International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by M. I. Aroyo

International Tables for Crystallography (2016). Vol. A. ch. 1.3, pp. 22-41
https://doi.org/10.1107/97809553602060000921

Chapter 1.3. A general introduction to space groups

B. Souvigniera*

a Radboud University Nijmegen, Faculty of Science, Mathematics and Computing Science, Institute for Mathematics, Astrophysics and Particle Physics, Postbus 9010, 6500 GL Nijmegen, The Netherlands
Correspondence e-mail: souvi@math.ru.nl

References

First citation Armstrong, M. A. (1997). Groups and Symmetry. New York: Springer.Google Scholar
First citation Bieberbach, L. (1911). Über die Bewegungsgruppen der Euklidischen Räume. (Erste Abhandlung). Math. Ann. 70, 297–336.Google Scholar
First citation Bieberbach, L. (1912). Über die Bewegungsgruppen der Euklidischen Räume. (Zweite Abhandlung). Die Gruppen mit einem endlichen Fundamentalbereich. Math. Ann. 72, 400–412. Google Scholar
First citation Minkowski, H. (1887). Zur Theorie der positiven quadratischen Formen. J. Reine Angew. Math. 101, 196–202.Google Scholar
First citation Wolff, P. M. de, Belov, N. V., Bertaut, E. F., Buerger, M. J., Donnay, J. D. H., Fischer, W., Hahn, Th., Koptsik, V. A., Mackay, A. L., Wondratschek, H., Wilson, A. J. C. & Abrahams, S. C. (1985). Nomenclature for crystal families, Bravais-lattice types and arithmetic classes. Report of the International Union of Crystallography Ad-Hoc Committee on the Nomenclature of Symmetry. Acta Cryst. A41, 278–280.Google Scholar