International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by Th. Hahn

International Tables for Crystallography (2006). Vol. A, ch. 8.1, pp. 720-725
https://doi.org/10.1107/97809553602060000514

Chapter 8.1. Basic concepts

H. Wondratscheka*

aInstitut für Kristallographie, Universität, D-76128 Karlsruhe, Germany
Correspondence e-mail: hans.wondratschek@physik.uni-karlsruhe.de

References

Brown, H., Bülow, R., Neubüser, J., Wondratschek, H. & Zassenhaus, H. (1978). Crystallographic groups of four-dimensional space. New York: Wiley.Google Scholar
Burckhardt, J. J. (1988). Die Symmetrie der Kristalle. Basel: Birkhäuser.Google Scholar
Flack, H. D., Wondratschek, H., Hahn, Th. & Abrahams, S. C. (2000). Symmetry elements in space groups and point groups. Addenda to two IUCr reports on the nomenclature of symmetry. Acta Cryst. A56, 96–98.Google Scholar
Giacovazzo, C. (2002). Editor. Fundamentals of crystallography, 2nd ed. IUCr texts on crystallography, No. 7. Oxford University Press.Google Scholar
Hermann, C. (1949). Kristallographie in Räumen beliebiger Dimensionszahl. I. Die Symmetrieoperationen. Acta Cryst. 2, 139–145.Google Scholar
International Tables for Crystallography (2002). Vol. E. Subperiodic groups, edited by V. Kopsky & D. B. Litvin. Dordrecht: Kluwer Academic Publishers.Google Scholar
Janner, A. (2001). Introduction to a general crystallography. Acta Cryst. A57, 378–388.Google Scholar
Janssen, T., Janner, A., Looijenga-Vos, A. & de Wolff, P. M. (2004). International tables for crystallography, Vol. C, 3rd ed., edited by E. Prince, ch. 9.8. Dordrecht: Kluwer Academic Publishers.Google Scholar
Ledermann, W. (1976). Introduction to group theory. London: Longman.Google Scholar
Lima-de-Faria, J. (1990). Historical atlas of crystallography. Dordrecht: Kluwer Academic Publishers.Google Scholar
Opgenorth, J., Plesken, W. & Schulz, T. (1998). Crystallographic algorithms and tables. Acta Cryst. A54, 517–531.Google Scholar
Plesken, W. & Schulz, T. (2000). Counting crystallographic groups in low dimensions. Exp. Math. 9, 407–411.Google Scholar
Schwarzenberger, R. L. E. (1980). N-dimensional crystallography. San Francisco: Pitman.Google Scholar
Shubnikov, A. V. & Koptsik, V. A. (1974). Symmetry in science and art. New York: Plenum.Google Scholar
Smaalen, S. van (1995). Incommensurate crystal structures. Crystallogr. Rev. 4, 79–202.Google Scholar
Souvignier, B. (2003). Enantiomorphism of crystallographic groups in higher dimensions with results in dimensions up to 6. Acta Cryst. A59, 210–220.Google Scholar
Vainshtein, B. K. (1994). Fundamentals of crystals. Berlin: Springer-Verlag.Google Scholar
Wolff, P. M. de, Billiet, Y., Donnay, J. D. H., Fischer, W., Galiulin, R. B., Glazer, A. M., Hahn, Th., Senechal, M., Shoemaker, D. P., Wondratschek, H., Wilson, A. J. C. & Abrahams, S. C. (1992). Symbols for symmetry elements and symmetry operations. Acta Cryst. A48, 727–732.Google Scholar
Wolff, P. M. de, Billiet, Y., Donnay, J. D. H., Fischer, W., Galiulin, R. B., Glazer, A. M., Senechal, M., Shoemaker, D. P., Wondratschek, H., Hahn, Th., Wilson, A. J. C. & Abrahams, S. C. (1989). Definition of symmetry elements in space groups and point groups. Acta Cryst. A45, 494–499.Google Scholar
Yamamoto, A. (1996). Crystallography of quasiperiodic crystals. Acta Cryst. A52, 509–560.Google Scholar