -x + 1/6, -x | (11) 3- -x + 1/2, -x + 1/2, x | (12) 3- -x - 1/2, x + 1/2, -x |
(13) g(1/4, 1/4, 1/2) x - 1/4, x, z | (14) g(-1/4, 1/4, 1/2) x + 1/4, -x, z | (15) -4+ 1/4, 1/4, z; 1/4, 1/4, 1/4 | (16) -4- -1/4, 1/4, z; -1/4, 1/4, 1/4 |
(17) g(0, 1/2, 1/2) x, y, y | (18) -4+ x, 1/2, 0; 0, 1/2, 0 | (19) -4- x, 0, 1/2; 0, 0, 1/2 | (20) m x, y + 1/2, -y |
(21) g(1/4, 1/2, 1/4) x - 1/4, y, x | (22) -4- 1/4, y, 1/4; 1/4, 1/4, 1/4 | (23) g(-1/4, 1/2, 1/4) -x + 1/4, y, x | (24) -4+ -1/4, y, 1/4; -1/4, 1/4, 1/4 |
For (1/2, 0, 1/2)+ set
(1) t(1/2, 0, 1/2) | (2) 2(0, 0, 1/2) 1/4, 0, z | (3) 2 1/4, y, 1/4 | (4) 2(1/2, 0, 0) x, 0, 1/4 |
(5) 3+(1/3, 1/3, 1/3) x + 1/6, x - 1/6, x | (6) 3+(1/3, -1/3, 1/3) -x + 1/6, x + 1/6, -x | (7) 3+ x + 1/2, -x - 1/2, -x | (8) 3+ -x + 1/2, -x + 1/2, x |
(9) 3-(1/3, 1/3, 1/3) x - 1/6, x - 1/3, x | (10) 3- x + 1/2, -x, -x | (11) 3- -x + 1/2, -x, x | (12) 3-(1/3, -1/3, 1/3) -x - 1/6, x + 1/3, -x |
(13) g(1/4, 1/4, 1/2) x + 1/4, x, z | (14) g(1/4, -1/4, 1/2) x + 1/4, -x, z | (15) -4+ 1/4, -1/4, z; 1/4, -1/4, 1/4 | (16) -4- 1/4, 1/4, z; 1/4, 1/4, 1/4 |
(17) g(1/2, 1/4, 1/4) x, y - 1/4, y | (18) -4+ x, 1/4, 1/4; 1/4, 1/4, 1/4 | (19) -4- x, -1/4, 1/4; 1/4, -1/4, 1/4 | (20) g(1/2, -1/4, 1/4) x, y + 1/4, -y |
(21) g(1/2, 0, 1/2) x, y, x | (22) -4- 1/2, y, 0; 1/2, 0, 0 | (23) m -x + 1/2, y, x | (24) -4+ 0, y, 1/2; 0, 0, 1/2 |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) | (2) 2 1/4, 1/4, z | (3) 2(0, 1/2, 0) 1/4, y, 0 | (4) 2(1/2, 0, 0) x, 1/4, 0 |
(5) 3+(1/3, 1/3, 1/3) x + 1/6, x + 1/3, x | (6) 3+ -x + 1/2, x, -x | (7) 3+ x + 1/2, -x, -x | (8) 3+(1/3, 1/3, -1/3) -x + 1/6, -x + 1/3, x |
(9) 3-(1/3, 1/3, 1/3) x + 1/3, x + 1/6, x | (10) 3- x, -x + 1/2, -x | (11) 3-(1/3, 1/3, -1/3) -x + 1/3, -x + 1/6, x | (12) 3- -x, x + 1/2, -x |
(13) g(1/2, 1/2, 0) x, x, z | (14) m x + 1/2, -x, z | (15) -4+ 1/2, 0, z; 1/2, 0, 0 | (16) -4- 0, 1/2, z; 0, 1/2, 0 |
(17) g(1/2, 1/4, 1/4) x, y + 1/4, y | (18) -4+ x, 1/4, -1/4; 1/4, 1/4, -1/4 | (19) -4- x, 1/4, 1/4; 1/4, 1/4, 1/4 | (20) g(1/2, 1/4, -1/4) x, y + 1/4, -y |
(21) g(1/4, 1/2, 1/4) x + 1/4, y, x | (22) -4- 1/4, y, -1/4; 1/4, 1/4, -1/4 | (23) g(1/4, 1/2, -1/4) -x + 1/4, y, x | (24) -4+ 1/4, y, 1/4; 1/4, 1/4, 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); t(1/2, 0, 1/2); (2); (3); (5); (13)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||||||||||||||||||||||
(0, 0, 0)+ (0, 1/2, 1/2)+ (1/2, 0, 1/2)+ (1/2, 1/2, 0)+ | h, k, l permutable General: | ||||||||||||||||||||||||||||
|
| hkl : h + k, h + l, k + l = 2n 0kl : k, l = 2n hhl : h + l = 2n h00 : h = 2n |
Special: as above, plus | |||||||||||||||||
|
| no extra conditions | |||||||||||||||
|
| no extra conditions | |||||||||||||||
|
| no extra conditions | |||||||||||||||
|
| no extra conditions | |||||||||||||||
|
| no extra conditions | |||||||||||||||
|
| no extra conditions | |||||||||||||||
|
| no extra conditions | |||||||||||||||
|
| no extra conditions |
Symmetry of special projections
Along [001] p4mm a' = 1/2a b' = 1/2b Origin at 0, 0, z | Along [111] p31m a' = 1/6(2a - b - c) b' = 1/6(-a + 2b - c) Origin at x, x, x | Along [110] c1m1 a' = 1/2(-a + b) b' = c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
I | [2] F231 (F23, 196) | (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12)+ | ||||||||||||||
| ||||||||||||||||
|
| ||||||||||||||||
|
IIb | none |
Maximal isomorphic subgroups of lowest index
IIc | [27] F-43m (a' = 3a, b' = 3b, c' = 3c) (216) |
Minimal non-isomorphic supergroups
I | [2] Fm-3m (225); [2] Fd-3m (227) |
II | [2] P-43m (a' = 1/2a, b' = 1/2b, c' = 1/2c) (215) |