Direct space: points and vectors |
![[{\bb E}^n]](/teximages/acpre6/acpre6fi1.svg) |
n-dimensional Euclidean point space |
![[{\bb V}^n]](/teximages/acpre6/acpre6fi2.svg) |
n-dimensional vector space |
, , ![[{\bb Z}]](/teximages/acpre6/acpre6fi5.svg) |
the field of real numbers, the field of rational numbers, the ring of integers |
L |
lattice in ![[{\bb V}^3]](/teximages/acpre6/acpre6fi6.svg) |
![[{\sf L}]](/teximages/acpre6/acpre6fi7.svg) |
line in ![[{\bb E}^3]](/teximages/acpre6/acpre6fi8.svg) |
a, b, c; or ai |
basis vectors of the lattice |
a, b, c; or |a|, |b|, |c| |
lengths of basis vectors, lengths of cell edges |
![[\left\}\matrix{\cr{\rm lattice}\hfill\cr{\rm parameters}\hfill\cr\vphantom{1}}\right.]](/teximages/acpre6/acpre6fi9.svg) |
α, β, γ; or αj |
interaxial angles , , ![[\angle ({\bf a}, {\bf b})]](/teximages/acpre6/acpre6fi12.svg) |
G, gik |
fundamental matrix (metric tensor) and its coefficients |
V |
cell volume |
X, Y, Z, P |
points |
r, d, x, v, u |
vectors, position vectors |
r, |r| |
norm, length of a vector |
x = xa + yb + zc |
vector with coefficients x, y, z |
x, y, z; or xi |
point coordinates expressed in units of a, b, c; coefficients of a vector |
![[{\bi x} = \pmatrix{x\cr y\cr z\cr} \equiv \pmatrix{x_{1}\cr x_{2}\cr x_{3}\cr}]](/teximages/acpre6/acpre6fi13.svg) |
column of point coordinates or vector coefficients |
t |
translation vector |
t1, t2, t3; or ti |
coefficients of translation vector t |
![[{\bi t} = \pmatrix{t_{1}\cr t_{2}\cr t_{3}\cr}]](/teximages/abch1o1/abch1o1fi10.svg) |
column of coefficients of translation vector t |
O |
origin |
o |
zero vector (all coefficients zero) |
o |
(3 × 1) column of zero coefficients |
a′, b′, c′; or ![[{\bf a}_{i}']](/teximages/abch1o1/abch1o1fi13.svg) |
new basis vectors after a transformation of the coordinate system (basis transformation) |
r′; or x′; x′, y′, z′; or ![[x_{i}']](/teximages/abch1o1/abch1o1fi14.svg) |
vector and point coordinates after a transformation of the coordinate system (basis transformation) |
![[{\bi x}' = \pmatrix{x'\cr y'\cr z'\cr}]](/teximages/acpre6/acpre6fi17.svg) |
column of coordinates after a transformation of the coordinate system (basis transformation) |
![[\tilde{X}]](/teximages/abch1o1/abch1o1fi60.svg) |
image of a point X after the action of a symmetry operation |
; or ![[\tilde{x}_i]](/teximages/acpre6/acpre6fi20.svg) |
coordinates of an image point ![[\tilde{X}]](/teximages/abch1o1/abch1o1fi60.svg) |
![[\tilde{\bi x} = \pmatrix{\tilde{x}\cr \tilde{y}\cr \tilde{z}\cr}]](/teximages/acpre6/acpre6fi22.svg) |
column of coordinates of an image point ![[\tilde{X}]](/teximages/abch1o1/abch1o1fi60.svg) |
, or ![[\specialfonts{\bbsf r}]](/teximages/abch1o1/abch1o1fi86.svg) |
(3 + 1) × 1 `augmented' columns of point coordinates or vector coefficients |
|