International Tables for Crystallography (2016). Vol. A. ch. 1.3, pp. 22-41
https://doi.org/10.1107/97809553602060000921 |
Chapter 1.3. A general introduction to space groups
Chapter index
affine space 1.3.1
arithmetic crystal class 1.3.4.4.1
basis transformation 1.3.2.2
Bieberbach theorem 1.3.4.1
Bravais arithmetic crystal class 1.3.4.4.1
Bravais class 1.3.4.3
Bravais flock 1.3.4.4.1
Brillouin zone 1.3.2.3
cell parameters 1.3.2.2
centred cell 1.3.2.4
centred lattice 1.3.2.4
centring vector 1.3.2.4
conventional basis 1.3.2.4
conventional coordinate system 1.3.4.4.4
coordinates and coordinate triplets 1.3.2.1
coset representatives 1.3.3.2
crystal family 1.3.4.4.4
crystallographic space group 1.3.1
crystallographic space-group operation 1.3.1
Dirichlet domain 1.3.2.3
enantiomorphism 1.3.4.1
fundamental domain 1.3.2.3
geometric crystal class 1.3.4.2
hexagonal crystal family
distribution of space-group types in 1.3.4.3
isometry 1.3.1
kernel of a homomorphism 1.3.3.1
lattice basis 1.3.2.1
lattice point group 1.3.4.3
linear part of a space-group operation 1.3.1
matrix–column pair 1.3.1
metric tensor 1.3.2.2
multiple cell 1.3.2.4
non-symmorphic space groups 1.3.3.3
origin choice 1.3.3.3
point-group types 1.3.4.2
primitive basis 1.3.2.4
primitive lattice 1.3.2.4
reciprocal basis 1.3.2.5
reciprocal lattice 1.3.2.5
rhombohedral lattice 1.3.2.4
site-symmetry group 1.3.3.3
space groups 1.3.1
classification of 1.3.4
crystallographic 1.3.1
non-symmorphic 1.3.3.3
symmorphic 1.3.3.3
space-group types 1.3.4.1
specialized metrics 1.3.4.3
symmorphic space groups 1.3.3.3
transformation of basis 1.3.2.2
translation part of a space-group operation 1.3.1
vector space 1.3.1
Voronoï domain 1.3.2.3
Wigner–Seitz cell 1.3.2.3
Wirkungsbereich (domain of influence) 1.3.2.3