International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by Th. Hahn

International Tables for Crystallography (2006). Vol. A. ch. 8.1, pp. 720-725
https://doi.org/10.1107/97809553602060000514

Chapter 8.1. Basic concepts

H. Wondratscheka*

aInstitut für Kristallographie, Universität, D-76128 Karlsruhe, Germany
Correspondence e-mail: hans.wondratschek@physik.uni-karlsruhe.de

References

First citationBrown, H., Bülow, R., Neubüser, J., Wondratschek, H. & Zassenhaus, H. (1978). Crystallographic groups of four-dimensional space. New York: Wiley.Google Scholar
First citationBurckhardt, J. J. (1988). Die Symmetrie der Kristalle. Basel: Birkhäuser.Google Scholar
First citationFlack, H. D., Wondratschek, H., Hahn, Th. & Abrahams, S. C. (2000). Symmetry elements in space groups and point groups. Addenda to two IUCr reports on the nomenclature of symmetry. Acta Cryst. A56, 96–98.Google Scholar
First citationGiacovazzo, C. (2002). Editor. Fundamentals of crystallography, 2nd ed. IUCr texts on crystallography, No. 7. Oxford University Press.Google Scholar
First citationHermann, C. (1949). Kristallographie in Räumen beliebiger Dimensionszahl. I. Die Symmetrieoperationen. Acta Cryst. 2, 139–145.Google Scholar
First citationInternational Tables for Crystallography (2002). Vol. E. Subperiodic groups, edited by V. Kopsky & D. B. Litvin. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citationJanner, A. (2001). Introduction to a general crystallography. Acta Cryst. A57, 378–388.Google Scholar
First citationJanssen, T., Janner, A., Looijenga-Vos, A. & de Wolff, P. M. (2004). International tables for crystallography, Vol. C, 3rd ed., edited by E. Prince, ch. 9.8. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citationLedermann, W. (1976). Introduction to group theory. London: Longman.Google Scholar
First citationLima-de-Faria, J. (1990). Historical atlas of crystallography. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citationOpgenorth, J., Plesken, W. & Schulz, T. (1998). Crystallographic algorithms and tables. Acta Cryst. A54, 517–531.Google Scholar
First citationPlesken, W. & Schulz, T. (2000). Counting crystallographic groups in low dimensions. Exp. Math. 9, 407–411.Google Scholar
First citationSchwarzenberger, R. L. E. (1980). N-dimensional crystallography. San Francisco: Pitman.Google Scholar
First citationShubnikov, A. V. & Koptsik, V. A. (1974). Symmetry in science and art. New York: Plenum.Google Scholar
First citationSmaalen, S. van (1995). Incommensurate crystal structures. Crystallogr. Rev. 4, 79–202.Google Scholar
First citationSouvignier, B. (2003). Enantiomorphism of crystallographic groups in higher dimensions with results in dimensions up to 6. Acta Cryst. A59, 210–220.Google Scholar
First citationVainshtein, B. K. (1994). Fundamentals of crystals. Berlin: Springer-Verlag.Google Scholar
First citationWolff, P. M. de, Billiet, Y., Donnay, J. D. H., Fischer, W., Galiulin, R. B., Glazer, A. M., Hahn, Th., Senechal, M., Shoemaker, D. P., Wondratschek, H., Wilson, A. J. C. & Abrahams, S. C. (1992). Symbols for symmetry elements and symmetry operations. Acta Cryst. A48, 727–732.Google Scholar
First citationWolff, P. M. de, Billiet, Y., Donnay, J. D. H., Fischer, W., Galiulin, R. B., Glazer, A. M., Senechal, M., Shoemaker, D. P., Wondratschek, H., Hahn, Th., Wilson, A. J. C. & Abrahams, S. C. (1989). Definition of symmetry elements in space groups and point groups. Acta Cryst. A45, 494–499.Google Scholar
First citationYamamoto, A. (1996). Crystallography of quasiperiodic crystals. Acta Cryst. A52, 509–560.Google Scholar