International Tables for Crystallography (2016). Vol. A. ch. 3.1, pp. 698-718
https://doi.org/10.1107/97809553602060000929 |
Chapter 3.1. Crystal lattices
Contents
- 3.1. Crystal lattices (pp. 698-718) | html | pdf | chapter contents |
- 3.1.1. Bases and lattices (pp. 698-700) | html | pdf |
- 3.1.2. Bravais types of lattices and other classifications (pp. 700-708) | html | pdf |
- 3.1.2.1. Classifications (p. 700) | html | pdf |
- 3.1.2.2. Description of Bravais types of lattices (pp. 700-701) | html | pdf |
- 3.1.2.3. Delaunay reduction and standardization (pp. 701-707) | html | pdf |
- 3.1.2.4. Example of Delaunay reduction and standardization of the basis (pp. 707-708) | html | pdf |
- 3.1.3. Reduced bases (pp. 709-714) | html | pdf |
- 3.1.3.1. Introduction (p. 709) | html | pdf |
- 3.1.3.2. Definition (p. 709) | html | pdf |
- 3.1.3.3. Main conditions (pp. 709-710) | html | pdf |
- 3.1.3.4. Special conditions (pp. 710-712) | html | pdf |
- 3.1.3.5. Lattice characters (pp. 712-713) | html | pdf |
- 3.1.3.6. Applications (pp. 713-714) | html | pdf |
- 3.1.4. Further properties of lattices (pp. 714-718) | html | pdf |
- 3.1.4.1. Further kinds of reduced cells (p. 714) | html | pdf |
- 3.1.4.2. Topological characterization of lattice characters (pp. 714-715) | html | pdf |
- 3.1.4.3. A finer division of lattices (p. 715) | html | pdf |
- 3.1.4.4. Conventional cells (pp. 715-717) | html | pdf |
- 3.1.4.5. Conventional characters (pp. 717-718) | html | pdf |
- 3.1.4.6. Sublattices (p. 718) | html | pdf |
- References | html | pdf |
- Figures
- Fig. 3.1.2.1. Conventional cells of the three-dimensional Bravais types of lattices (p. 700) | html | pdf |
- Fig. 3.1.2.2. Delaunay reduction of Gruber's example (cf (p. 708) | html | pdf |
- Fig. 3.1.3.1. The net of lattice points in the plane of the reduced basis vectors a and b; OBAD is a primitive mesh (p. 710) | html | pdf |
- Fig. 3.1.3.2. The effect of the special conditions (p. 710) | html | pdf |
- Fig. 3.1.3.3. The effect of the special conditions (p. 711) | html | pdf |
- Fig. 3.1.3.4. The effect of the special conditions (p. 711) | html | pdf |
- Fig. 3.1.3.5. The effect of the special conditions (p. 711) | html | pdf |
- Fig. 3.1.4.1. A set M in
consisting of three components (p. 714) | html | pdf |
- Fig. 3.1.4.2. A convex set in
(p. 715) | html | pdf |
- Fig. 3.1.4.3. The Bravais-lattice type of the three-dimensional lattice at the upper end of a line is a limiting case of the type at the lower end (p. 717) | html | pdf |
- Fig. 3.1.4.4. The Bravais-lattice type of the two-dimensional lattice at the upper end of a line is a limiting case of the type at the lower end (p. 717) | html | pdf |
- Fig. 3.1.4.5. Three possible decompositions of a two-dimensional lattice L into sublattices of index 2 (p. 718) | html | pdf |
- Tables
- Table 3.1.1.1. Lattice point-group symmetries (p. 699) | html | pdf |
- Table 3.1.2.1. Two-dimensional Bravais types of lattices (p. 701) | html | pdf |
- Table 3.1.2.2. Three-dimensional Bravais types of lattices (pp. 702-703) | html | pdf |
- Table 3.1.2.3. Delaunay types of lattices (`Symmetrische Sorten') (pp. 704-707) | html | pdf |
- Table 3.1.2.4. Delaunay reduction for Gruber's example (p. 708) | html | pdf |
- Table 3.1.2.5. Discussion of Gruber's example using the cell surface (p. 708) | html | pdf |
- Table 3.1.3.1. The parameters
,
and
of the 44 lattice characters (
) (p. 712) | html | pdf |
- Table 3.1.3.2. Lattice characters described by relations between conventional cell parameters (p. 713) | html | pdf |
- Table 3.1.4.1. Conventional cells for the three-dimensional Bravais types of lattices and their limiting cases (p. 716) | html | pdf |
- Table 3.1.4.2. Conventional cells for the five two-dimensional Bravais types of lattices and their limiting cases (p. 717) | html | pdf |
- Table 3.1.4.3. Conventional characters (p. 718) | html | pdf |