International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 2.6, pp. 100-101

Section 2.6.1.6.1. Primary data handling

O. Glattera

2.6.1.6.1. Primary data handling

| top | pdf |

In order to obtain reliable results, we have to perform a series of experiments. We have to repeat the experiment for every sample, to be able to estimate a mean value and a standard deviation at every scattering angle. This experimentally determined standard deviation is often much higher than the standard deviation simply estimated from counting statistics. A blank experiment (cuvette filled with solvent only) is necessary to be able to subtract background scattering coming from the instrument and from the solvent (or matrix in the case of solid samples). Finally, we have to perform a series of such experiments at different concentrations to extrapolate to zero concentration (elimination of interparticle interferences).

If the scattering efficiency of the sample is low (low contrast, small particles), it may be necessary to measure the outer part of the scattering function with a larger entrance slit and we will have to merge different parts of the scattering function. The intensity of the instrument (primary beam) should be checked before each measurement. This allows correction (normalization) for instabilities.

It is therefore necessary to have a so-called primary data-handling routine that performs all these preliminary steps like averaging, subtraction, normalization, overlapping, concentration extrapolation, and graphical representation on a graphics terminal or plotter. In addition, it is helpful to have the possibility of calculating the Guinier radius, Porod extrapolation [equations (2.6.1.24)[link]], invariant, etc. from the raw data.

When all these preliminary steps have been performed, we have a smeared particle-scattering function [I_{\rm exp}(h)] with a certain statistical accuracy. From this data set, we want to compute I(h) and p(r) [or D(R)] and all our particle parameters. In order to do this, we have to smooth and desmear our function [I_{\rm exp}(h)]. The smoothing operation is an absolute necessity because the desmearing process is comparable to a differentiation that is impossible for noisy data. Finally, we have to perform a Fourier transform (or other similar transformation) to invert equations (2.6.1.9)[link] or (2.6.1.54)[link], (2.6.1.55)[link]. Before we can discuss the desmearing process (collimation error correction) we have to describe the smearing process.








































to end of page
to top of page