International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 4.3, pp. 259-429
https://doi.org/10.1107/97809553602060000593

Chapter 4.3. Electron diffraction

C. Colliex,a J. M. Cowley,b S. L. Dudarev,c M. Fink,d J. Gjønnes,e R. Hilderbrandt,f A. Howie,g D. F. Lynch,h L. M. Peng,i G. Ren,j A. W. Ross,d V. H. Smith Jr,k J. C. H. Spence,l J. W. Steeds,m J. Wang,k M. J. Whelanc and B. B. Zvyaginn

a Laboratoire Aimé Cotton, CNRS, Campus d'Orsay, Bâtiment 505, F-91405 Orsay CEDEX, France,bDepartment of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA,cDepartment of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, England,dDepartment of Physics, The University of Texas at Austin, Austin, TX 78712, USA,eDepartment of Physics, University of Oslo, PO Box 1048, Blindern, N-0316 Oslo, Norway,fChemistry Division, Room 1055, The National Science Foundation, 4201 Wilson Blvd, Arlington, VA 22230, USA,gCavendish Laboratory, Madingley Road, Cambridge CB3 0HE, England,hCSIRO Division of Materials Science & Technology, Private Bag 33, Rosebank MDC, Clayton, Victoria 3169, Australia,iDepartment of Electronics, Peking University, Beijing 100817, People's Republic of China,jBeijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, PO Box 2724, Beijing 100080, People's Republic of China,kDepartment of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6,lDepartment of Physics, Arizona State University, Tempe, AZ 85287, USA,mH. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, England, and nInstitute of Ore Mineralogy, Akad. Nauk Russia, Staromonetny 35, 109017 Moscow, Russia

The first section of this chapter concerns scattering factors for the diffraction of electrons by crystalline solids. An explanation of the theory of scattering by a perfect crystal is followed by a discussion of the kinematical, two-beam and phase-grating approximations. Relativistic and absorption effects are considered. Extensive tables of atomic scattering amplitudes for electrons for neutral and ionized atoms are presented. The second section of the chapter briefly discusses the parameterization of electron atomic scattering factors. Tables of useful parameters as a function of accelerating voltage and elastic atomic scattering factors for neutral atoms are given. Complex scattering factors for the diffraction of electrons by gases are discussed in the third section of the chapter. This section includes tables of scattering factors of interest for gas-phase electron diffraction from atoms and molecules in the keV energy region. In addition to the tables and a description of their uses, a discussion of the theoretical uncertainties related to the material in the tables is also provided. The tables give scattering factors for elastic and inelastic scattering from free atoms. The theory of molecular scattering based on these atomic quantities is also discussed. Electron energy-loss spectroscopy on solids is discussed in the fourth section of the chapter. Topics covered include: the use of electron beams; single and multiple scattering; the classification of the different excitations in a spectrum; instrumentation; and the excitation spectra of valence and core electrons. The fifth section of the chapter describes oriented texture patterns. Lamellar and fibre texture patterns are discussed and applications to metals and organic materials are mentioned. The computation of dynamic wave amplitudes in then described in the sixth section of the chapter. This section deals first with the multislice method. The numerical procedure is outlined and factors that influence the choice of thickness of the slice are discussed. Two checks that can be performed during a multislice calculation are noted. The Bloch-wave method is then described. The use of Bloch waves to describe electron diffraction and electron imaging in thin crystals is outlined together with the concept of the dispersion surface. These emerge as natural solutions of the Schrödinger equation with a periodic optical potential to generate the elastic scattering and also the loss of intensity from the coherent wave field due to thermal diffuse and inelastic scattering. The Bloch-wave approach is a useful complement to the multislice method and provides a clear picture of wave propagation in perfect and imperfect crystals. In the seventh section of the chapter, the measurement of structure factors and the determination of crystal thickness by electron diffraction are described. The use of convergent-beam electron diffraction to obtain integrated intensities is discussed and the relationship between intensity features and the dispersion surface is explained. The last section of the chapter concerns crystal-structure determination by high-resolution microscopy. This technique allows the arrangement of atomic columns in thin crystals to be observed directly. The resolution of the best instruments is now slightly below 0.1 nm. The images usually show a projection through a slice of crystal about 20 nm thick, however tomographic (three-dimensional) reconstruction is now possible at nanometre resolution. The images show the host of microphases, grain boundaries, twins, line and planar defects which broad-beam methods, such as X-ray diffraction, provide the average scattering from. These defects often control the properties of crystals, engineering materials and electronic devices. Individual nanostructures, such as carbon nanotubes and catalyst particles, may be imaged at atomic resolution. Fine twinning, polytypes, intergrowth of oxide phases etc. can be identified, and increasingly the detailed atomic structure of defects (such as oxide, superconductor and semiconductor interfaces) is being determined. Substitutional dopant atoms have recently been imaged for the first time. In biology the method is limited by radiation damage; however by summing many images of identical randomly oriented macromolecules, tomographic density maps can be reconstructed at subnanometre resolution from hydrated proteins which cannot be crystallized (e.g. membrane proteins). This section reviews the theoretical principles of high-resolution electron microscopy, including few-beam and structure image formation, effects of electron-optical lens aberrations, partial coherence, resolution-limiting factors, image-simulation methods, dynamical effects, and a summary of super-resolution schemes.

Keywords: absorption; atomic scattering amplitudes; atomic scattering factors; Bethe theory; Bloch-wave method; core-electron spectroscopy; core-loss spectroscopy; crystal thickness; crystalline solids; dielectric description; dynamical diffraction; dynamical wave amplitudes; EELS; elastic scattering; electron diffraction; electron energy-loss spectroscopy; electron microscopy; electrons; free-electron gas; high-resolution electron microscopy; HREM; hyper-resolution; inelastic scattering; lamellar textures; lattice-fringe images; molecular scattering factors; multiple scattering; multislice method; oriented texture patterns; plasmons; real solids; relativistic effects; STEM; scanning transmission electron microscopes; scattering factors; solid-state effects; spectrometers; structure factors; surface plasmons; texture; wave amplitudes; X-ray diffraction.

4.3.1. Scattering factors for the diffraction of electrons by crystalline solids

| top | pdf |
J. M. Cowleyb

4.3.1.1. Elastic scattering from a perfect crystal

| top | pdf |

The most important interaction of electrons with crystalline matter is the interaction with the electrostatic potential field. The scattering into sharp, Bragg reflections is considered in terms of the interaction of an incident plane wave with a time-independent, averaged, periodic potential field which may be written [\varphi({\bf r}) ={1\over \Omega}\sum_{\bf h}V({\bf h})\exp\{-2\pi i {\bf h}\cdot{\bf r}\}, \eqno (4.3.1.1)]where [\Omega] is the unit-cell volume and the Fourier coefficients, [V({\bf h})], may be referred to as the structure amplitudes corresponding to the reciprocal-lattice vectors h. In conformity with the crystallographic sign convention used throughout this volume [see also Volume B (IT B, 2001[link])], we choose a free-electron approximation for the incident electron beam of the form [\exp(-i{\bf k}\cdot {\bf r})] and the interaction is represented by inserting the potential (4.3.1.1)[link] in the Schrödinger wave equation [\nabla^2\psi(r)+2k\sigma\{E+\varphi(r)\}\psi(r)=0, \eqno (4.3.1.2)]where eE is the kinetic energy of the incident beam, [k\,(=2\pi/\lambda)] is the magnitude of the wavevector for the incident electrons, and σ is an `interaction constant' defined by [\sigma=2\pi me\lambda/h^2, \eqno (4.3.1.3)]where h is Planck's constant. Relativistic values of m and λ are assumed (see Subsection 4.3.1.4[link]).

The solution of equation (4.3.1.2)[link], subject to the boundary conditions imposed by the need to fit the waves in the crystal with the incoming and outgoing waves in vacuum at the crystal surfaces, then allows the directions and amplitudes of the diffracted beams to be obtained in terms of the crystal periodicities and the Fourier coefficients, [V({\bf h})], of [\varphi({\bf r})] by the eigenvalue or Bloch-wave method (Bethe, 1928[link]).

Alternatively, the scattered amplitudes may be obtained from the integral form of (4.3.1.2)[link], [\eqalignno{ \psi({\bf r})&=\exp\{-i{\bf k}_0\cdot{\bf r}\} \cr&\quad +K\int\displaystyle {\exp\{-ik|{\bf r}-{\bf r}'|\}\over |{\bf r}-{\bf r}'|}\varphi({\bf r}')\psi({\bf r}')\,{\rm d}\tau_{\bf r'}, &(4.3.1.4)}]where [\exp\{-i{\bf k}_0\cdot{\bf r}\}] represents the incident beam, K = σ/λ, and the integral is taken over the space of the variable, [{\bf r}']. An iterative solution of (4.3.1.4)[link] leads to the Born series, [\psi=\psi_0+\psi_1+\psi_2+\ldots,]where [\psi_0= \exp\{-i{\bf k}_0\cdot{\bf r}\}]and [\psi_n({\bf r})=K \int{\exp\{-ik|{\bf r}-{\bf r}'|\}\over|{\bf r}-{\bf r}'|}\varphi({\bf r}')\psi_{n-1}({\bf r}')\,{\rm d}\tau_{\bf r'}, \eqno (4.3.1.5)]for [n\ge1]. Terms of the series for [n=1,2,\ldots] may be considered to represent the contributions from single, double and multiple scattering of the incident electron beam. This method has been applied to the diffraction from crystals by Fujiwara (1959[link]).

A further formulation of the scattering problem in integral form is that due to Cowley & Moodie (1957[link]) who considered the progressive modification of an incident plane wave as it passed through successive thin slices of a crystal. The effect of the nth slice on the incident electron wave is that of a phase-grating so that the wavefunction is modified by multiplication by a transmission function, [q_n(xy)=\exp\{-i\sigma\varphi_n(xy)\}, \eqno (4.3.1.6)]where [\varphi_n(xy)] is the projection of the potential distribution within the slice in the direction of the incident beam, taken to be the z axis; [\varphi_n(x,y)=\textstyle\int\limits^{z_n+\Delta z}_{z_n}\,\varphi(x,y,z)\,{\rm d} z. \eqno (4.3.1.7)]Propagation of the wave between the centres of slices is represented by convolution with a propagation function, p(xy), so that the wave entering the (n + 1)th slice may be written [\psi_{n+1}(xy)=[\psi_n(xy)\cdot q_n(xy)]*p_n(xy). \eqno (4.3.1.8)]In the small-angle approximation, the function [p_n(xy)] is given by the usual Fresnel diffraction theory as [p(xy)=(i/\lambda\Delta z)\exp\{-ik(x^2+y^2)/2\Delta z\}. \eqno (4.3.1.9)]

In the limit that the slice thickness, [\Delta z], tends to zero, the iteration of (4.3.1.8)[link] gives an exact account of the diffraction by the crystal.

On the basis of the above-mentioned and other related formulations of the diffraction problem, several computing methods have been devised for calculation of the amplitudes and intensities of the many diffracted beams of appreciable intensity that may emerge simultaneously from a crystal (see Section 4.3.6[link]). In this way, a degree of accuracy may be achieved in the calculation of the intensities of spots in diffraction patterns or of the contrast in electron-microscope images of crystals (Section 4.3.8[link]).

4.3.1.2. Atomic scattering factors

| top | pdf |

All such calculations require a knowledge of the potential distribution, [\varphi({\bf r})], or its Fourier coefficients, [V({\bf h})]. It is usually convenient to express the potential distribution in terms of the sum of contributions of individual atoms centred at the positions [{\bf r}={\bf r}_i]. Thus: [\varphi({\bf r})=\textstyle\sum\limits_i \varphi_i({\bf r}-{\bf r}_i) \eqno (4.3.1.10)]or, in terms of the Fourier transforms, [V_i], of the [\varphi_i({\bf r})] [V({\bf h})=\textstyle\sum\limits_i V_i({\bf h})\exp\{+2\pi i{\bf h}\cdot{\bf r}_i\}. \eqno (4.3.1.11)]

As a first approximation, the functions [\varphi_i({\bf r})] may be identified with the potential distributions for individual, isolated atoms or ions, with the usual spreading due to thermal motion. The interatomic binding and the interactions of ions that are thereby neglected may have important effects on diffraction intensities in some cases.

In this approximation, the Fourier transforms for individual atoms may be written [V_i(s)=f^B_i(s)/K, \eqno (4.3.1.12)]where [s=4\pi\lambda^{-1}\sin\theta=|{\bf k}-{\bf k}_0|] and the [f^B] are the Born electron scattering amplitudes, as conventionally defined, in units of Å. Here [\theta] is half the scattering angle and, again, K = σ/λ. Some values of [f^B(s)] listed in the accompanying Tables 4.3.1.1[link] and 4.3.1.2[link] are obtained from the atomic potentials [\varphi_0({\bf r})] for isolated, spherically symmetrical atoms or ions by the relation [f^{B}(s)=4\pi K \int\limits^\infty_0 r^2\varphi(r){\sin sr\over sr}{\rm d} r.\eqno (4.3.1.13)]

Table 4.3.1.1| top | pdf |
Atomic scattering amplitudes (Å) for electrons for neutral atoms

Self-consistent field calculations: HF: non-relativistic Hartree–Fock; RHF, *RHF: relativistic Hartree–Fock.

ElementHHeLiBeBCNOFNeNa
Z1234567891011
MethodHFRHFRHFRHFRHFRHFRHFRHFRHFRHFRHF
(sin [\theta])/λ−1)           
0.000.5290.4183.2863.0522.7942.5092.2111.9831.8011.6524.778
0.01 0.4183.2653.0422.7882.5052.2091.9821.8001.6514.749
0.02 0.4173.2003.0112.7682.4922.2011.9761.7961.6484.663
0.03 0.4153.0972.9612.7362.4712.1871.9661.7891.6424.527
0.040.510.4132.9612.8922.6932.4422.1681.9531.7791.6354.348
0.050.510.4102.8002.8072.6382.4062.1441.9371.7671.6264.138
            
0.060.500.4072.6222.7102.5742.3632.1161.9171.7521.6153.908
0.070.490.4042.4352.6012.5022.3132.0831.8931.7351.6023.667
0.080.480.3992.2452.4842.4232.2592.0471.8671.7161.5873.425
0.090.470.3952.0582.3622.3392.2002.0071.8391.6941.5703.190
0.100.450.3901.8792.2372.2502.1381.9631.8081.6711.5522.967
            
0.110.440.3841.7102.1112.1592.0721.9181.7741.6461.5332.759
0.120.4250.3781.5541.9872.0672.0051.8701.7391.6191.5122.569
0.130.4110.3721.4111.8651.9741.9361.8211.7021.5911.4902.395
0.140.3960.3661.2821.7481.8821.8661.7701.6641.5621.4672.239
0.150.3820.3591.1661.6351.7911.7961.7181.6251.5321.4432.099
            
0.160.3660.3521.0631.5281.7021.7271.6661.5851.5011.4181.974
0.170.3530.3450.9711.4271.6161.6581.6141.5451.4691.3931.863
0.180.3380.3380.8891.3321.5331.5911.5611.5041.4361.3671.763
0.190.3240.3300.8171.2431.4531.5241.5101.4631.4041.3401.674
0.200.3110.3230.7531.1611.3771.4601.4581.4221.3711.3131.594
            
0.220.2850.3080.6461.0131.2351.3371.3581.3411.3041.2591.458
0.240.2610.2930.5620.8871.1071.2221.2621.2611.2381.2041.344
0.250.2490.2860.5260.8321.0481.1681.2161.2221.2061.1761.295
0.260.2380.2780.4940.7810.9931.1171.1711.1841.1731.1491.249
0.280.2180.2640.4400.6900.8921.0201.0851.1101.1101.0951.167
0.300.1990.2500.3960.6140.8030.9321.0061.0401.0491.0431.095
            
0.320.1820.2360.3590.5490.7250.8530.9320.9740.9910.9911.031
0.340.1670.2240.3280.4940.6570.7810.8630.9110.9350.9420.973
0.350.1600.2170.3140.4690.6250.7480.8310.8810.9080.9180.946
0.360.1530.2110.3010.4460.5960.7170.8000.8530.8820.8940.921
0.380.1410.2000.2790.4060.5430.6580.7420.7980.8310.8490.872
0.400.1300.1890.2590.3710.4970.6060.6890.7470.7840.8050.827
            
0.420.1200.1780.2410.3410.4550.5590.6410.7000.7390.7640.785
0.440.1110.1690.2260.3140.4190.5170.5960.6560.6970.7250.746
0.450.1070.1640.2190.3020.4020.4970.5750.6350.6770.7060.727
0.460.1030.1590.2120.2910.3870.4790.5550.6150.6580.6870.709
0.480.0960.1510.2000.2710.3580.4440.5180.5770.6210.6520.675
0.500.0890.1430.1880.2530.3330.4130.4840.5420.5860.6190.642
            
0.550.0750.1250.1640.2150.2800.3480.4110.4660.5100.5440.569
0.600.0640.1100.1450.1860.2390.2970.3530.4030.4450.4790.505
0.650.0550.0970.1280.1640.2070.2560.3050.3500.3900.4240.450
0.700.0480.0860.1150.1450.1820.2230.2660.3070.3440.3760.403
0.800.0370.0680.0930.1170.1440.1750.2080.2410.2720.3000.325
0.900.0290.0550.0770.0960.1180.1410.1670.1930.2190.2440.266
1.000.0240.0460.0640.0810.0980.1170.1370.1590.1800.2010.221
            
1.100.0200.0380.0540.0690.0830.0990.1150.1330.1500.1680.185
1.200.0170.0320.0460.0590.0720.0850.0980.1130.1280.1430.158
1.300.0140.0280.0400.0510.0620.0730.0850.0970.1100.1230.135
1.400.0120.0240.0350.0450.0550.0640.0740.0850.0950.1060.117
1.500.0110.0210.0310.0400.0480.0570.0650.0740.0840.0930.103
            
1.60 0.0190.0280.0350.0430.0510.0580.0660.0740.0830.092
1.70 0.0160.0240.0310.0380.0450.0520.0590.0660.0740.081
1.80 0.0150.0220.0280.0350.0410.0470.0530.0600.0660.073
1.90 0.0130.0190.0260.0310.0370.0430.0480.0540.0600.065
2.00 0.0120.0170.0230.0280.0340.0390.0440.0490.0540.059

ElementMgAlSiPSClArKCaScTi
Z1213141516171819202122
MethodRHFRHFRHFRHFRHFRHFRHFRHFRHFRHFRHF
(sin [\theta])/λ−1)           
0.005.2075.8895.8285.4885.1614.8574.5808.9849.9139.3078.776
0.015.1875.8675.8105.4765.1524.8514.5768.9219.8609.2648.740
0.025.1245.8005.7595.4395.1244.8304.5598.7319.6999.1348.631
0.035.0225.6925.6755.3785.0794.7954.5318.4349.4428.9268.455
0.044.8845.5475.5615.2965.0164.7464.4938.0549.1048.6498.220
0.054.7175.3715.4215.1924.9384.6854.4447.6198.7038.3187.937
            
0.064.5275.1705.2585.0714.8454.6134.3867.1578.2587.9467.618
0.074.3204.9495.0774.9354.7404.5294.3206.6917.7897.5487.274
0.084.1024.7174.8824.7854.6234.4364.2456.2397.3127.1396.917
0.093.8794.4784.6774.6254.4964.3354.1635.8156.8416.7296.556
0.103.6564.2374.4674.4574.3624.2274.0745.4266.3886.3286.199
            
0.113.4373.9994.2554.2854.2224.1133.9805.0735.9595.9445.853
0.123.2263.7674.0434.1094.0783.9943.8814.7565.5605.5805.522
0.133.0253.5443.8353.9333.9313.8713.7794.4745.1925.2395.209
0.142.8353.3303.6323.7583.7833.7463.6744.2224.8554.9244.916
0.152.6573.1283.4373.5863.6353.6203.5663.9974.5504.6334.643
            
0.162.4922.9383.2493.4173.4873.4933.4583.7954.2734.3664.390
0.172.3402.7603.0703.2533.3423.3673.3483.6124.0234.1224.157
0.182.1992.5952.9003.0943.2003.2423.2393.4463.7973.8993.943
0.192.0712.4412.7402.9423.0613.1183.1303.2953.5933.6953.745
0.201.9532.2992.5892.7962.9272.9973.0223.1543.4083.5093.564
            
0.221.7482.0462.3152.5252.6712.7632.8112.9023.0863.1833.242
0.241.5771.8322.0762.2812.4362.5432.6092.6802.8152.9062.967
0.251.5021.7371.9692.1692.3262.4382.5122.5782.6952.7832.844
0.261.4341.6501.8692.0642.2212.3372.4172.4812.5842.6692.730
0.281.3131.4951.6891.8722.0262.1482.2382.2992.3832.4622.523
0.301.2111.3631.5341.7021.8511.9742.0702.1342.2062.2812.341
            
0.321.1231.2511.4001.5531.6941.8161.9151.9822.0482.1192.178
0.341.0471.1541.2841.4221.5541.6721.7721.8421.9051.9742.032
0.351.0131.1111.2311.3621.4901.6061.7051.7761.8381.9061.964
0.360.9801.0701.1821.3061.4291.5421.6411.7141.7751.8421.899
0.380.9210.9971.0941.2051.3181.4251.5221.5951.6571.7221.778
0.400.8680.9321.0171.1151.2181.3191.4121.4871.5481.6121.668
            
0.420.8210.8750.9491.0361.1301.2241.3131.3871.4491.5111.566
0.440.7770.8250.8880.9651.0511.1381.2231.2951.3571.4181.472
0.450.7570.8010.8610.9331.0141.0981.1811.2521.3141.3741.428
0.460.7380.7790.8340.9030.9801.0611.1411.2111.2721.3321.385
0.480.7010.7370.7860.8470.9170.9911.0661.1341.1941.2521.305
0.500.6670.7000.7430.7970.8600.9280.9981.0641.1231.1791.230
            
0.550.5920.6180.6510.6920.7410.7960.8540.9120.9661.0181.067
0.600.5280.5510.5780.6100.6480.6920.7400.7900.8380.8850.930
0.650.4730.4940.5170.5430.5730.6090.6480.6900.7330.7750.816
0.700.4250.4450.4650.4870.5130.5410.5740.6090.6470.6840.721
0.800.3470.3660.3830.4010.4190.4400.4620.4880.5150.5440.573
0.900.2860.3040.3200.3350.3500.3660.3830.4020.4220.4440.467
            
1.000.2390.2550.2700.2840.2980.3110.3240.3390.3540.3710.389
1.100.2020.2170.2310.2430.2550.2670.2780.2900.3030.3160.330
1.200.1720.1850.1980.2100.2210.2320.2420.2520.2620.2730.285
1.300.1480.1600.1720.1830.1930.2020.2120.2200.2300.2390.249
1.400.1290.1390.1500.1600.1690.1780.1870.1940.2020.2110.219
1.500.1130.1230.1320.1410.1500.1580.1660.1740.1810.1880.195
            
1.600.1000.1090.1170.1250.1330.1410.1480.1560.1620.1690.175
1.700.0890.0960.1040.1110.1190.1260.1320.1380.1440.1510.157
1.800.0800.0870.0930.1000.1070.1130.1190.1270.1320.1370.143
1.900.0720.0780.0840.0900.0960.1020.1080.1120.1180.1240.129
2.000.0650.0700.0760.0820.0870.0930.0980.1010.1070.1120.117

ElementVCrMnFeCoNiCuZnGaGeAs
Z2324252627282930313233
MethodRHFRHFRHFRHFRHFRHFRHFRHFRHFRHFRHF
(sin [\theta])/λ−1)           
0.008.3056.9697.5067.1656.8546.5695.6006.0657.1087.3787.320
0.018.2746.9457.4847.1456.8366.5525.5876.0517.0887.3597.306
0.028.1806.8757.4127.0816.7796.5015.5476.0097.0277.3037.260
0.038.0296.7627.2966.9786.6876.4185.4825.9416.9277.2117.184
0.047.8266.6107.1406.8396.5626.3065.3955.8496.7927.0887.081
0.057.5816.4276.9496.6696.4106.1695.2875.7356.6296.9356.953
            
0.067.3036.2216.7326.4746.2346.0105.1655.6036.4416.7596.803
0.077.0025.9976.4936.2606.0405.8345.0295.4576.2366.5626.634
0.086.6865.7646.2416.0325.8345.6464.8865.2996.0176.3516.449
0.096.3655.5275.9815.7965.6195.4494.7375.1335.7926.1296.253
0.106.0455.2915.7195.5585.4015.2494.5854.9625.5645.9026.048
            
0.115.7325.0615.4595.3205.1825.0484.4344.7905.3375.6725.838
0.125.4304.8385.2065.0874.9674.8484.2854.6185.1135.4425.625
0.135.1424.6254.9624.8614.7584.6544.1394.4494.8965.2175.411
0.144.8714.4234.7284.6444.5554.4653.9984.2834.6864.9965.200
0.154.6164.2314.5064.4364.3614.2833.8624.1234.4864.7834.992
            
0.164.3784.0514.2974.2404.1774.1103.7313.9694.2954.5784.789
0.174.1583.8824.1004.0544.0023.9443.6073.8224.1144.3824.593
0.183.9533.7233.9163.8803.8363.7883.4883.6813.9424.1954.404
0.193.7633.5743.7433.7163.6813.6403.3753.5473.7814.0174.222
0.203.5883.4343.5833.5623.5343.5003.2673.4213.6293.8494.048
            
0.22 3.2763.1793.2923.2843.2673.2453.0673.1863.3523.5413.724
0.243.0062.9533.0393.0393.0323.0182.8852.9773.1083.2683.433
0.252.8852.8492.9242.9282.9242.9142.8002.8802.9973.1433.299
0.262.7722.7502.8172.8242.8232.8162.7192.7892.8923.0263.172
0.282.5682.5682.6202.6322.6372.6362.5682.6202.7012.8132.940
0.302.3862.4032.4452.4611.4712.4742.4282.4682.5312.6232.733
            
0.322.2252.2522.2882.3082.3212.3282.2992.3292.3792.4552.548
0.342.0792.1142.1462.1682.1842.1952.1802.2032.2422.3042.384
0.352.0112.0492.0802.1042.1212.1332.1232.1442.1792.2352.308
0.361.9471.9872.0172.0422.0602.0732.0692.0872.1192.1692.237
0.381.8261.8701.8991.9251.9461.9621.9651.9802.0062.0482.105
0.401.7161.7611.7901.8181.8411.8581.8681.8821.9031.9381.986
            
0.421.6141.6601.6901.7191.7431.7631.7771.7901.8081.8371.878
0.441.5201.5671.5971.6281.6531.6741.6911.7041.7201.7451.780
0.451.4761.5231.5531.5841.6101.6311.6511.6631.6791.7021.734
0.461.4331.4801.5111.5421.5691.5911.6111.6241.6391.6611.691
0.481.3521.3991.4311.4621.4901.5131.5351.5491.5631.5831.608
0.501.2771.3231.3561.3881.4161.4401.4641.4781.4921.5101.533
            
0.551.1111.1551.1891.2221.2511.2771.3031.3191.3341.3491.367
0.600.9731.0141.0471.0801.1101.1361.1631.1811.1971.2121.228
0.650.8560.8940.9270.9590.9881.0151.0411.0611.0781.0931.108
0.700.7570.7920.8240.8540.8830.9090.9350.9550.9730.9891.004
0.800.6020.6310.6590.6860.7120.7370.7610.7810.8000.8170.832
0.900.4900.5140.5380.5610.5830.6050.6260.6460.6650.6810.697
1.000.4080.4270.4460.4660.4850.5040.5230.5410.5580.5740.589
            
1.100.3450.3610.3770.3930.4090.4250.4420.4570.4730.4880.502
1.200.2970.3100.3230.3360.3500.3640.3780.3910.4050.4180.431
1.300.2590.2690.2800.2910.3030.3150.3270.3390.3500.3620.374
1.400.2280.2370.2460.2550.2650.2750.2850.2960.3060.3170.327
1.500.2030.2100.2180.2260.2350.2430.2520.2610.2700.2790.288
            
1.600.1820.1880.1950.2020.2090.2170.2240.2320.2400.2480.256
1.700.1630.1690.1750.1810.1880.1940.2010.2080.2150.2220.229
1.800.1480.1540.1590.1650.1701.1760.1820.1880.1940.2000.206
1.900.1340.1390.1440.1490.1540.1600.1650.1700.1750.1810.187
2.000.1220.1270.1320.1360.1410.1460.1500.1550.1600.1650.170

ElementSeBrKrRbSrYZrNbMoTcRu
Z3435363738394041424344
MethodRHFRHFRHFRHFRHF*RHF*RHF*RHF*RHF*RHF*RHF
(sin [\theta])/λ−1)           
0.007.2057.0606.89711.77813.10912.67412.16610.67910.26010.8569.558
0.01 7.1927.0496.88911.69913.035   10.230  
0.02 7.1547.0166.86111.46012.816   10.138  
0.037.0906.9626.81411.08812.468   9.989  
0.047.0046.8886.75010.61312.01311.7911.4110.139.79010.359.18
0.056.8956.7956.67010.07311.47611.3411.049.869.54810.108.99
            
0.066.7676.6846.5749.50410.88810.8410.629.549.2729.808.77
0.076.6216.5586.4648.93410.27310.3110.159.208.9729.488.53
0.086.4606.4186.3418.3859.6559.779.688.858.6559.148.27
0.096.2886.2666.2077.8729.0529.239.208.498.3308.788.00
0.106.1056.1046.0647.4028.4788.708.728.128.0048.427.73
            
0.115.9165.9355.9136.9767.9408.208.267.777.6808.077.46
0.125.7225.7605.7556.5937.4437.7227.8187.4217.3647.7207.190
0.135.5255.5805.5936.2486.9887.2787.4007.0907.0587.3836.928
0.145.3285.3995.4285.9386.5756.8657.0076.7726.7637.0576.672
0.155.1325.2175.2605.6586.2006.4856.6406.4726.4816.7466.426
            
0.164.9385.0365.0925.4035.8626.1366.2996.1876.2136.4516.188
0.174.7494.8574.9255.1705.5555.8165.9835.9185.9576.1715.960
0.184.5644.6804.7594.9545.2785.5235.6895.6655.7155.9075.741
0.194.3844.5074.5954.7545.0255.2545.4195.4275.4865.6585.533
0.204.2114.3394.4344.5664.7945.0085.1685.2035.2695.4235.332
            
0.223.8844.0174.1234.2244.3874.5704.7214.7924.8684.9944.959
0.243.5853.7183.8293.9164.0394.1954.3334.4264.5074.6144.618
0.253.4463.5783.6903.7733.8824.0274.1584.2584.3414.4394.459
0.263.3143.4433.5563.6363.7353.8693.9954.0994.1824.2734.306
0.283.0693.1923.3033.3823.4653.5833.6973.8043.8883.9694.021
0.302.8492.9633.0713.1493.2243.3293.4333.5393.6223.6953.759
            
0.322.6512.7572.8582.9363.0073.1013.1963.2983.3793.4483.518
0.342.4752.5702.6652.7422.8102.8952.9823.0803.1583.2233.296
0.352.3932.4842.5752.6512.7182.7992.8832.9783.0543.1183.192
0.362.3162.4022.4902.5642.6302.7082.7892.8802.9553.0183.092
0.382.1732.2502.3302.4022.4662.5382.6132.6982.7702.8302.904
0.402.0452.1132.1862.2542.3152.3832.4522.5312.6002.6582.730
            
0.421.9291.9892.0552.1192.1782.2412.3052.3792.4442.5002.570
0.44 1.8241.8771.9361.9952.0522.1112.1712.2392.3002.3552.421
0.451.7761.8251.8811.9381.9932.0492.1082.1732.2332.2872.351
0.461.7291.7751.8281.8831.9361.9912.0472.1102.1682.2212.284
0.481.6421.6831.7301.7801.8301.8811.9341.9912.0462.0982.157
0.501.5621.5981.6401.6861.7331.7801.8291.8831.9341.9842.040
            
0.551.3891.4161.4471.4831.5221.5621.6031.6461.6901.7341.782
0.601.2451.2661.2901.3191.3501.3831.4171.4521.4901.5281.569
0.651.1241.1411.1601.1821.2081.2351.2631.2921.3241.3571.391
0.701.0191.0341.0501.0681.0891.1111.1351.1591.1851.2141.243
0.800.8470.8600.8730.8870.9020.9180.9350.9520.9710.9921.013
0.900.7110.7250.7370.7490.7620.7740.7870.8000.8140.8300.845
1.000.6030.6160.6280.6400.6510.6620.6730.6840.6950.7070.719
            
1.100.5150.5280.5400.5510.5620.5720.5820.5910.6010.6110.621
1.200.4440.4560.4670.4780.4880.4980.5070.5160.5250.5340.542
1.300.3850.3960.4070.4170.4270.4360.4450.4540.4620.4700.478
1.400.3370.3470.3570.3650.3750.3840.3930.4010.4080.4160.423
1.500.2970.3060.3150.3250.3330.3410.3490.3560.3640.3710.378
            
1.600.2640.2720.2800.2900.2970.3030.3110.3180.3250.3320.338
1.700.2360.2430.2500.2570.2640.2720.2780.2850.2910.2980.304
1.800.2120.2190.2250.2330.2390.2440.2510.2570.2630.2690.275
1.900.1920.1980.2040.2080.2140.2210.2270.2330.2380.2440.249
2.000.1750.1800.1850.1880.1940.2010.2060.2110.2160.2220.227

Element RhPdAgCdInSnSbTeIXeCs
Z4546474849505152535455
Method*RHF*RHFRHFRHFRHFRHFRHF*RHFRHFRHFRHF
(sin [\theta])/λ−1)           
0.009.2427.5838.6719.23210.43410.85910.97411.00310.90510.79416.508
0.01  8.6549.21310.40610.83310.950 10.88710.77716.391
0.02  8.5999.15310.32010.75010.876 10.82810.72516.050
0.03  8.5109.05710.18110.61510.755 10.73110.63815.521
0.048.907.438.3918.9269.99510.43310.59110.6510.59910.52014.855
0.058.737.358.2448.7649.76810.20910.38710.4710.43410.37114.106
            
0.068.537.268.0758.5779.5099.95010.15010.2510.23810.19413.326
0.078.317.167.8888.3699.2249.6649.88410.0110.0179.99312.556
0.088.017.037.6898.1448.9239.3579.5969.749.7739.77111.823
0.097.836.917.4807.9098.6129.0379.2919.469.5119.53011.145
0.107.586.777.2677.6668.2978.7098.9769.169.2359.27410.525
            
0.117.336.627.0527.4217.9838.3808.6548.858.9489.0079.965
0.127.0796.4746.8377.1767.6748.0538.3318.5388.6548.7329.458
0.136.8366.3196.6256.9337.3747.7328.0108.2248.3578.4519.000
0.146.5986.1626.4186.6957.0847.4197.6947.9148.0598.1678.583
0.156.3666.0036.2156.4646.8057.1187.3867.6087.7647.8848.201
            
0.166.1435.8436.0186.2406.5396.8297.0887.3097.4727.6037.848
0.175.9295.6845.8276.0246.2866.5526.8007.0187.1867.3257.519
0.185.7225.5265.6435.8176.0456.2896.5246.7386.9087.0537.212
0.195.5245.3695.4645.6185.8176.0396.2616.4676.6396.7876.922
0.205.3345.2145.2935.4275.6015.8036.0106.2096.3796.5296.649
            
0.224.9764.9134.9675.0705.2035.3685.5475.7275.8896.0396.143
0.244.6484.6264.6654.7454.8464.9795.1313.2915.4425.5865.684
0.254.4934.4874.5224.5924.6824.8014.9405.0905.2345.3745.471
0.264.3454.3524.3844.4474.5254.6334.7604.8995.0365.1725.268
0.284.0664.0934.1224.1734.2364.3234.4284.5484.6704.7954.890
0.303.8093.8503.8783.9223.9734.0444.1314.2344.3414.4544.547
            
0.323.5723.6223.6513.6903.7343.7923.8653.9524.0464.1474.235
0.343.3533.4083.4403.4763.5153.5643.6253.7003.7803.8703.953
0.353.2493.3063.3393.3753.4123.4583.5143.5833.6583.7423.822
0.363.1503.2083.2423.2783.3133.3563.4083.4723.5413.6203.697
0.382.9623.0223.0583.0933.1273.1653.2103.2653.3253.3943.465
0.402.7882.8482.8862.9222.9552.9903.0303.0783.1303.1913.255
            
0.422.6262.6862.7262.7622.7952.8282.8642.9072.9533.0063.064
0.442.4772.5352.5762.6132.6462.6782.7122.7502.7912.8382.890
0.452.4062.4642.5052.5422.5762.6082.6402.6772.7152.7592.809
0.462.3382.3952.4362.4742.5072.5392.5712.6062.6422.6842.731
0.482.2102.2642.3062.3442.3782.4092.4402.4732.5062.5432.586
0.502.0902.1432.1852.2232.2572.2882.3182.3502.3802.4142.453
            
0.551.8281.8751.9151.9531.9872.0192.0482.0772.1042.1322.163
0.601.6091.6501.6881.7241.7581.7901.8191.8471.8711.8971.923
0.651.4261.4621.4971.5311.5631.5941.6221.6491.6731.6971.721
0.701.2731.3041.3351.3661.3971.4261.4531.4791.5031.5261.548
0.801.0351.0581.0821.1071.1321.1571.1811.2051.2271.2481.269
0.900.8610.8790.8970.9160.9360.9560.9760.9971.0161.0361.055
1.000.7310.7450.7580.7730.7890.8050.8210.8380.8550.8710.888
            
1.100.6310.6410.6520.6640.6760.6880.7010.7150.7290.7430.758
1.200.5510.5590.5680.5780.5870.5970.6080.6190.6300.6420.654
1.300.4850.4930.5000.5080.5160.5250.5330.5420.5510.5610.570
1.400.4310.4370.4440.4510.4580.4650.4720.4800.4870.4950.502
1.500.3840.3910.3970.4030.4090.4160.4220.4280.4350.4420.450
            
1.600.3450.3510.3570.3620.3680.3740.3790.3850.3910.3970.405
1.700.3100.3160.3210.3270.3320.3370.3430.3480.3530.3580.363
1.800.2810.2860.2910.2970.3020.3070.3110.3160.3210.3250.332
1.900.2550.2600.2650.2700.2740.2790.2840.2880.2930.2970.299
2.000.2320.2370.2410.2460.2500.2550.2590.2640.2680.2720.272

ElementBaLaCePrNdPmSmEuGdTbDy
Z5657585960616263646566
MethodRHF*RHF*RHF*RMF*RHF*RHF*RHFRHF*RHF*RHF*RHF
(sin [\theta])/λ−1)           
0.0018.26717.80517.37816.98716.60616.24315.89715.56315.26614.97414.641
0.0118.157      15.486   
0.0217.828      15.260   
0.0317.309      14.898   
0.0416.63616.4516.1015.6215.3014.9914.7014.42514.3013.9013.64
0.0515.85415.7915.4614.9414.6714.3914.1213.86713.8113.3713.14
            
0.0615.00815.0514.7714.2213.9713.7213.4813.25313.2712.8112.60
0.0714.13814.2814.0313.4713.2513.0312.8112.61112.7012.2212.03
0.0813.27813.5113.2912.7212.5212.3312.1411.96312.1111.6211.44
0.0912.43112.7412.5611.9911.8211.6511.4911.32911.5211.0210.87
0.1011.67512.0111.8511.2911.1511.0010.8610.72210.9510.4510.32
            
0.1110.95811.3211.1910.6510.5210.4010.2710.15010.399.919.79
0.1210.30210.67110.56110.0529.9449.8339.7229.6189.8719.4079.303
0.139.70710.0729.9819.5069.4129.3169.2189.1289.3828.9428.848
0.149.1689.5229.4489.0088.9288.8438.7588.6788.9268.5128.429
0.158.6829.0178.9588.5568.4868.4138.3368.2678.5058.1218.045
            
0.168.2418.5558.5078.1448.0848.0207.9537.8918.1147.7617.693
0.177.8408.1318.0947.7687.7177.6617.6027.5487.7547.4307.370
0.187.4747.7427.7147.4247.3807.3327.2807.2327.4227.1287.073
0.197.1397.3847.3657.1077.0717.0296.9836.9427.1146.8496.800
0.206.8297.0537.0416.8156.7856.7496.7106.6736.8286.5916.547
            
0.226.2756.4626.4626.2916.2726.2476.2186.1916.3166.1276.092
0.245.7915.9485.9575.8315.8225.8065.7875.7685.8685.7205.693
0.255.5705.7145.7285.6205.6155.6055.5895.5745.6645.5345.510
0.265.3615.4955.3125.4215.4215.4135.4025.3905.4725.3585.337
0.284.9755.0925.1155.0535.0595.0595.0555.0305.1175.0305.016
0.304.6284.7304.7594.7194.7314.7374.7394.7404.7964.7314.723
            
0.324.3134.4054.4384.4144.4324.4434.4504.4564.5044.4574.454
0.344.0284.1114.1464.1364.1574.1734.1854.1954.2384.2054.206
0.353.8933.9744.0104.0064.0294.0474.0604.0724.1134.0864.089
0.363.7693.8443.8813.8823.9063.9253.9403.9543.9933.9713.976
0.383.5333.6023.6403.6483.6753.6973.7153.7313.7673.7553.763
0.403.3183.3813.4203.4343.4623.4863.3063.5253.5593.5543.565
            
0.423.1233.1803.2193.2383.2673.2923.3143.3353.3673.3683.380
0.442.9442.9973.0353.0573.0873.1143.1373.1593.1893.1943.209
0.432.8612.9112.9492.9733.0033.0293.0533.0753.1053.1133.128
0.462.7812.8292.8662.8912.9222.9482.9732.9953.0253.0343.050
0.482.6312.6762.7122.7392.7692.7962.8212.8442.8722.8842.901
0.502.4942.5352.5702.5982.6282.6552.6802.7032.7302.7452.763
            
0.552.1972.2302.2622.2912.3202.3462.3712.3942.4192.4572.456
0.601.9511.9792.0082.0372.0642.0892.1132.1562.1382.1782.197
0.651.7451.7701.7961.8241.8491.8721.8951.9171.9371.9581.977
0.701.5701.5921.6171.6431.6661.6881.7091.7301.7491.7701.788
0.801.2881.3081.3291.3511.3721.3911.4111.4291.4461.4651.482
0.901.0731.0901.1091.1281.1461.1641.1811.1981.2131.2311.246
1.000.9040.9200.9360.9530.9690.9851.0001.0161.0301.0451.060
            
1.100.7720.7850.7990.8140.8280.8420.8560.8700.8830.8970.910
1.200.6660.6780.6900.7020.7150.7270.7390.7520.7630.7760.787
1.300.5800.3910.6020.6120.6230.6340.6440.6550.6660.6760.687
1.400.5110.5210.5300.5390.5480.5570.5660.5750.3830.5950.604
1.500.4360.4630.4700.4780.4860.4940.5020.5110.5190.5270.535
            
1.600.4110.4150.4210.4280.4350.4420.4490.4570.4630.4700.478
1.700.3670.3740.3800.3860.3920.3980.4040.4090.4160.4230.429
1.800.3370.3400.3450.3500.3550.3600.3660.3720.3770.3820.388
1.900.3040.3100.3140.3190.3240.3280.3330.3370.3430.3480.353
2.000.2770.2840.2880.2920.2960.3010.3050.3070.3130.3180.322

ElementHoErTmYbLuHfTaWReOsIr
Z6768697071727374757677
Method*RHF*RHF*RHF*RHF*RHF*RHF*RHF*RHF*RHF*RHF*RHF
(sin [\theta])/λ−1)           
0.0014.35514.08013.81413.55713.48613.17712.85612.54312.26311.98711.718
0.01           
0.02           
0.03           
0.0413.5713.1612.9212.7012.7412.5512.3112.0611.8311.5911.37
0.0513.1412.7012.4812.2812.3812.2312.0111.8011.6011.3911.18
            
0.0612.6612.1912.0011.8111.9511.8511.6911.5111.3411.1510.96
0.0712.1511.6611.4811.3111.5011.4511.3311.1811.0410.8810.72
0.0811.6111.1110.9610.8011.0311.0210.9510.8310.7310.5910.45
0.0911.0810.5810.4410.2910.5510.5910.5510.4710.4010.2910.17
0.1010.5510.069.939.8010.0810.1610.1510.1010.059.989.88
            
0.1110.059.569.459.339.629.739.759.749.719.659.58
0.129.5629.0958.9948.8929.1809.3089.3639.3699.3669.3349.281
0.139.1088.6628.5718.4808.7628.9078.9829.0119.0289.0168.982
0.148.6818.2628.1808.0988.3708.5258.6168.6638.6978.7028.686
0.158.2847.8957.8217.7468.0018.1638.2668.3278.3768.3968.395
            
0.167.9177.5577.4907.4217.6607.8227.9338.0068.0678.0998.111
0.177.5777.2477.1857.1237.3437.5027.6177.6997.7697.8137.836
0.187.2626.9626.9056.8497.0477.2027.3217.4087.4857.5377.570
0.196.9716.6986.6466.5956.7746.9227.0407.1327.2137.2727.313
0.206.7006.4546.4076.3606.5206.6606.7766.8706.9547.0197.067
            
0.226.2136.0175.9785.9386.0636.1856.2956.3886.4756.5476.604
0.245.7885.6325.6015.5685.6645.7685.8675.9576.0436.1176.180
0.255.5955.4575.4285.3985.4835.5785.6725.7595.8435.9175.982
0.265.4125.2905.2655.2385.3125.3995.4875.5715.6535.7275.792
0.285.0754.9814.9614.9404.9965.0695.1475.2245.3015.3725.437
0.304.7714.6994.6854.6694.7124.7724.8404.9104.9815.0495.113
            
0.324.4944.4404.4304.4194.4534.5034.5634.6264.6914.7554.816
0.344.2404.2004.1954.1884.2154.2584.3104.3664.4254.4854.543
0.354.1214.0874.0844.0784.1034.1434.1914.2454.3014.3594.415
0.364.0073.9783.9763.9733.9964.0334.0784.1294.1824.2374.293
0.383.7903.7713.7733.7733.7933.8253.8653.9103.9594.0104.061
0.403.5913.5793.5833.5863.6043.6323.6683.7093.7533.8003.848
            
0.423.4053.3993.4063.4113.4293.4543.4863.5233.5633.6063.651
0.443.2333.2323.2413.2483.2653.2883.3173.3503.3873.4273.468
0.453.1513.1533.1623.1703.1873.2093.2373.2693.3043.3423.382
0.463.0733.0763.0863.0953.1113.1333.1593.1903.2243.2603.299
0.482.9242.9302.9422.9522.9682.9883.0133.0413.0723.1053.141
0.502.7852.7932.8062.8182.8342.8532.8762.9022.9302.9612.994
            
0.552.4772.4902.5052.5182.5342.5512.5712.5922.6162.6412.669
0.602.2162.2322.2482.2632.2782.2942.3112.3302.3492.3712.394
0.651.9952.0122.0282.0432.0582.0732.0892.1052.1222.1402.160
0.701.0851.8231.8391.8541.8681.8821.8961.9111.9261.9421.959
0.801.4971.5151.5301.5451.5581.5711.5831.5961.6081.6211.634
0.901.2601.2761.2911.3051.3171.3291.3411.3521.3631.3741.385
1.001.0731.0881.1011.1141.1261.1381.1481.1591.1691.1791.189
            
1.100.9220.9350.9480.9600.9710.9820.9931.0031.0121.0221.031
1.200.7990.8110.8220.8330.8440.8540.8640.8740.8830.8920.901
1.300.6980.7080.7190.7290.7390.7480.7580.7670.7760.7840.793
1.400.6140.6230.6320.6420.6510.6600.6680.6770.6850.6940.702
1.500.5440.5520.5600.5690.5770.5850.5930.6010.6090.6170.624
            
1.600.4850.4920.5000.5070.5150.5220.5300.5370.5440.5510.558
1.70 0.4360.4420.4490.4550.4620.4690.4750.4820.4890.4950.502
1.800.3940.3990.4050.4110.4170.4230.4290.4350.4410.4470.453
1.900.3580.3630.3680.3730.3790.3840.3890.3950.4000.4060.411
2.000.3270.3310.3360.3410.3450.3500.3550.3600.3650.3700.374

ElementPtAuHgTlPbBiPoAtRnFrRa
Z7879808182838485868788
Method*RHFRHFRHF*RHFRHFRHF*RHF*RHFRHF*RHF*RHF
(sin [\theta])/λ−1)           
0.0010.81310.57310.96412.10912.59713.09613.36813.47313.49218.71520.561
0.01 10.55910.948 12.57313.070  13.470  
0.02 10.51110.897 12.49412.989  13.403  
0.03 10.43410.813 12.36612.857  13.292  
0.0410.5510.32810.69811.7112.19312.67812.9513.0913.13917.1418.94
0.0510.4010.19510.55511.5111.97912.45612.7412.8912.94916.4118.15
            
0.0610.2310.04010.38711.2711.73012.19712.4912.6512.72415.6417.31
0.0710.039.86510.19711.0011.45411.90812.2112.3812.46914.8716.42
0.089.829.6739.98910.7211.15511.59511.9012.0812.18714.1315.54
0.099.609.4679.76610.4210.84011.26411.5711.7611.88413.4214.69
0.109.379.2519.53310.1210.51610.92111.2211.4311.56512.7713.88
            
0.119.139.0289.2919.8110.18610.57110.8711.0811.23212.1613.12
0.128.8828.7999.0459.5009.85510.21910.50910.72910.89211.60512.419
0.138.6368.5688.7969.1959.5279.86910.15310.37510.54611.09311.776
0.148.3898.3378.5478.8969.2039.5239.79810.02110.19910.62011.187
0.158.1458.1068.2998.6038.8889.1869.4499.6719.85410.18010.648
            
0.167.9047.8778.0558.3208.5818.8579.1099.3289.5129.77010.155
0.177.6677.6527.8158.0468.2858.5398.7798.9919.1779.3869.702
0.187.4367.4317.5797.7817.9998.2338.4598.6668.8499.0239.285
0.197.2107.2147.3507.5267.7247.9398.1518.3508.5318.6818.899
0.206.9917.0037.1287.2827.4617.6587.8568.0468.2238.3568.540
            
0.226.5726.5986.7026.8226.9697.1327.3033.4747.6397.7547.891
0.246.1816.2166.3056.3996.5206.6546.8006.9527.1027.2087.318
0.255.9956.0356.1166.2016.3106.4326.5676.7096.8526.9547.055
0.265.8175.8595.9346.0116.1106.2216.3456.4776.6126.7126.807
0.285.4785.5255.5915.6545.7365.8285.9336.0476.1666.2616.347
0.305.1645.2145.2725.3275.3955.4725.5605.6585.7625.8525.931
            
0.324.8734.9244.9765.0255.0835.1485.2225.3055.3975.4805.555
0.344.6034.6544.7024.7464.7974.8524.9154.9875.0655.1415.212
0.354.4754.5264.5724.6144.6624.7144.7724.8384.9124.9845.053
0.364.3524.4034.4474.4884.5334.5814.6364.6974.7654.8344.900
0.384.1204.1694.2114.2494.2904.3334.3804.4334.4924.5554.616
0.403.9053.9523.9914.0284.0664.1044.1464.1924.2444.3004.356
            
0.423.7043.7503.7873.8233.8583.8933.9313.9724.0174.0674.118
0.443.5183.5623.5973.6323.6653.6983.7323.7693.8083.8543.901
0.453.4303.4723.5073.5413.5733.6063.6393.6733.7113.7543.798
0.463.3453.3863.4203.4543.4853.5173.5483.5823.6173.6583.700
0.483.1843.2233.2563.2883.3183.3483.3783.4083.4413.4773.516
0.503.0343.0703.1023.1333.1623.1913.2193.2483.2773.3113.346
            
0.552.7012.7322.7602.7892.8162.8422.8682.8932.9182.9452.974
0.602.4202.4462.4712.4972.5222.5462.5702.5932.6162.6392.663
0.652.1812.2032.2252.2482.2712.2932.3152.3372.3582.3782.399
0.701.9761.9952.0152.0352.0552.0762.0962.1162.1352.1542.173
0.801.6471.6611.6761.6921.7081.7251.7421.7581.7751.7911.808
0.901.3961.4071.4191.4311.4441.4571.4711.4851.4991.5131.527
1.001.1981.2081.2181.2281.2391.2491.2601.2721.2831.2951.307
            
1.101.0401.0481.0571.0661.0751.0841.0931.1021.1121.1221.132
1.200.9090.9180.9260.9340.9420.9490.9570.9650.9740.9820.990
1.300.8010.8090.8160.8240.8310.8380.8460.8530.8600.8670.874
1.400.7090.7170.7240.7310.7380.7450.7520.7580.7650.7710.778
1.500.6320.6390.6460.6530.6590.6660.6720.6780.6840.6900.696
            
1.600.5650.5720.5790.5850.5910.5980.6030.6090.6150.6210.626
1.700.5080.5140.5210.5270.5330.5380.5440.5500.5550.5610.566
1.800.4590.4650.4710.4760.4820.4880.4930.4980.5030.5080.513
1.900.4160.4220.4270.4320.4380.4430.4480.4530.4580.4630.468
2.000.3790.3840.3890.3940.3990.4040.4090.4130.4180.4230.427

ElementAcThPaUNpPuAmCmBkCf
Z89909192939495969798
Method*RHF*RHF*RHFRHF*RHF*RHF*RHF*RHF*RHF*RHF
(sin [\theta])/λ−1)          
0.0020.48420.11519.56819.11918.75918.19117.84017.71017.40616.841
0.01   19.047      
0.02   18.825      
0.03   18.470      
0.0419.1018.9218.3717.99917.7017.1016.8016.8016.5316.28
0.0518.4118.3317.7717.43617.1616.5516.2816.3316.0815.85
           
0.0617.6417.6617.1116.80516.5515.9515.7015.8015.5815.37
0.0716.8416.9316.3916.13115.9115.3115.0915.2415.0414.84
0.0816.0116.1915.6615.43615.2514.6514.4714.6614.4814.30
0.0915.1915.4314.9214.73814.5814.0013.8414.0613.9113.75
0.1014.4014.6814.2014.05213.9213.3713.2413.4713.3313.20
           
0.1113.6413.9513.5113.38913.2812.7612.6512.9012.7812.66
0.1212.92313.25512.85012.75612.66512.19112.09512.34412.24112.135
0.1312.25312.59412.22812.15712.08511.65311.57211.81711.72911.637
0.1411.63211.97211.64611.59511.54011.14911.08311.31911.24311.164
0.1511.05811.38811.10211.06911.02910.67910.62610.84810.78410.716
           
0.1610.52810.84510.59710.57910.55110.24310.20010.40710.35310.294
0.1710.03810.33910.12810.12210.1049.8369.8039.9939.9489.898
0.189.5869.8689.6919.6969.6889.4579.4339.6059.5689.527
0.199.1689.4309.2859.2999.3009.1029.0869.2419.2129.178
0.208.7809.0228.9068.9288.9368.7708.7608.9008.8788.850
           
0.228.0838.2878.2218.2548.2758.1638.1648.2778.2668.249
0.247.4747.6457.6177.6597.6897.6197.6317.7217.7207.713
0.257.1967.3537.3417.3877.4207.3687.3847.4657.4687.466
0.266.9357.0797.0817.1297.1657.1297.1487.2227.2297.231
0.286.4556.5786.6006.6526.6946.6836.7086.7706.7846.793
0.306.0256.1296.1676.2216.2666.2746.3046.3586.3786.393
           
0.325.6375.7275.7755.8305.8785.8995.9335.9816.0066.026
0.345.2855.3645.4185.4735.5235.5535.5915.6355.6645.687
0.355.1225.1965.2525.3075.3575.3915.4295.4725.5025.528
0.364.9665.0365.0935.1485.1975.2355.2745.3165.3475.374
0.384.6754.7384.7964.8504.8994.9404.9815.0215.0555.084
0.404.4104.4664.5244.5764.6254.6694.7104.7494.7844.815
           
0.424.1684.2184.2754.3254.3724.4174.4594.4974.5324.565
0.443.9463.9924.0464.0944.1404.1854.2264.2634.2994.333
0.453.8423.8853.9383.9854.0304.0764.1164.1524.1894.222
0.463.7423.7843.8353.8813.9253.9704.0104.0464.0824.116
0.483.5543.5923.6413.6853.7273.7713.8103.8443.8803.914
0.503.3813.4163.4623.5033.5433.5863.6243.6573.6933.726
           
0.553.0033.0323.0713.1063.1413.1793.2133.2443.2773.309
0.602.6872.7122.7442.7752.8052.8392.8692.8972.9272.957
0.652.4212.4422.4702.4952.5222.5512.5782.6032.6302.657
0.702.1932.2122.2352.2572.2802.3062.3302.3522.3762.400
0.801.8241.8401.8571.8751.8931.9121.9301.9491.9681.987
0.901.5411.5541.5681.5821.5971.6111.6261.6411.6571.673
1.001.3181.3301.3421.3531.3651.3771.3891.4021.4151.427
           
1.101.1421.1521.1611.1711.1811.1911.2011.2121.2221.233
1.200.9991.0071.0161.0241.0331.0411.0491.0581.0671.076
1.300.8820.8890.8960.9040.9110.9180.9260.9330.9410.948
1.400.7840.7910.7970.8030.8100.8160.8230.8300.8360.843
1.500.7020.7080.7140.7200.7250.7310.7370.7430.7480.754
           
1.600.6320.6370.6430.6490.6530.6590.6640.6690.6740.679
1.700.5710.5760.5810.5850.5910.5960.6010.6060.6110.165
1.800.5180.5230.5280.5340.5370.5420.5470.5510.5550.560
1.900.4720.4770.4810.4850.4900.4950.4990.5030.5070.511
2.000.4320.4360.4400.4430.4490.4530.4570.4610.4650.469

Table 4.3.1.2| top | pdf |
Atomic scattering amplitudes (Å) for electrons for ionized atoms

A discussion of the values quoted here for s = 0 is given in Subsection 4.3.1.6[link]. Self-consistent field calculations: HF: non-relativistic Hartree–Fock; DS: modified Dirac–Slater; RHF, *RHF: relativistic Hartree–Fock.

ElementH1−Li1+Be2+O1−F1−Na1+Mg2+Al3+Si4+Cl1−K1+
Z13489111213141719
MethodHFRHFRHFHFHFRHFRHFHFHFRHFRHF
(sin [\theta])/λ−1)           
0.00 0.1570.082  1.1300.831  6.7703.436
0.01 239.497478.762  240.469479.511  −232.585242.773
0.02 59.992119.752  60.963120.500  −53.12563.260
0.03 26.75053.268  27.71954.015  −19.95730.004
0.04−12.0015.11529.999−11.74−12.2116.08130.74545.5260.34−8.42318.349
0.05−6.789.73019.229−6.41−6.8510.69219.97229.3638.80−3.16212.939
            
0.06−4.036.80413.378−3.55−3.977.76214.11920.5827.10−0.3819.983
0.07−2.455.0409.850−1.86−2.255.99310.58915.2920.051.2198.184
0.08−1.483.8947.560−0.79−1.164.8418.29611.8515.462.1876.999
0.09−0.873.1095.990−0.09−0.434.0496.7229.4912.322.7836.169
0.10−0.472.5464.8670.390.083.4805.5957.8110.083.1475.559
            
0.11−0.202.1304.0360.720.433.0564.7606.568.413.3615.092
0.12−0.0231.8133.4040.9490.6882.7314.1235.6107.1473.4724.720
0.130.0951.5672.9121.1070.8702.4753.6264.8686.1623.5134.416
0.140.1731.3702.5221.2151.0002.2693.2304.2805.3793.5044.160
0.150.2241.2122.2071.2851.0922.1002.9093.8044.7473.4613.939
            
0.160.2571.0821.9491.3291.1571.9602.6453.4134.2303.3933.745
0.170.2760.9741.7351.3521.2001.8412.4253.0893.8003.3083.571
0.180.2860.8831.5561.3591.2261.7382.2392.8173.4403.2113.414
0.190.2880.8061.4041.3551.2391.6502.0812.5853.1353.1083.269
0.200.2870.7401.2741.3431.2421.5711.9442.3872.8733.0003.135
            
0.220.2760.6341.0661.3001.2281.4401.7202.0662.4512.7792.893
0.240.2590.5520.9071.2431.1941.3321.5461.8192.1292.5632.676
0.250.2500.5180.8411.2121.1731.2841.4721.7161.9952.4582.575
0.260.2400.4870.7831.1791.1501.2401.4061.6241.8762.3572.479
0.280.2210.4350.6851.1121.0991.1611.2901.4661.6742.1652.300
0.300.2030.3930.6051.0461.0461.0921.1931.3361.5091.9882.135
            
0.320.1860.3570.5390.9810.9921.0291.1101.2281.3721.8271.983
0.340.1700.3270.4850.9180.9390.9721.0381.1361.2571.6801.843
0.350.1630.3140.4610.8890.9120.9461.0051.0941.2061.6131.778
0.360.1560.3010.4390.8600.8870.9200.9741.0561.1591.5481.715
0.380.1430.2790.4000.8040.8370.8720.9170.9871.0751.4291.596
0.400.1320.2590.3660.7530.7890.8270.8660.9251.0011.3221.488
            
0.420.1220.2420.3370.7040.7440.7850.8200.8710.9371.2261.388
0.440.1120.2270.3120.6600.7020.7460.7770.8220.8801.1391.296
0.450.1080.2200.3000.6390.6820.7270.7570.7990.8531.0991.253
0.460.1040.2130.2900.6180.6620.7090.7380.7780.8291.0611.212
0.480.0960.2000.2700.5800.6250.6750.7010.7370.7830.9911.135
0.500.0900.1890.2520.5440.5900.6420.6680.7010.7410.9281.064
            
0.550.0750.1650.2160.4670.5120.5690.5930.6200.6520.7960.912
0.600.0640.1450.1880.4030.4460.5060.5290.5530.5800.6910.789
0.650.0550.1290.1650.3510.3910.4510.4740.4960.5190.6080.690
0.700.0480.1150.1460.3070.3450.4030.4260.4470.4680.5410.609
0.800.0370.0930.1180.2410.2720.3250.3470.3670.3850.4390.488
0.900.0290.0770.0970.1930.2190.2660.2860.3050.3210.3660.402
1.000.0240.0640.0810.1590.1800.2210.2390.2560.2710.3110.338
            
1.100.0200.0540.0690.1330.1500.1850.2010.2170.2310.2670.290
1.200.0170.0460.0590.1130.1280.1570.1720.1860.1980.2320.252
1.300.0140.0400.0520.0970.1100.1350.1480.1600.1720.2020.221
1.400.0120.0350.0450.0850.0950.1180.1290.1400.1500.1780.195
1.500.0110.0310.0400.0750.0840.1030.1130.1230.1320.1580.173
            
1.60 0.0270.035  0.0910.100  0.1410.155
1.70 0.0240.032  0.0810.089  0.1260.139
1.80 0.0220.028  0.0730.080  0.1130.125
1.90 0.0200.026  0.0660.072  0.1020.114
2.00 0.0180.023  0.0600.065  0.0930.103

ElementCa2+Sc3+Ti2+Ti3+Ti4+V2+V3+V5+Cr2+Cr3+Mn2+
Z2021222222232323242425
MethodRHFHFHFHFHFRHFHFHFHFHFRHF
(sin [\theta])/λ−1)           
0.002.711    2.904    2.846
0.01481.390    481.582    481.525
0.02122.375    122.566    122.510
0.0355.883    56.074    56.018
0.0432.60247.0832.8047.1561.6732.79147.1876.3632.7947.1932.738
0.0521.81730.9122.0130.9840.1322.00531.0249.4322.0031.0321.953
            
0.0615.94822.1316.1422.1928.4216.13422.2334.8016.1322.2416.085
0.0712.39916.8212.5916.8921.3512.58316.9225.9812.5816.9312.537
0.0810.08513.3710.2713.4416.7710.26713.4720.2410.2613.4810.225
0.098.48911.008.6711.0713.628.66811.1016.318.6711.118.630
0.107.3369.307.529.3611.367.5149.3913.497.519.417.479
            
0.116.4738.036.658.099.686.6488.1311.416.658.146.618
0.125.8077.0575.9777.1208.4005.9807.1559.8155.9837.1725.954
0.135.2796.2955.4446.3597.4005.4496.3948.5745.4556.4105.428
0.144.8505.6845.0115.7476.6035.0185.7827.5845.0265.8005.002
0.154.4955.1854.6535.2475.9544.6615.2846.7844.6715.3024.650
            
0.164.1964.7704.3494.8325.4184.3604.8686.1264.3724.8884.353
0.173.9394.4214.0894.4814.9714.1024.5185.5774.1164.5394.100
0.183.7164.1213.8634.1824.5913.8774.2205.1133.8944.2423.880
0.193.5193.8633.6633.9234.2663.6793.9614.7193.6983.9843.686
0.203.3433.6373.4853.6973.9843.5033.7354.3783.5233.7593.514
            
0.223.0413.2593.1783.3183.5203.2003.3583.8243.2243.3843.220
0.242.7872.9532.9203.0123.1552.9463.0533.3912.9733.0812.975
0.252.6742.8212.8062.8792.9982.8332.9213.2092.8622.9502.865
0.262.5682.6992.6992.7572.8572.7272.7993.0452.7582.8302.764
0.282.3762.4822.5042.5402.6102.5362.5842.7612.5692.6162.579
0.302.2042.2942.3312.3522.3992.3652.3962.5242.4012.4302.415
            
0.322.0492.1282.1742.1852.2172.2112.2312.3222.2492.2662.266
0.341.9071.9802.0322.0372.0572.0712.0732.1472.1112.1202.131
0.351.8421.9111.9661.9681.9842.0052.0152.0682.0462.0532.068
0.361.7781.8461.9031.9031.9151.9431.9501.9941.9841.9882.007
0.381.6601.7251.7831.7811.7881.8251.8291.8581.8671.8681.893
0.401.5511.6141.6731.6701.6731.7161.7181.7361.7591.7581.787
            
0.421.4511.5121.5721.5681.5691.6151.6161.6271.6591.6571.688
0.441.3591.4191.4781.4741.4731.5221.5221.5281.5661.5631.597
0.451.3161.3751.4331.4291.4281.4771.4771.4811.5221.5191.553
0.461.2741.3331.3911.3871.3851.4351.4341.4371.4801.4761.511
0.481.1961.2531.3101.3061.3041.3541.3541.3541.3991.3951.432
0.501.1241.1801.2351.2321.2291.2791.2791.2771.3241.3201.357
            
0.550.9671.0191.0701.0681.0661.1131.1131.1101.1561.1541.190
0.600.8380.8860.9330.9310.9300.9730.9740.9711.0151.0131.049
0.650.7330.7760.8180.8170.8160.8560.8570.8550.8950.8940.928
0.700.6470.6850.7220.7220.7210.7570.7580.7560.7930.7920.824
0.800.5150.5440.5740.5740.5740.6020.6030.6030.6320.6320.659
0.900.4220.4440.4670.4670.4670.4900.4910.4910.5150.5150.538
1.000.3540.3710.3890.3890.3890.4080.4080.4080.4270.4270.446
            
1.100.3020.3160.3310.3310.3300.3450.3460.3450.3610.3610.377
1.200.2620.2730.2850.2850.2850.2970.2970.2970.3100.3100.323
1.300.2300.2390.2490.2490.2490.2590.2590.2590.2700.2700.280
1.400.2030.2110.2200.2200.2190.2280.2280.2280.2370.2370.246
1.500.1800.1880.1950.1950.1950.2030.2030.2020.2110.2110.218
            
1.600.161    0.181    0.195
1.700.145    0.163    0.175
1.800.131    0.148    0.159
1.900.119    0.134    0.144
2.000.108    0.123    0.132

ElementMn3+Mn4+Fe2+Fe3+Co2+Co3+Ni2+Ni3+Cu1+Cu2+Zn2+
Z2525262627272828292930
MethodHFHFRHFRHFRHFHFRHFHFRHFHFRHF
(sin [\theta])/λ−1)           
0.00  2.8022.2982.754 2.703 3.280 2.599
0.01  481.481720.318481.433 481.382 242.618 481.278
0.02  122.467181.800122.419 122.368 63.107 122.265
0.03  55.97682.07055.928 55.878 29.855 55.776
0.0447.1861.7632.69647.16032.65047.1532.60047.1218.20632.5532.499
0.0531.0240.2221.91330.99621.86730.9821.81930.9612.80321.7721.719
            
0.0622.2328.5116.04622.21016.00222.2015.95522.179.85615.9015.857
0.0716.9321.4412.50016.90712.45716.9012.41116.878.06612.3612.316
0.0813.4816.8510.18913.45910.14813.4510.10313.436.89310.0610.011
0.0911.1113.708.59611.0898.55611.088.51311.066.0768.478.424
0.109.4111.457.4479.3887.4099.387.3689.365.4797.337.282
            
0.118.149.776.5888.1246.5538.126.5138.105.0276.476.430
0.127.1748.4925.9267.1565.8937.1505.8567.1324.6715.8175.776
0.136.4137.4925.4036.3985.3716.3935.3366.3764.3835.2995.260
0.145.8046.6954.9795.7904.9505.7874.9175.7704.1444.8834.845
0.155.3076.0474.6295.2944.6035.2934.5725.2773.9424.5404.504
            
0.164.8945.5144.3354.8844.3114.8834.2834.8693.7664.2534.219
0.174.5475.0684.0844.5384.0634.5384.0364.5263.6124.0093.976
0.184.2514.6893.8674.2433.8474.2453.8244.2343.4743.7993.768
0.193.9954.3663.6763.9893.6593.9933.6383.9833.3493.6153.586
0.203.7714.0863.5063.7673.4923.7723.4733.7643.2343.4533.426
            
0.223.3993.6253.2173.3973.2073.4053.1933.4003.0303.1783.154
0.243.0993.2622.9763.1002.9713.1112.9613.1092.8512.9502.930
0.252.9693.1082.8692.9722.8662.9842.8582.9842.7692.8502.831
0.262.8502.9682.7692.8552.7682.8682.7632.8692.6902.7572.740
0.282.6392.7232.5892.6462.5922.6622.5902.6662.5442.5882.574
0.302.4552.5162.4282.4662.4342.4842.4362.4902.4102.4382.428
            
0.322.2942.3362.2822.3072.2932.3272.2982.3362.2852.3032.296
0.342.1492.1792.1502.1652.1632.1872.1722.1992.1692.1802.176
0.352.0832.1072.0882.0992.1032.1232.1132.1352.1142.1232.120
0.362.0192.0392.0292.0372.0452.0612.0562.0752.0612.0672.066
0.381.9001.9131.9171.9201.9351.9461.9491.9621.9591.9631.964
0.401.7911.7991.8131.8131.8331.8411.8491.8581.8641.8661.869
            
0.421.6911.6951.7161.7151.7391.7431.7561.7621.7741.7751.781
0.441.5981.6001.6261.6231.6501.6531.6701.6741.6901.6901.697
0.451.5541.5551.5831.5801.6081.6101.6281.6311.6491.6491.658
0.461.5121.5121.5421.5381.5671.5691.5881.5911.6101.6101.619
0.481.4321.4311.4631.4591.4891.4901.5121.5131.5351.5351.546
0.501.3571.3551.3891.3851.4161.4171.4401.4411.4641.4641.476
            
0.551.1901.1881.2231.2201.2521.2521.2771.2781.3031.3031.319
0.601.0491.0471.0811.0791.1111.1111.1371.1381.1631.1641.182
0.650.9280.9270.9590.9580.9890.9891.0151.0161.0421.0431.061
0.700.8250.8240.8550.8540.8830.8840.9100.9100.9350.9360.956
0.800.6600.6600.6870.6860.7130.7130.7370.7380.7610.7620.782
0.900.5380.5380.5610.5610.5830.5840.6050.6060.6270.6280.646
1.000.4470.4470.4660.4660.4850.4860.5040.5050.5230.5240.541
            
1.100.3770.3770.3930.3930.4090.4100.4250.4260.4410.4420.457
1.200.3230.3230.3360.3360.3500.3500.3640.3640.3780.3780.391
1.300.2810.2810.2910.2910.3030.3040.3150.3150.3270.3270.339
1.400.2460.2460.2560.2560.2650.2660.2750.2760.2860.2860.296
1.500.2190.2180.2260.2260.2350.2350.2430.2440.2520.2530.261
            
1.60  0.2020.2020.209 0.217 0.224 0.232
1.70  0.1820.1820.188 0.195 0.201 0.208
1.80  0.1640.1640.170 0.176 0.182 0.188
1.90  0.1490.1490.155 0.160 0.165 0.170
2.00  0.1360.1360.141 0.146 0.150 0.155

ElementGa3+Ge4+Br1−Rb1+Sr2+Y3+Zr4+Nb3+Nb5+Mo3+Mo5+
Z3132353738394041414242
MethodHFHFRHFRHFRHF*DS*DS*DS*DS*DS*DS
(sin [\theta])/λ−1)           
0.00  9.3575.5454.642      
0.01  −230.004244.880483.320      
0.02  −50.56565.359124.299      
0.03  −17.43132.09057.798      
0.0447.0361.67−5.94220.41934.50548.8463.3149.3377.8649.4478.04
0.0530.8740.13−0.73814.98723.70432.6741.7433.1550.9233.2651.09
            
0.0622.0928.431.97812.00517.81623.8630.0224.3436.2824.4536.45
0.0716.7821.373.50810.17614.24618.5422.9519.0127.4519.1127.61
0.0813.3416.784.3998.95711.90715.0718.3415.5221.7015.6321.87
0.0910.9713.634.9178.09110.28312.6815.1713.1217.7613.2317.92
0.109.2811.385.2027.4429.10110.9512.9011.3814.9211.4915.09
            
0.118.029.715.3356.9328.2069.6611.2010.0712.8210.1812.98
0.127.0578.4375.3676.5167.5068.6589.8989.06211.2129.17011.369
0.136.3057.4425.3316.1666.9427.8678.8748.2579.9528.36410.105
0.145.7036.6505.2485.8636.4777.2278.0527.6018.9457.7089.094
0.155.2135.8185.1325.5956.0846.6967.3787.0578.1247.1638.269
            
0.164.8095.4814.9965.3525.7466.2496.8176.5967.4446.7027.586
0.174.4705.0414.8465.1305.4495.8676.3436.2006.8736.3047.012
0.184.1824.6694.6884.9255.1865.5345.9365.8536.3885.9576.523
0.193.9344.3514.5274.7334.9495.2425.5825.5485.9695.6506.101
0.203.7194.0784.3654.5524.7344.9815.2735.2755.6055.3765.733
            
0.223.3643.6314.0464.2184.3524.5354.7514.8055.0024.9035.123
0.243.0813.2813.7453.9144.0214.1614.3274.4104.5204.5054.634
0.252.9603.1333.6023.7733.8713.9954.1434.2334.3134.3274.424
0.262.8493.0003.4653.6383.7293.8413.9724.0694.1244.1624.232
0.282.6542.7693.2083.3843.4663.5603.6683.7713.7913.8603.892
0.302.4872.5742.9753.1513.2283.3113.4033.5073.5053.5923.599
            
0.322.3402.4072.7652.9383.0123.0883.1683.2693.2553.3513.344
0.342.2102.2622.5762.7442.8152.8862.9573.0543.0343.1323.117
0.352.1502.1952.4882.6522.7232.7922.8602.9552.9333.0313.013
0.362.0932.1332.4052.5652.6352.7022.7682.8592.8372.9342.915
0.381.9862.0182.2522.4032.4702.5342.5962.6812.6592.7522.732
0.401.8881.9142.1142.2542.3192.3812.4392.5182.4972.5852.566
            
0.421.7981.8191.9902.1192.1802.2402.2952.3692.3502.4322.414
0.441.7141.7321.8771.9962.0532.1112.1632.2312.2152.2922.276
0.451.6741.6911.8251.9381.9942.0502.1022.1672.1522.2252.211
0.461.6351.6521.7751.8831.9371.9922.0422.1052.0922.1622.148
0.481.5621.5771.6821.7801.8311.8831.9311.9881.9782.0422.031
0.501.4931.5071.5981.6861.7331.7821.8281.8811.8721.9311.922
            
0.551.3371.3511.4151.4831.5221.5641.6041.6471.6431.6901.686
0.601.2011.2161.2661.3181.3501.3851.4191.4541.4531.4911.489
0.651.0821.0981.1401.1821.2081.2371.2661.2951.2951.3261.326
0.700.9770.9941.0341.0681.0891.1131.1371.1611.1631.1881.188
0.800.8030.8210.8600.8870.9020.9190.9370.9540.9550.9730.974
0.900.6670.6840.7250.7490.7610.7750.7880.8010.8020.8150.816
1.000.5590.5750.6160.6400.6510.6620.6730.6840.6850.6960.696
            
1.100.4740.4890.5280.5510.5620.5720.5820.5910.5920.6010.601
1.200.4060.4190.4560.4780.4880.4980.5070.5160.5160.5250.525
1.300.3510.3630.3960.4170.4270.4360.4450.4530.4530.4620.462
1.400.3070.3170.3470.3660.3760.3840.3930.4010.4010.4080.408
1.500.2710.2800.3060.3240.3320.3400.3480.3560.3560.3630.363
            
1.60  0.2720.2880.2960.3030.3110.3180.3180.3250.325
1.70  0.2430.2570.2650.2710.2780.2850.2850.2920.292
1.80  0.2190.2320.2380.2440.2510.2570.2570.2630.263
1.90  0.1980.2090.2150.2210.2270.2320.2320.2380.238
2.00  0.1800.1900.1960.2010.2060.2110.2110.2160.216

ElementMo3+Ru3+Ru4+Rh3+Rh4+Pd2+Pd4+Ag1+Ag2+Cd2+In3+
Z4244444545464647474849
Method*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS
(sin [\theta])/λ−1)           
0.00           
0.01           
0.02           
0.03           
0.0492.4949.5363.8349.5363.8735.3063.8921.2135.2335.1549.41
0.0560.1733.3442.2733.3542.3124.5042.3215.7724.4324.3633.23
            
0.0642.6124.5430.5424.5530.5818.6130.6112.7918.5418.4724.43
0.0732.0119.2123.4619.2223.5015.0323.5210.9614.9714.9019.11
0.0825.1315.7318.8515.7418.8912.6918.929.7312.6312.5615.65
0.0920.4013.3315.6813.3415.7211.0615.758.8711.0010.9413.26
0.1017.0211.5913.3911.6113.449.8713.468.229.829.7611.53
            
0.1114.5010.2911.6910.3111.748.9711.767.708.928.8710.24
0.1212.5859.28110.3819.30110.4308.25910.4587.2878.2178.1699.249
0.1311.0868.4809.3518.5029.3997.6879.4316.9357.6527.6088.463
0.149.8917.8278.5217.8538.5717.2148.6036.6317.1847.1467.826
0.158.9197.2867.8407.3137.8916.8137.9246.3616.7896.7567.299
            
0.168.1186.8277.2716.8587.3226.4677.3576.1176.4486.4196.856
0.177.4496.4326.7886.4656.8416.1636.8775.8946.1496.1266.476
0.186.8816.0886.3726.1246.4265.8926.4645.6875.8835.8656.147
0.196.3955.7846.0115.8226.0655.6476.1055.4945.6435.6295.858
0.205.9755.5115.6925.5535.7475.4235.7885.3125.4245.4165.600
            
0.225.2835.0425.1535.0875.2115.0265.2554.9755.0365.0365.158
0.244.7394.6464.7124.6954.7714.6794.8184.6674.6974.7054.786
0.254.5084.4694.5194.5204.5784.5214.6264.5224.5414.5534.621
0.264.2974.3044.3404.3564.4004.3704.4494.3834.3944.4104.466
0.283.9314.0034.0204.0574.0804.0904.1304.1204.1214.1424.184
0.303.6203.7333.7383.7893.7993.8363.8503.8763.8713.8983.930
            
0.323.3523.4903.4883.5473.5483.6013.6013.6493.6403.6723.701
0.343.1183.2693.2633.3273.3233.3853.3763.4373.4273.4633.490
0.353.0113.1663.1583.2243.2183.2843.2713.3363.3273.3633.390
0.362.9103.0673.0583.1253.1183.1853.1713.2393.2303.2683.295
0.382.7252.8822.8722.9392.9313.0002.9843.0553.0463.0863.115
0.402.5572.7112.7022.7682.7592.8282.8122.8832.8752.9172.947
            
0.422.4062.5532.5452.6092.6012.6682.6532.7232.7162.7592.790
0.442.2672.4082.4002.4622.4542.5202.5052.5732.5672.6112.643
0.452.2022.3392.3322.3932.3852.4502.4362.5022.4972.5412.574
0.462.1402.2732.2662.3262.3192.3822.3692.4342.4292.4732.506
0.482.0242.1482.1432.1992.1932.2532.2422.3042.3002.3432.378
0.501.9162.0332.0282.0822.0772.1332.1242.1822.1792.2222.258
            
0.551.6821.7791.7761.8231.8201.8691.8631.9131.9121.9531.989
0.601.4871.5681.5671.6071.6061.6471.6441.6871.6861.7251.760
0.651.3251.3921.3921.4261.4261.4611.4601.4961.4961.5311.564
0.701.1891.2441.2441.2741.2741.3041.3041.3351.3351.3671.397
0.800.9751.0141.0151.0361.0371.0591.0601.0831.0831.1071.132
0.900.8170.8460.8460.8630.8630.8800.8800.8980.8980.9170.936
1.000.6960.7190.7200.7320.7320.7450.7460.7590.7590.7740.789
            
1.100.6020.6210.6210.6310.6310.6420.6420.6530.6530.6640.676
1.200.5250.5420.5420.5510.5510.5600.5600.5690.5690.5780.588
1.300.4620.4770.4770.4850.4850.4930.4930.5010.5010.5080.516
1.400.4090.4230.4230.4300.4300.4370.4370.4440.4440.4510.458
1.500.3630.3770.3770.3840.3840.3910.3910.3970.3970.4030.409
            
1.600.3250.3380.3380.3440.3440.3500.3500.3560.3560.3620.368
1.700.2920.3040.3040.3100.3100.3160.3160.3220.3220.3270.332
1.800.2630.2750.2750.2800.2800.2860.2860.2910.2910.2960.301
1.900.2380.2490.2490.2540.2540.2600.2600.2650.2650.2700.274
2.000.2160.2270.2270.2320.2320.2370.2370.2410.2410.2460.251

ElementSn2+Sn4+Sb3+Sb5+I1−Cs1+Ba2+La3+Ce3+Ce4+Pr3+
Z5050515153555657585859
MethodRHFRHF*DS*DSRHFRHF*DS*DS*DS*DS*DS
(sin [\theta])/λ−1)           
0.006.1443.971  13.8359.035     
0.01484.819961.330  −225.540248.365     
0.02125.792243.305  −46.14568.827     
0.0359.280110.331  −13.08335.532     
0.0435.97263.78250.1678.38−1.69023.82337.6451.7051.6265.9451.53
0.0525.15242.22733.9751.443.39918.34426.8135.4935.4244.3635.34
            
0.0619.24230.51025.1436.815.98115.30720.8726.6526.5932.6226.51
0.0715.64623.43519.8127.977.36513.41417.2521.3021.2325.5121.15
0.0813.28018.83316.3222.228.10312.12414.8617.7817.7220.8717.65
0.0911.62515.66813.9118.288.46211.18013.1715.3415.2917.6615.22
0.1010.41113.39512.1615.458.58610.44811.9213.5713.5115.3413.45
            
0.119.48411.70310.8513.358.5609.85110.9612.2212.1713.6012.11
0.128.75010.4079.82511.7438.4379.34510.18511.16311.11912.25811.064
0.138.1529.3889.01010.4868.2498.9039.54710.31310.27511.18510.224
0.147.6538.5718.3449.4808.0218.5069.0039.6109.57610.3129.531
0.157.2277.9027.7908.6607.7678.1438.5319.0168.9879.5868.947
            
0.166.8567.3457.3197.9827.5007.8068.1138.5058.4828.9728.446
0.176.5286.8756.9117.4137.2287.4917.7388.0568.0388.4418.008
0.186.2346.4736.5556.9286.9557.1937.3957.6587.6457.9797.619
0.195.9686.1246.2396.5126.6856.9117.0807.3007.2927.5697.270
0.205.7255.8185.9556.1496.4236.6436.7876.9746.9707.2026.954
            
0.225.2935.3045.4645.5485.9256.1436.2566.3986.4036.5686.396
0.244.9184.8865.0505.0675.4685.6885.7855.9005.9126.0335.914
0.254.7474.7034.8644.8605.2555.4755.5685.6745.6905.7945.695
0.264.5864.5354.6914.6715.0545.2725.3625.4615.4805.5705.489
0.284.2894.2324.3754.3364.6814.8934.9805.0695.0945.1635.109
0.304.0213.9674.0944.0484.3484.5494.6334.7164.7454.8004.766
            
0.323.7783.7303.8403.7934.0494.2374.3184.3964.4294.4744.454
0.343.5563.5163.6113.5673.7823.9544.0324.1064.1424.1794.170
0.353.4523.4163.5033.4633.6583.8233.8993.9714.0084.0424.037
0.363.3523.3203.4013.3633.5413.6983.7723.8433.8803.9113.910
0.383.1643.1403.2083.1773.3253.4663.5363.6023.6403.6673.673
0.402.9912.9733.0313.0063.1293.2553.3213.3833.4223.4443.455
            
0.422.8302.8172.8672.8482.9513.0643.1243.1833.2213.2403.255
0.442.6802.6722.7162.7022.7892.8902.9463.0003.0383.0543.072
0.452.6102.6042.6442.6322.7142.8082.8622.9142.9522.9672.986
0.462.5412.5372.5752.5652.6412.7312.7822.8322.8702.8832.904
0.482.4122.4102.4442.4382.5052.5862.6322.6792.7152.7262.749
0.502.2902.2912.3222.3192.3792.4522.4952.5382.5732.5822.606
            
0.552.0202.0232.0502.0512.1032.1632.1972.2322.2642.2682.295
0.601.7911.7941.8191.8221.8711.9231.9511.9802.0102.0112.038
0.651.5941.5971.6221.6251.6731.7211.7451.7701.7971.7961.823
0.701.4261.4281.4531.4551.5031.5481.5701.5921.6171.6151.641
0.801.1571.1571.1811.1821.2271.2691.2881.3071.3281.3261.349
0.900.9560.9560.9760.9771.0171.0551.0721.0901.1081.1071.126
1.000.8050.8040.8210.8210.8550.8880.9040.9200.9360.9350.952
            
1.100.6880.6880.7020.7020.7290.7570.7710.7850.7990.7990.813
1.200.5970.5970.6080.6080.6300.6540.6660.6780.6900.6900.702
1.300.5250.5240.5340.5330.5510.5710.5810.5910.6020.6020.612
1.400.4650.4650.4730.4730.4870.5040.5120.5210.5300.5300.539
1.500.4160.4160.4220.4220.4350.4480.4560.4630.4710.4710.478
            
1.600.3740.3740.3790.3790.3910.4020.4090.4150.4210.4210.428
1.700.3380.3380.3430.3430.3530.3640.3690.3740.3800.3800.386
1.800.3060.3060.3110.3110.3210.3300.3350.3400.3450.3450.350
1.900.2790.2790.2840.2840.2930.3010.3060.3100.3140.3140.319
2.000.2550.2550.2590.2590.2680.2760.2800.2840.2880.2880.292

ElementPr4+Nd3+Pm3+Sm3+Eu2+Eu3+Gd3+Tb3+Dy3+Ho3+Er3+
Z5960616263636465666768
Method*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS
(sin [\theta])/λ−1)           
0.00           
0.01           
0.02           
0.03           
0.0465.8651.4451.3551.2636.9951.1751.0851.0450.9250.8350.74
0.0544.3035.2535.1535.0726.1734.9734.9034.8534.7234.6434.55
            
0.0632.5526.4226.3326.2520.2626.1526.0826.0225.9225.8325.74
0.0725.4421.0720.9820.9016.6720.8120.7420.6820.5820.5020.41
0.0820.8117.5717.4917.4114.3017.3217.2517.1917.0917.0116.93
0.0917.6015.1415.0614.9812.6514.9014.8314.7714.6814.6014.53
0.1015.2913.3813.3013.2311.4413.1513.0813.0212.9412.8612.79
            
0.1113.5512.0411.9711.9010.5111.8311.7611.7111.6211.5511.48
0.1212.21011.00310.93710.8709.77010.80210.73910.68110.60410.53810.469
0.1311.14110.16710.10610.0449.1679.9799.9199.8639.7929.7289.664
0.1410.2729.4809.4229.3668.6639.3059.2489.1949.1289.0689.007
0.159.5508.9018.8498.7968.2298.7408.6868.6348.5748.5178.460
            
0.168.9398.4058.3578.3107.8508.2578.2078.1588.1028.0497.995
0.178.4137.9727.9307.8867.5117.8387.7917.7467.6947.6457.594
0.187.9557.5897.5517.5127.2067.4687.4257.3837.3357.2907.242
0.197.5497.2457.2127.1776.9277.1387.0997.0597.0166.9746.930
0.207.1876.9326.9046.8746.6696.8396.8046.7686.7296.6906.650
            
0.226.5616.3846.3646.3426.2046.3166.2896.2586.2276.1966.162
0.246.0335.9105.8995.8845.7925.8655.8455.8225.7985.7735.745
0.255.7975.6955.6875.6775.6015.6615.6455.6255.6045.5825.557
0.265.5775.4925.4885.4815.4195.4695.4565.4395.4215.4025.380
0.285.1765.1185.1215.1205.0805.1155.1075.0965.0855.0715.055
0.304.8184.7804.7894.7934.7684.7944.7924.7874.7804.7724.760
            
0.324.4964.4734.4864.4964.4824.5014.5044.5044.5024.4984.492
0.344.2054.1934.2104.2244.2184.2334.2404.2444.2474.2474.244
0.354.0694.0614.0814.0964.0934.1074.1164.1224.1264.1284.128
0.363.9393.9363.9563.9733.9733.9873.9974.0054.0114.0144.016
0.383.6973.7003.7243.7433.7483.7593.7733.7843.7933.7993.804
0.403.4763.4843.5093.5313.5403.5503.5663.5793.5903.6003.607
            
0.423.2733.2853.3123.3353.3473.3563.3743.3893.4033.4143.423
0.443.0873.1033.1303.1553.1683.1763.1963.2133.2283.2413.253
0.453.0003.0173.0453.0693.0843.0923.1123.1303.1463.1603.172
0.462.9162.9342.9622.9883.0033.0103.0313.0493.0663.0813.094
0.482.7592.7792.8072.8332.8502.8562.8782.8972.9152.9312.945
0.502.6142.6362.6642.6902.7092.7142.7362.7562.7752.7912.807
            
0.552.2992.3242.3512.3762.3972.4002.4232.4442.4632.4812.498
0.602.0402.0652.0912.1152.1372.1382.1602.1812.2012.2202.237
0.651.8231.8481.8721.8951.9171.9171.9391.9591.9781.9972.014
0.701.6391.6641.6861.7081.7301.7291.7491.7691.7881.8061.823
0.801.3471.3691.3891.4081.4281.4271.4451.4631.4801.4971.513
0.901.1251.1441.1621.1791.1971.1961.2121.2281.2441.2601.274
1.000.9510.9680.9840.9991.0151.0141.0291.0441.0581.0721.086
            
1.100.8130.8270.8410.8550.8690.8690.8820.8950.9080.9210.934
1.200.7020.7140.7270.7390.7510.7510.7630.7750.7870.7980.810
1.300.6120.6230.6340.6440.6550.6550.6660.6760.6870.6970.708
1.400.5390.5480.5570.5670.5760.5760.5850.5950.6040.6130.623
1.500.4780.4860.4940.5020.5100.5100.5190.5270.5350.5440.552
            
1.600.4280.4350.4420.4490.4560.4560.4630.4700.4780.4850.492
1.700.3860.3920.3980.4040.4100.4100.4160.4230.4290.4360.442
1.800.3500.3550.3600.3660.3710.3710.3770.3820.3880.3940.399
1.900.3190.3240.3280.3330.3380.3380.3430.3480.3530.3580.363
2.000.2920.2960.3010.3050.3090.3090.3130.3180.3220.3270.331

ElementTm3+Yb2+Yb3+Lu3+Hf4+Ta5+W6+Os4+Ir3+Ir4+Pt2+
Z6970707172737476777778
Method*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS
(sin [\theta])/λ−1)           
0.00           
0.01           
0.02           
0.03           
0.0450.6736.3050.5850.5064.9179.4294.0065.5651.4465.6537.41
0.0534.4725.4934.4034.3243.3552.4761.6844.0035.2544.0926.60
            
0.0625.6719.6125.5925.5231.6337.8444.1132.2626.4332.3620.68
0.0720.3416.0320.2720.1924.5428.9933.5125.1721.0925.2617.09
0.0816.8613.6816.7916.7219.9323.2426.6220.5517.6020.6414.72
0.0914.4612.0514.3914.3216.7619.2921.8917.3615.1817.4513.06
0.1012.7210.8612.6512.5914.4716.4518.5015.0613.4215.1511.84
            
0.1111.429.9511.3511.2912.7714.3415.9813.3412.1013.4310.91
0.1210.4069.24310.34310.28211.46312.72714.05112.01911.07112.10810.170
0.139.6038.6699.5429.48410.43211.46012.54510.97110.24811.0619.567
0.148.9508.1918.8918.8359.60010.44311.34110.1229.57110.2119.058
0.158.4057.7888.3498.2968.9189.61310.3619.4219.0069.5108.623
            
0.167.9437.4367.8907.8398.3488.9249.5508.8338.5238.9198.241
0.177.5457.1287.4957.4477.8638.3438.8708.3308.1048.4157.902
0.187.1966.8527.1507.1047.4457.8478.2927.8957.7347.9787.595
0.196.8886.6016.8436.8017.0817.4187.7957.5127.4047.5947.314
0.206.6106.3726.5696.5296.7607.0427.3647.1727.1077.2537.055
            
0.226.1285.9626.0936.0586.2146.4156.6506.5916.5856.6686.587
0.245.7175.6015.6885.6595.7655.9076.0806.1076.1386.1816.173
0.255.5325.4345.5055.4795.5665.6875.8365.8935.9365.9655.981
0.265.3585.2765.3345.3105.3825.4855.6135.6935.7455.7645.799
0.285.0384.9805.0195.0005.0495.1245.2205.3315.3955.3985.458
0.304.7484.7084.7344.7204.7544.8094.8825.0095.0785.0725.145
            
0.324.4844.4564.4744.4644.4894.5304.5864.7194.7894.7794.857
0.344.2404.2214.2344.2284.2474.2794.3234.4564.5244.5124.590
0.354.1264.1104.1224.1174.1344.1624.2014.3334.4004.3874.464
0.364.0154.0034.0134.0104.0254.0514.0864.2154.2804.2674.343
0.383.8063.8003.8073.8073.8213.8433.8723.9944.0554.0424.114
0.403.6123.6093.6163.6183.6323.6503.6753.7893.8453.8343.900
            
0.423.4313.4323.4373.4423.4553.4733.4953.5993.6513.6413.702
0.443.2623.2663.2713.2773.2913.3073.3273.4233.4713.4623.518
0.453.1823.1873.1913.1993.2133.2293.2483.3403.3853.3773.430
0.463.1053.1103.1153.1233.1373.1533.1723.2593.3033.2953.346
0.482.9582.9652.9692.9792.9933.0093.0273.1063.1463.1403.186
0.502.8202.8292.8332.8442.8592.8752.8922.9633.0002.9953.036
            
0.552.5142.5262.5282.5412.5572.5732.5902.6462.6752.6722.704
0.602.2532.2672.2692.2832.2992.3152.3312.3752.3992.3982.423
0.652.0312.0462.0472.0612.0772.0922.1082.1442.1642.1642.184
0.701.8391.8551.8551.8701.8851.9001.9141.9451.9621.9621.979
0.801.5291.5441.5441.5581.5721.5851.5981.6231.6361.6361.649
0.901.2891.3041.3031.3171.3291.3411.3531.3751.3861.3861.397
1.001.0991.1131.1121.1251.1371.1481.1591.1791.1891.1891.199
            
1.100.9460.9590.9580.9700.9810.9921.0021.0211.0311.0311.040
1.200.8210.8330.8320.8430.8540.8640.8730.8920.9010.9010.909
1.300.7180.7280.7280.7380.7480.7570.7660.7840.7920.7920.800
1.400.6320.6410.6410.6500.6590.6680.6770.6930.7010.7010.709
1.500.5600.5690.5690.5770.5850.5930.6010.6160.6240.6240.631
            
1.600.5000.5070.5070.5150.5220.5290.5370.5510.5580.5580.565
1.700.4490.4550.4550.4620.4690.4750.4820.4950.5020.5020.508
1.800.4050.4110.4110.4170.4230.4290.4350.4470.4530.4530.459
1.900.3680.3730.3730.3790.3840.3890.3950.4050.4110.4110.416
2.000.3360.3410.3410.3450.3500.3550.3600.3700.3740.3740.379

ElementPt4+Au1+Au3+Hg1+Hg2+Tl1+Tl3+Pb2+Pb4+Bi3+Bi5+
Z7879798080818182828383
Method*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS*DS
(sin [\theta])/λ−1)           
0.00           
0.01           
0.02           
0.03           
0.0465.7323.5251.5023.8437.3524.1151.4637.9865.8352.1280.28
0.0544.1618.0735.3218.3826.5318.6535.2927.1544.2735.9153.34
            
0.0632.4215.0526.4915.3620.6315.6226.4821.2332.5427.0938.69
0.0725.3313.1921.1513.4917.0413.7421.1517.6225.4521.7429.85
0.0820.7111.9417.6712.2314.6712.4717.6715.2420.8318.2324.09
0.0917.5211.0415.2511.3113.0311.5415.2613.5717.6515.8120.13
0.1015.2210.3513.5010.6011.8210.8313.5112.3415.3514.0417.29
            
0.1113.509.8012.1810.0410.8910.2612.2011.4013.6412.7015.17
0.1212.1789.34111.1539.56510.1659.77511.17810.64212.31611.66313.539
0.1311.1308.94610.3319.1569.5699.35610.36210.02411.27210.82712.262
0.1410.2818.5999.6608.7959.0728.9839.6969.50010.42710.13811.234
0.159.5798.2859.0978.4668.6448.6459.1399.0499.7309.55910.392
            
0.168.9887.9978.6178.1668.2718.3358.6648.6539.1449.0619.690
0.178.4847.7318.2017.8877.9408.0458.2538.2978.6448.6299.097
0.188.0477.4807.8347.6247.6407.7737.8907.9758.2118.2458.587
0.197.6627.2437.5067.3767.3677.5167.5677.6797.8307.9018.144
0.207.3207.0187.2117.1417.1147.2727.2757.4067.4927.5897.755
            
0.226.7356.5986.6936.7036.6586.8176.7656.9126.9137.0407.100
0.246.2466.2106.2476.3016.2536.4006.3266.4726.4296.5666.564
0.256.0296.0286.0466.1126.0656.2056.1276.2686.2146.3516.329
0.265.8275.8525.8555.9305.8866.0175.9396.0756.0146.1486.111
0.285.4595.5195.5055.5875.5505.6645.5915.7145.6475.7735.721
0.305.1315.2095.1865.2705.2405.3375.2755.3835.3205.4335.377
            
0.324.3854.9214.8954.9754.9535.0354.9855.0785.0235.1235.069
0.344.5654.6524.6274.7024.6864.7564.7184.7974.7514.8384.790
0.354.4394.5254.5014.5734.5604.6244.5914.6644.6234.7044.660
0.364.3184.4024.3794.4484.4374.4974.4694.5364.5014.5764.535
0.384.0904.1704.1494.2124.2064.2574.2384.2954.2694.3334.300
0.403.8803.9533.9363.9933.9904.0344.0224.0724.0534.1084.083
            
0.423.6843.7523.7373.7893.7883.8273.8213.8643.8513.8993.881
0.443.5023.5643.5523.5993.6003.6353.6333.6713.6633.7053.692
0.453.4163.4753.4643.5093.5113.5443.5443.5793.5743.6133.603
0.463.3333.3893.3793.4223.4243.4563.4573.4913.4883.5243.516
0.483.1763.2253.2183.2583.2603.2903.2933.3233.3233.3553.351
0.503.0283.0733.0683.1043.1073.1343.1393.1663.1683.1973.197
            
0.552.7002.7352.7332.7622.7652.7902.7952.8192.8232.8472.850
0.602.4222.4492.4482.4742.4762.4982.5022.5242.5282.5492.554
0.962.1842.2062.2062.2272.2292.2492.2522.2722.2762.2952.300
0.701.9801.9981.9982.0172.0172.0362.0382.0572.0592.0772.080
0.801.6501.6631.6631.6781.6781.6931.6941.7091.7101.7261.727
0.901.3971.4081.4081.4201.4201.4321.4321.4451.4451.4581.458
1.001.1991.2081.2091.2181.2181.2291.2281.2391.2391.2501.249
            
1.101.0401.0481.0481.0571.0571.0661.0661.0751.0751.0841.084
1.200.9090.9170.9170.9260.9250.9340.9330.9420.9410.9500.949
1.300.8000.8080.8080.8160.8160.8240.8240.8310.8310.8380.838
1.400.7090.7170.7160.7240.7240.7310.7310.7380.7380.7450.745
1.500.6310.6380.6380.6450.6450.6520.6520.6590.6590.6650.665
            
1.600.5650.5720.5720.5780.5780.5850.5850.5910.5910.5970.597
1.700.5080.5140.5140.5200.5200.5260.5270.5320.5330.5380.538
1.800.4590.4650.4650.4700.4700.4760.4760.4820.4820.4870.487
1.900.4160.4220.4220.4270.4270.4320.4320.4380.4380.4430.443
2.000.3790.3840.3840.3890.3890.3940.3940.3990.3990.4040.404

ElementRa2+Ac3+U3+U4+U6+
Z8889929292
Method*DS*DS*DS*DS*DS
(sin [\theta])λ−1)     
0.00     
0.01     
0.02     
0.03     
0.0440.0454.0054.0268.1596.83
0.0529.1937.7837.8146.5664.49
      
0.0623.2328.9128.9534.8046.89
0.0719.5723.5323.5727.6736.26
0.0817.1419.9820.0323.0129.33
0.0915.4217.5117.5719.7824.56
0.1014.1215.7015.7617.4421.12
      
0.1113.1114.3114.3915.6718.55
0.1212.29113.21713.30014.29616.573
0.1311.60212.32412.41613.19215.010
0.1411.00811.57711.67912.28713.749
0.1510.48610.93911.05011.52812.709
      
0.1610.01810.38210.50310.87911.837
0.179.5929.88910.01810.31411.093
0.189.2009.4469.5839.81610.451
0.198.8369.0429.1889.3719.889
0.208.4958.6718.8248.9679.391
      
0.227.8738.0088.1748.2618.544
0.247.3157.4277.6027.6557.843
0.257.0577.1617.3407.3807.534
0.266.8116.9097.0917.1227.247
0.286.3556.4446.6296.6476.729
0.305.9406.0226.2086.2196.273
      
0.325.5635.6395.8245.8305.865
0.345.2195.2915.4725.4755.497
0.355.0595.1285.3075.3095.327
0.364.9064.9735.1495.1515.164
0.384.6214.6834.8534.8534.861
0.404.3604.4174.5804.5804.584
      
0.424.1224.1744.3294.3284.330
0.443.9043.9514.0984.0974.096
0.453.8013.8473.9893.9883.987
0.463.7033.7473.8853.8833.881
0.483.5183.5583.6883.6863.683
0.503.3483.3853.5063.5043.500
      
0.552.9753.0053.1073.1063.100
0.602.6642.6892.7762.7742.768
0.652.4002.4212.4962.4942.489
0.702.1742.1932.2582.2562.252
0.801.8081.8241.8751.8741.872
0.901.5271.5411.5831.5821.582
1.001.3071.3191.3541.3541.354
      
1.101.1321.1421.1711.1721.172
1.200.9910.9991.0241.0251.025
1.300.8740.8820.9040.9040.905
1.400.7780.7840.8040.8040.804
1.500.6960.7020.7200.7200.720
      
1.600.6260.6320.6480.6480.648
1.700.5660.5710.5860.5860.586
1.800.5130.5180.5330.5330.533
1.900.4670.4720.4860.4860.486
2.000.4270.4310.4440.4440.444

By the use of Poisson's equation relating the potential and charge-density distributions, it is possible to derive the Mott–Bethe formula for [f^B(s)] in terms of the atomic scattering factors for X-rays, [f_x(s)]: [f^B(s)=2\pi{me^2\over h^2\varepsilon_0}\{Z-f_x(s)\}/s^2, \eqno (4.3.1.14)]where [\varepsilon_0] is the permittivity of vacuum, or [f^B(s)=0.023934\, \lambda^2\{Z-f_x(s)\}/\sin^2\theta \eqno (4.3.1.15)][for λ in Å, [f^B(s)] in Å, and [f_x(s)] in electron units]. This was used for the other listed [f^B(s)] values.

4.3.1.3. Approximations of restricted validity

| top | pdf |

  • (a) Kinematical approximation. In the limiting case of a vanishingly weak interaction of the incident electrons with the scattering potential of the crystal, the Born series (4.3.1.5)[link] may be terminated at the term [\psi_1], corresponding to single scattering. Then the diffracted wave is given for a potential [\varphi(r)] as [\psi({\bf s})(\exp-ikR)/R], with [\psi({\bf s})=K\textstyle\int\limits\varphi({\bf r})\exp\{i[{\bf r}\cdot{\bf s}]\}\,{\rm d}\tau_{\bf r},\eqno (4.3.1.16)]where R is the distance to the point of observation. For a periodic potential, [\varphi({\bf r})], the scattering amplitude for the h beam is [\psi({\bf h})=NK\textstyle\int\limits\varphi({\bf r})\exp\{2\pi i{\bf h}\cdot{\bf r}\}\,{\rm d}\tau_{\bf r},\eqno (4.3.1.17)]where the integral is taken over one unit cell and N is the number of unit cells. From (4.3.1.16)[link], it then follows that the scattering amplitude [\psi({\bf h})] is proportional to the structure amplitude, [V({\bf h})]; [\eqalignno{ \psi({\bf h}) &=NKV(h) &(4.3.1.18)\cr &=NK\textstyle\sum\limits_i\,f_{{\rm el},i}({\bf h})\exp\{2\pi i{\bf h}\cdot {\bf r}_i\}. &(4.3.1.19)}%fd4.3.1.19]The intensity of the h diffracted beam is then proportional to [\psi({\bf h})\psi^*({\bf h})], and so to [|V({\bf h})|{}^2].

    Similarly, we may write the differential scattering cross section for the scattering from a single isolated atom as [|\,f^B(s)|{}^2=K^2|V_i(s)|{}^2.\eqno (4.3.1.20)]

  • (b) Two-beam approximation. For some specific orientations of a crystal of relatively simple structure, the incident beam may be close to the Bragg angle for a strong, inner reflection but not for any other reflection. Then the approximation may be made that only those beams with indices 0 and h have appreciable intensity. The intensities of these beams for a parallel-sided, plate-shaped, centrosymmetric crystal are given in MacGillavry's (1940[link]) development of the theory of Bethe (1928[link]) as [I({\bf h})=I_0\{\sigma V({\bf h})\}^2{\sin^2\{\pi t(\zeta^2_{\bf h}+\xi^{-2}_{\bf h})^{1/2}\}\over \pi^2(\zeta^2_{\bf h}+\xi^{-2}_{\bf h})}\eqno (4.3.1.21)]and [I({\bf 0})=I_0-I({\bf h})], where [I_0] is the incident-beam intensity, t is the crystal thickness, [\xi_{\bf h}] is the extinction distance given by [\xi_{\bf h}=\pi/\sigma V({\bf h})], and [\zeta_{\bf h}] is the excitation error which measures the distance of the reciprocal-lattice point h from the Ewald sphere.

    A formula due to Blackman (1939[link]), obtained by integrating (4.3.1.21)[link] over [\xi_{\bf h}], provides a useful first approximation for the intensities of ring or arc patterns given by polycrystalline material (see Section 2.5.2[link] ).

  • (c) Phase-grating approximations. For extremely thin crystals, the scattering can be approximated by that of a two-dimensional potential distribution given by projection of the three-dimensional distribution in the beam direction. Then, by analogy with (4.3.1.6)[link], the emerging wave is [\psi(xy)=\exp\{-i\sigma\varphi(xy)\}\eqno (4.3.1.22)]when [\varphi(xy)=\textstyle\int\limits^H_0\varphi(xyz)\,{\rm d} z\eqno (4.3.1.23)]and the diffraction amplitudes are given by the Fourier transform of this expression.

    For thicker crystals, this approximation applies in the limit of very high electron-accelerating voltage, with the value of σ appropriate for the Compton wavelength, λ = 0.024262 Å, viz σ = 0.0005068.

    It may be noted that for the special case of a single layer of atoms the solution of the wave equations (4.3.1.2)[link] or (4.3.1.4)[link], with the real potential (4.3.1.1)[link] inserted, leads to a form equivalent to the Moliere high-energy approximation for the scattering by single atoms, namely [KV(s)=-{i\over\lambda} \int\limits^\infty_{-\infty}\, \{\exp[-i \sigma\varphi({\boldrho})]-1\}\exp\{i{\boldrho}\cdot{\bf s}\}\,{\rm d}^2{\boldrho},\eqno (4.3.1.24)]where [\boldrho] is a two-dimensional vector with components x, y, and [\varphi({\boldrho})=\textstyle\int\limits^\infty_{-\infty}\,\varphi({\boldrho},z)\,{\rm d} z,\eqno (4.3.1.25)]and this, in the low-angle approximation, is the same as (4.3.1.23)[link]. Then the scattered amplitude can be considered as made up from contributions from individual atoms that are equal (apart from bonding effects) to the complex atomic scattering amplitudes tabulated in connection with the diffraction of electrons by gases.

4.3.1.4. Relativistic effects

| top | pdf |

It has been shown by Fujiwara (1961[link]) that, at least for electron energies up to 1 MeV or so, the relativistic effects on diffraction amplitudes and geometry are adequately described by the use of relativisitically corrected values for the mass and wavelength of the electrons; [m=m_0(1-\beta^2)^{-1/2} \eqno (4.3.1.26)] [\eqalignno{ \lambda&= h\bigg/\left[2em_0E\left(1+{eE\over2m_0c^2}\right)\right]^{1/2} =\lambda_c{(1-\beta^2)^{1/2}\over\beta} \cr &=12.2639/(E+0.97845\times10^{-6}\,E^2)^{1/2}, &(4.3.1.27)}]where [m_0] is the rest mass, [\lambda_c] is the Compton wavelength [\beta=\nu/c], and λ is given in Å if E is in volts. Consequently, σ varies with the incident electron energy as [[1+h^2/m^2_0c^2\lambda^2)]^{1/2}], or [\sigma=2\pi/\{\lambda E[1+(1-\beta^2)^{1/2}]\}.]Values of λ, [\lambda^{-1},m/m_0,] β = ν/c, and σ are listed for various values of the accelerating voltage, E, in Table 4.3.2.1[link] with λ in Å and E in volts.

Table 4.3.2.1| top | pdf |
Parameters useful in electron diffraction as a function of accelerating voltage, E

E (keV)λ1/λ [m/m_0] v/c σ
10.3876292.579791.001960.062470.0081126
20.2739613.650161.003910.088210.0057448
30.2235794.472701.005870.107880.0046975
40.1935305.167151.007830.124390.0040741
50.1730155.779861.009780.138870.0036493
      
60.1578636.334601.011740.151910.0033361
70.1460826.845481.013700.163840.0030931
80.1365817.321681.015660.174900.0028975
90.1287077.769581.017610.185240.0027358
100.1220438.193831.019570.194980.0025991
      
150.09940710.059631.029350.237110.0021374
200.08588211.643831.039140.271860.0018641
250.07663213.049401.048920.301840.0016790
300.06978914.328991.058710.328370.0015433
350.06445915.513811.068490.352270.0014386
      
400.06015316.624141.078280.374060.0013548
450.05658017.674031.088060.394100.0012859
500.05355118.673661.097840.412680.0012280
550.05094119.630721.107630.430000.0011786
600.04865920.551151.117410.446220.0011357
      
650.04664221.439681.127200.461470.0010982
700.04484322.300121.136980.475860.0010650
750.04322323.135601.146770.489480.0010354
800.04175623.948741.156550.502390.0010087
850.04041824.741731.166340.514670.0009847
      
900.03919025.516461.176120.526370.0009628
950.03806026.274541.185910.537540.0009428
1000.03701327.017381.195690.548220.0009244
1200.03349129.858661.234830.586670.0008638
1400.03073932.532221.273970.619560.0008180
      
1600.02850935.076421.313100.648100.0007820
1800.02665437.517591.352240.673140.0007529
2000.02507939.874661.391380.695310.0007289
2500.02198645.484121.489220.741010.0006839
3000.01968750.795171.587070.776520.0006526
      
3500.01789155.892951.684910.804830.0006297
4000.01643960.831091.782760.827860.0006122
4500.01523365.645631.880600.846910.0005984
5000.01421270.361951.978450.862860.0005873
5500.01333474.998582.076290.876380.0005783
      
6000.01256879.569452.174140.887940.0005707
6500.01189384.085292.271980.897930.0005644
7000.01129288.554522.369830.906610.0005590
7500.01075592.983852.467670.914210.0005543
8000.01026997.378742.565520.920910.0005503
      
8500.009829101.743642.663360.926840.0005468
9000.009427106.082262.761210.932120.0005437
9500.009058110.397692.859050.936840.0005410
10000.008719114.692562.956900.941080.0005385
11000.008115123.229193.152590.948360.0005344
      
12000.007593131.706463.348280.954360.0005310
13000.007136140.135163.543970.959360.0005282
14000.006733148.523553.739660.963580.0005259
15000.006374156.878103.935350.967180.0005240

4.3.1.5. Absorption effects

| top | pdf |

Any scattering process, whether elastic or inelastic, which removes energy from the set of diffracted beams being considered, may be said to constitute an absorption process. For example, for a measurement of the intensities of the elastically scattered, sharp Bragg reflections from a crystal, any process which gives diffuse background scattering or results in a detectable loss of energy gives rise to absorption.

The diffracted amplitudes in such cases may be calculated, at least as a first approximation, in terms of a complex potential, [\varphi_c({\bf r})], containing an imaginary part [\varphi_i(r)] due to an `absorption function' and a small added real part [\Delta\varphi(r)]. Then under the crystallographic sign convention, [\varphi_c(r)=\varphi(r)-i\varphi_i(r)+\Delta\varphi(r)]. Correspondingly, for a centrosymmetric crystal, the structure amplitude becomes complex and may be written [V({\bf h})=V_0({\bf h})-iV'({\bf h})+V''({\bf h}).\eqno (4.3.1.28)]Under the appropriate conditions of observation, important contributions to the imaginary and real additions to the structure amplitudes may be given by the excitation of phonons, plasmons, or electron transitions, or by diffuse scattering due to crystal defects or disorder.

The additional terms [iV'({\bf h})] and [V''({\bf h})], however, are not invariant properties of the crystal structure but depend on the conditions of the diffraction experiment, such as the accelerating voltage and orientation of the incident beam, the aperture or resolution of the recording system, and the use of energy filtering or discrimination. In spite of this, it may often be convenient to treat them as being produced by phenomenological complex potentials, defined for a limited range of experimental conditions.

4.3.1.6. Tables of atomic scattering amplitudes for electrons

| top | pdf |

Tables 4.3.1.1[link] and 4.3.1.2[link] list values of [f^B(s)] in Å for all neutral atoms and most chemically significant ions, respectively. The values have been given by Doyle & Turner (1968[link]) for several cases, denoted by RHF using the relativistic Hartree–Fock atomic potentials of Coulthard (1967[link]). For all other atoms and ions, [f^B(s)] has been found using the Mott–Bethe formula [equation (4.3.1.15)[link]] for [s\neq0], and the X-ray scattering factors of Table 2.2A of IT IV (1974[link]). Thus all other neutral atoms except hydrogen are based on the relativistic Hartree–Fock wavefunctions of Mann (1968[link]). These are designated by *RHF. For H and for ions below Rb, denoted by HF, [f^B(s)] is ultimately based on the nonrelativistic Hartree–Fock wavefunctions of Mann (1968[link]). For ions above Rb, denoted by *DS, modified relativistic Dirac–Slater wavefunctions calculated by Cromer & Waber (1974[link]) are used.

For low values of s, the Mott formula becomes less accurate, since [[Z-f_x(s)]] tends to zero with s for neutral atoms. Except for the RHF atoms, [f^B(s)] for s from 0.01 to 0.03 are omitted in Table 4.3.1.1[link] and for s from 0.04 to 0.11, only two decimal places are given. [f^B(s)] is then accurate to the figure quoted. For these atoms, [f^B(0)] was found using the formula given by Ibers (1958[link]): [f^B(0)={4\pi me^2\over 3h^2}Z\langle r^2\rangle, \eqno (4.3.1.29)]where [\langle r^2\rangle] is the mean-square atomic radius.

For ionized atoms, [f_{\rm el}(0)=\pm\infty]. The values listed at s = 0 in Table 4.3.1.2[link] for RHF atoms were calculated by Doyle & Turner (1968[link]) with [\varphi(r)] in equation (4.3.1.13)[link] replaced by [\varphi'({\bf r})], where [\varphi'({\bf r})=\varphi({\bf r})-e\Delta Z/r. \eqno (4.3.1.30)]Here, [\Delta Z] is the ionic charge. This approach omits the Coulomb field due to the excess or deficiency of charge on the nucleus. With the use of these values, the structure factor for forward scattering by a neutral unit cell containing ions may be found in the conventional way. Similar values are not available for other ions because the atomic potential data are lacking.

For computer applications, numerical approximations to the f(s) of these tables have been given by Doyle & Turner (1968[link]) as sums of Gaussians for the range s = 0 to 2 Å−1. An alternative is to make Gaussian fits to X-ray scattering factors, then use the Mott formula to derive electron scattering factors. As discussed by Peng & Cowley (1988[link]), this practice may lead to problems for small values of s. An additional problem occurs in high-resolution electron-microscopy (HREM) image-simulation programs, where it is usually necessary to have electron scattering factors for the range 0 to 6 Å−1. Fox, O'Keefe & Tabbernor (1989[link]) point out that extrapolation of the Gaussian fits of Doyle & Turner (1968[link]) to values past 2 Å−1 can be highly inaccurate. For the range of s from 2 to 6 Å−1, Fox et al. have used sums of polynomials to make accurate fits to the X-ray scattering factors of Doyle & Turner (1968[link]) for many elements (Section 6.1.1[link] ), and electron scattering factors can be generated from these data by use of the Mott formula.

Recently, Rez, Rez & Grant (1994[link]) have published new tables of X-ray scattering factors obtained using a multiconfiguration Dirac–Fock code and two parameterizations in terms of four Gaussians, one of higher accuracy over the range of about 2 Å−1 and the other of lower accuracy over the extended range of about 6 Å−1. These authors suggest that electron scattering factors may best be obtained from these X-ray scattering factors by using the Mott formula. They provide a table of values for the electron scattering factor values for zero scattering angle, [f_{\rm el}(0)], for many elements and ions, which may be of value for the calculation of mean inner potentials.

4.3.1.7. Use of Tables 4.3.1.1[link] and 4.3.1.2[link]

| top | pdf |

In order to calculate the Fourier coefficients V(h) of the potential distribution [\varphi ({\bf r})], for insertion in the formulae used to calculate intensities [such as (4.3.1.6)[link], (4.3.1.20)[link], (4.3.1.21)[link]], or in the numerical methods for dynamical diffraction calculations, use [{V}({\bf h})({\rm in\ volts})=47.87801\Phi ({\bf h})/\Omega, \eqno (4.3.1.31)]where [\Phi ({\bf h})=\textstyle\sum\limits_i f_i\exp \{2\pi i\ {\bf h}\cdot {\bf r}_i\}. \eqno (4.3.1.32)]The [f_i] values are obtained from Tables 4.3.1.1[link] and 4.3.1.2[link], and [\Omega] is the unit-cell volume in Å3. The V(h) and the [f_i] tabulated are properties of the crystal structure and the isolated atoms, respectively, and are independent of the particular scattering theory assumed.

Expressions for the calculation of intensities in the kinematical approximation are given for powder patterns and oblique texture patterns in Section 2.5.4[link] , and for thin crystal plates in Section 2.5.2[link] of Volume B (IT B, 2001[link]). Since the formulas for kinematical scattering, such as (4.3.1.19)[link] and (4.3.1.20)[link], include the parameter K = σ /λ, which varies with the energy of the electron beam through relativistic effects, it may be considered that the electron scattering factors for kinematical calculations should be multiplied by relativistic factors.

For high-energy electrons, the relativistic variations of the electron mass, the electron wavelength and the interaction constant, σ, become significant. The relations are [\eqalignno{ m &=m_0(1-\beta ^2)^{-1/2}, \cr \lambda &=h\left [2em_0E\left (1+{eE \over 2m_0c^2}\right) \right] ^{-1/2} \cr &=\lambda _c {(1-\beta ^2)^{1/2}\over\beta}, & (4.3.1.33)}]where [m_0] is the rest mass, [\lambda _c] is the Compton wavelength, [h/m_0c ], and [\beta =v/c]. Consequently, [\sigma ] varies with the incident electron energy as [\eqalignno{ \sigma &=2\pi /\{\lambda E[1+(1-\beta ^2){}^{1/2}]\} \cr &=2\pi e/hc\beta . & (4.3.1.34)}]

For the calculation of intensities in the kinematical approximation, the values of [f^B(s)] listed in Tables 4.3.1.1 and 4.3.1.2, which were calculated using [m_0], must be multiplied by [m/m_0=(1-\beta ^2){}^{-1/2}] for electrons of velocity v. Values of λ, 1/λ, [m/m_0], β = v/c, and σ are listed for various values of the accelerating voltage, E, in Table 4.3.2.1[link].

4.3.2. Parameterizations of electron atomic scattering factors

| top | pdf |
J. M. Cowley,b L. M. Peng,i G. Ren,j S. L. Dudarevc and M. J. Whelanc

For computer applications, numerical approximations to the f(s) of Tables 4.3.1.1[link] or 4.3.1.2[link] are usually preferred and various approximations as sums of Gaussians have been proposed. The initial Gaussian fits were given by Doyle & Turner (1968[link]) for the range s = 0 to 2 Å−1. However, for some purposes, as in the image-simulation programs for high-resolution electron microscopy, atomic scattering factors are needed for higher s values, up to 6 Å−1, and, as pointed out by Fox, O'Keefe & Tabbernor (1989[link]), extrapolation of the Gaussian fits of Doyle & Turner to values above 2 Å−1 can be highly inaccurate.

An alternative approach to obtaining numerical values for the electron scattering factors is to make use of the polynomial fits to X-ray scattering factors of Fox et al. or the more recent tables of X-ray scattering factors produced by Rez, Rez & Grant (1994[link]), who used a multiconfiguration Dirac–Fock code and two parameterizations in terms of four Gaussians, one of higher accuracy over the range of about 2 Å−1 and the other of lower accuracy over the extended range of about 6 Å−1. The electron scattering factors may then be derived from the X-ray scattering factors by use of the Mott formula (4.3.1.14)[link]. For small angles of scattering, the determination of electron scattering factors in this way may give problems, since the X-ray scattering factor tends to the atomic number, and both the numerator and denominator of (4.3.1.14)[link] tend to zero. However, the electron scattering factor may be determined for zero scattering angle using equation (4.3.1.29)[link] and Rez, Rez & Grant (1994[link]) listed values of [f_{\rm {el}}(0)] for many elements and ions.

Recently, Peng, Ren, Dudarev & Whelan (1996[link]) have developed a new algorithm, based on a combined modified simulated-annealing and least-squares method, to parameterize both the elastic and absorptive scattering factors as sums of five Gaussians of the form [ f_{\rm {el}} (s) =\textstyle \sum \limits _{i=1}^n a_i\exp (-b_is^2), \eqno (4.3.2.1)]where [a_i] and [b_i] are fitting parameters. The values of their fitting parameters for the range of s values from 0 to 2.0 for elastic electron scattering factors for all neutral atoms with atomic numbers up to 98 are given in Table 4.3.2.2[link] and the values obtained separately for these atoms for the range of s from 0 to 6.0 Å−1 are given in Table 4.3.2.3[link]. For Table 4.3.2.2[link], the fitting was made to the values of f given in Table 4.3.1.1[link]. For Table 4.3.2.3[link], the f values in the range of s from 2.0 to 6.0 Å−1 were those obtained by using the Mott formula to convert the X-ray scattering factors derived from the Dirac–Fock calculations of Rez, Rez & Grant (1994[link]). Similar tables for atomic scattering factors of ions can be found in Peng (1998[link]).

Table 4.3.2.2| top | pdf |
Elastic atomic scattering factors of electrons for neutral atoms and s up to 2.0 Å−1

Element Z [a_1] [a_2] [a_3] [a_4] [a_5] [b_1] [b_2] [b_3] [b_4] [b_5]
H 10.03490.12010.19700.05730.11950.53473.586712.347118.952538.6269
He20.03170.08380.15260.13340.01640.25071.47514.493812.664631.1653
Li30.07500.22490.55481.49540.93540.38642.938315.382953.5545138.7337
Be40.07800.22100.67401.38670.69250.31312.238110.151730.906178.3273
B50.09090.25510.77381.21360.46060.29952.11558.381624.129263.1314
            
C60.08930.25630.75701.04870.35750.24651.71006.409418.611350.2523
N70.10220.32190.79820.81970.17150.24511.74816.192517.389448.1431
O80.09740.29210.69100.69900.20390.20671.38154.694312.710532.4726
F90.10830.31750.64870.58460.14210.20571.34394.278811.393228.7881
Ne100.12690.35350.55820.46740.14600.22001.37794.02039.493423.1278
            
Na110.21420.68530.76921.65891.44820.33342.344610.083048.3037138.2700
Mg120.23140.68660.96772.18821.13390.32782.272010.924139.2898101.9748
Al130.23900.65731.20112.55861.23120.31382.106310.416334.455298.5344
Si140.25190.63721.37952.50821.05000.30752.01749.674629.374480.4732
P 150.25480.61061.45412.32040.84770.29081.87408.517624.343463.2996
            
S 160.24970.56281.38992.18650.77150.26811.67117.026719.537750.3888
Cl170.24430.53971.39192.01970.66210.24681.52426.153716.668742.3086
Ar180.23850.50171.34281.88990.60790.22891.36945.256114.092835.5361
K 190.41151.40312.27842.67422.21620.37033.387413.102968.9592194.4329
Ca200.40541.38802.16023.75322.20630.34993.099111.960853.9353142.3892
            
Sc210.37871.21812.05943.26182.38700.31332.58569.581341.7688116.7282
Ti220.38251.25982.00083.06172.06940.30402.48639.278339.0751109.4583
V 230.38761.27501.91092.83141.89790.29672.37808.798135.9528101.7201
Cr240.40461.36961.89412.08001.21960.29862.39589.140637.4701113.7121
Mn250.37961.20941.78152.54201.59370.26992.04557.472631.060491.5622
            
Fe260.39461.27251.70312.31401.47950.27172.04437.600729.971486.2265
Co270.41181.31611.64932.19301.28300.27422.03727.720529.968084.9383
Ni280.38601.17651.54512.07301.38140.24781.76606.310725.220474.3146
Cu290.43141.32081.52361.46710.85620.26941.92237.347428.989290.6246
Zn300.42881.26461.44721.82941.09340.25931.79986.750025.586073.5284
            
Ga310.48181.40321.65612.46051.10540.28251.97858.754632.523898.5523
Ge320.46551.30141.60882.69981.30030.26471.79267.607126.554177.5238
As330.45171.22291.58522.79581.26380.24931.64366.815422.368162.0390
Se340.44771.16781.58432.80871.19560.24051.54426.323119.461052.0233
Br350.47981.19481.86952.69530.82030.25041.59636.965319.849250.3233
            
Kr360.45461.09931.76962.70680.86720.23091.42795.944916.675242.2243
Rb371.01602.85283.5466−7.780412.11480.48535.092525.7851130.4515138.6775
Sr380.67031.49263.33684.46003.15010.31902.228710.350452.3291151.2216
Y 390.68941.54743.24504.21262.97640.31892.290410.006244.0771125.0120
Zr400.67191.46843.16683.95572.89200.30362.12498.923636.8458108.2049
            
Nb410.61231.26773.03483.38412.36830.27091.76837.248927.946598.5624
Mo420.67731.47983.17883.08241.83840.29202.06068.112930.5336100.0658
Tc430.70821.63923.19933.43271.87110.29762.21068.524633.145696.6377
Ru440.67351.49343.09662.72541.55970.27731.97167.324926.689190.5581
Rh450.64131.36902.98542.69521.54330.25801.77216.385423.254985.1517
            
Pd460.59041.17752.65192.28750.86890.23241.50195.159115.542846.8213
Ag470.63771.37902.82942.36311.45530.24661.69745.765620.094376.7372
Cd480.63641.42472.78022.59731.78860.24071.68235.658820.721969.1109
In490.67681.65892.77403.18352.13260.25221.85456.293625.145784.5448
Sn500.72241.96102.71613.56031.89720.26512.06047.301127.549381.3349
            
Sb510.71061.92472.61493.83221.88990.25621.96466.885224.764868.9168
Te520.69471.86902.53564.00131.89550.24591.85426.441122.173059.2206
I 530.70471.94842.59404.15261.50570.24551.86386.763921.800756.4395
Xe540.67371.79082.41294.21001.70580.23051.68905.821818.392847.2496
Cs551.27043.80185.66180.92054.81050.43564.205823.4342136.7783171.7561
            
Ba560.90492.60764.84985.16034.73880.30662.436312.182154.6135161.9978
La570.84052.38634.61395.15144.79490.27912.141010.340041.9148132.0204
Ce580.85512.39154.57725.02784.51180.28052.120010.180842.0633130.9893
Pr590.90962.53134.52664.63764.36900.29392.247110.826648.8842147.6020
Nd600.88072.41834.44484.68584.17250.28022.083610.035747.4506146.9976
            
Pm610.94712.54634.35234.47893.90800.29772.227610.576249.3619145.3580
Sm620.96992.58374.27784.45753.59850.30032.244710.648750.7994146.4179
Eu630.86942.24133.91963.96944.54980.26531.85908.399836.7397125.7089
Gd640.96732.47024.11484.49723.20990.29092.10149.706743.4270125.9474
Tb650.93252.36733.87913.96743.79960.27611.95118.929641.5937131.0122
            
Dy660.95052.37053.82184.04713.44510.27731.94698.886243.0938133.1396
Ho670.92482.24283.61823.79103.79120.26601.81837.965533.1129101.8139
Er681.03732.48243.65583.89253.00560.29442.07979.415645.8056132.7720
Tm691.00752.37873.54403.69323.17590.28161.94868.716241.8420125.0320
Yb701.03472.39113.46193.65563.00520.28551.96798.761942.3304125.6499
            
Lu710.99272.24363.35543.78133.09940.27011.80737.811234.4849103.3526
Hf721.02952.29113.41103.94972.49250.27611.86258.096134.271298.5295
Ta731.01902.22913.40973.92522.26790.26941.79627.694431.094291.1089
W 740.98532.11673.35703.79812.27980.25691.67457.009826.923481.3910
Re750.99142.08583.45313.88121.85260.25481.65186.884526.723481.7215
            
Os760.98132.03223.36653.62351.97410.24871.59736.473723.281770.9254
Ir771.01942.06453.44253.49141.69760.25541.64756.596623.226970.0272
Pt780.91481.80963.21343.29531.57540.22631.38135.324317.598760.0171
Au790.96741.89163.39933.05241.26070.23581.47125.675818.711961.5286
Hg801.00331.94693.43963.15481.41800.24131.52985.800919.452060.5753
            
Tl811.06892.10383.60393.49271.82830.25401.67156.350923.153178.7099
Pb821.08912.18673.61603.80311.89940.25521.71746.513123.917074.7039
Bi831.10072.23063.56894.15492.03820.25461.73516.494823.646470.3780
Po841.15682.43533.64594.40641.71790.26481.87867.174925.176669.2821
At851.09092.19763.38314.67002.12770.24661.67076.019720.765757.2663
            
Rn861.07562.16303.31784.88522.04890.24021.61695.764419.456852.5009
Fr871.42823.50815.67674.19643.89460.31832.688913.481654.3866200.8321
Ra881.31273.12435.29885.38915.41330.28872.289710.827643.5389145.6109
Ac891.31283.10215.33855.96114.75620.28612.250910.528741.7796128.2973
Th901.25532.91785.08626.12064.71220.27012.06369.305134.5977107.9200
            
Pa911.32183.14445.43715.64444.01070.28272.225010.245441.1162124.4449
U 921.33823.20435.45585.48393.63420.28382.245210.251941.7251124.9023
Np931.51934.00536.5327−.14026.74890.32132.820614.887868.910381.7257
Pu941.35173.29375.32134.64663.57140.28132.24189.995242.7939132.1739
Am951.21352.79624.75454.57314.47860.24831.84377.542129.3841112.4579
            
Cm961.29373.11005.03934.75463.50310.26382.03418.710135.2992109.4972
Bk971.29153.10234.93094.60093.46610.26112.00238.437734.1559105.8911
Cf981.20892.73914.34824.00474.64970.24211.74876.726223.215380.3108

Table 4.3.2.3| top | pdf |
Elastic atomic scattering factors of electrons for neutral atoms and s up to 6.0 Å−1

ElementZ[a_1][a_2][a_3][a_4][a_5][b_1][b_2][b_3][b_4][b_5]
H10.00880.04490.14810.23560.09140.11521.08674.975516.559143.2743
He20.00840.04430.13140.16710.06660.05960.53602.42747.785220.3126
Li30.04780.20480.52531.52250.98530.22582.103212.934950.7501136.6280
Be40.04230.18740.60191.43110.78910.14451.41808.116527.970574.8684
B50.04360.18980.67881.32730.55440.12071.15956.247421.046059.3619
            
C60.04890.20910.75371.14200.35550.11401.08255.428117.881151.1341
N70.02670.13280.53011.10200.42150.05410.51652.820710.629734.3764
O80.03650.17290.58050.88140.31210.06520.61842.94499.629828.2194
F90.03820.18220.59720.77070.21300.06130.57532.68588.821425.6668
Ne100.03800.17850.54940.69420.19180.05540.50872.26397.331621.6912
            
Na110.12600.64420.88931.81971.29880.16841.71508.838650.8265147.2073
Mg120.11300.55750.90462.15801.47350.13561.35796.925532.316592.1138
Al130.11650.55041.01792.62951.57110.12951.26196.824228.457788.4750
Si140.05670.33650.81042.49602.11860.05820.61553.252216.792957.6767
P150.10050.46151.06632.58541.27250.09770.90844.965418.547154.3648
            
S160.09150.43121.08472.46711.08520.08380.77884.346215.584644.6365
Cl170.07990.38911.00372.33321.05070.06940.64433.535112.505835.8633
Ar180.10440.45511.42322.15330.44590.08530.77014.468414.586441.2474
K190.21490.87032.49992.35913.03180.16601.69068.744746.7825165.6923
Ca200.23550.99162.39593.72522.56470.17421.83298.840747.4583134.9613
            
Sc210.46362.08022.90031.41932.43230.36824.031222.649371.8200103.3691
Ti220.21230.89602.17653.04362.44390.13991.45686.753433.1168101.8238
V230.23691.07742.18943.08251.71900.15051.63927.569136.8741107.8517
Cr240.19700.82282.02002.17171.75160.11971.19855.409725.236194.4290
Mn250.19430.81901.92962.49682.06250.11351.13135.034124.179880.5598
            
Fe260.19290.82391.86892.36941.90600.10871.08064.763722.850076.7309
Co270.21860.98611.85402.32581.46850.11821.23005.417725.760280.8542
Ni280.23131.06571.82292.26091.18830.12101.26915.687027.091783.0285
Cu290.35011.65581.95820.21341.41090.18671.991711.339653.261963.2520
Zn300.17800.80961.67441.94991.44950.08760.86503.861218.872664.7016
            
Ga310.21350.97681.66692.56621.67900.10201.02194.627522.874280.1535
Ge320.21350.97611.65552.89381.63560.09890.98454.552721.556370.3903
As330.20590.95181.63723.04901.47560.09260.91824.329119.299658.9329
Se340.15740.76141.48343.00161.79780.06860.68083.116314.345844.0455
Br350.18990.89831.63583.18451.15180.08100.79573.905415.770145.6124
            
Kr360.17420.84471.59443.15071.13380.07230.71233.519213.772439.1148
Rb370.37811.49043.57533.00313.32720.15571.53479.994751.4251185.9828
Sr380.37231.45983.51244.46123.30310.14801.46439.232049.8807148.0937
Y390.32341.27373.21154.05633.79620.12441.19487.275634.1430111.2079
Zr400.29971.18793.10753.97403.57690.11211.06386.389128.708197.4289
            
Nb410.16800.93702.73003.81503.00530.05970.65244.431719.554085.5011
Mo420.30691.17143.22933.42542.12240.11011.02225.961325.196593.5831
Tc430.29281.12673.16753.66192.59420.10200.94815.471323.815382.8991
Ru440.26041.04423.07613.21751.94480.08870.82404.827819.897780.4566
Rh450.27131.05563.14163.04511.71790.09070.83244.770219.786280.2540
            
Pd460.20030.87792.61352.85941.02580.06590.61113.556312.763844.4283
Ag470.27391.05033.15642.75431.43280.08810.80284.445118.701179.2633
Cd480.30721.13033.20462.93291.65600.09660.88564.627320.678973.4723
In490.35641.30113.24243.48392.04590.10911.04525.090024.657888.0513
Sn500.29661.11573.09733.81562.52810.08960.82684.224220.690071.3399
            
Sb510.27251.06512.99404.06972.56820.08090.74883.871018.880060.6499
Te520.24220.96922.81144.15092.81610.07080.64723.360916.075250.1724
I530.26171.03252.80974.48092.31900.07490.69143.463416.360348.2522
Xe540.23340.94962.63814.46802.50200.06550.60503.038914.080941.0005
Cs550.57132.48664.97954.01984.44030.16261.821311.104949.0568202.9987
            
Ba560.52292.28744.72435.08075.63890.14341.60199.451142.7685148.4969
La570.54612.38565.06535.76014.04630.14791.655210.005947.3245145.8464
Ce580.22271.07602.94825.84967.18340.05710.59463.202216.425395.7030
Pr590.52372.29134.61614.72334.81730.13601.50688.821341.9536141.2424
Nd600.53682.33014.60584.66214.46220.13781.51408.871943.5967141.8065
            
Pm610.52322.26274.45524.47874.50730.13171.43368.308740.6010135.9196
Sm620.51622.23024.34494.35984.42920.12791.38117.962939.1213132.7846
Eu630.52722.28444.33614.31784.09080.12851.39438.108140.9631134.1233
Gd640.96643.40525.08031.49914.25280.26412.658616.221380.206092.5359
Tb650.51102.15704.03083.99364.24660.12101.27047.136835.0354123.5062
            
Dy660.49742.10973.89063.81004.30840.11571.21086.737732.4150116.9225
Ho670.46791.96933.71913.96324.24320.10691.09945.976927.149196.3119
Er680.50342.10883.82323.72993.89630.11411.17696.608733.4332116.4913
Tm690.48392.02623.68513.58744.00370.10811.10126.111430.3728110.5988
Yb700.52212.16953.75673.66853.42740.11481.18606.752035.6807118.0692
            
Lu710.46801.94663.54283.84903.65940.10151.01955.605827.489995.2846
Hf720.40481.73703.33993.94483.72930.08680.85854.637821.690080.2408
Ta730.38351.67473.29864.04623.43030.08100.80204.354519.964473.6337
W740.36611.61913.24554.08563.20640.07610.75434.095218.288668.0967
Re750.39331.69733.42024.12742.61580.08060.79724.423719.569268.7477
            
Os760.38541.65553.41294.11112.41060.07870.76384.244118.370065.1071
Ir770.35101.56203.29464.06152.43820.07060.69043.826616.081258.7638
Pt780.30831.41582.96623.93492.17090.06090.59933.192112.528549.7675
Au790.30551.39452.96173.89902.00260.05960.58273.103511.969347.9106
Hg800.35931.57363.52373.81091.69530.06940.67583.845715.620356.6614
            
Tl810.35111.54893.56764.09002.52510.06720.65223.742015.979165.1354
Pb820.35401.54533.59754.31522.77430.06680.64653.696816.205661.4909
Bi830.35301.52583.58154.55323.07140.06610.63243.590615.996257.5760
Po840.36731.57723.70794.85822.84400.06780.65273.739617.066855.9789
At850.35471.52063.56215.01843.00750.06490.61883.469615.609049.4818
            
Rn860.45861.77813.98775.72731.54600.08310.78404.359920.012862.1535
Fr870.82822.99415.65974.92924.28890.15151.61639.775242.8480190.7366
Ra881.41294.42697.0460−1.05738.64300.29213.138119.6767102.0436113.9798
Ac890.71692.57105.17916.34845.64740.12631.29007.368632.4490118.0558
Th900.69582.49365.12696.69885.07990.12111.22476.939830.0991105.1960
            
Pa911.25024.22847.04891.13905.82220.24152.644216.331373.575791.9401
U920.64102.26434.87135.92875.39350.10971.06445.790725.0261101.3899
Np930.69382.46525.12275.59654.85430.11711.17576.405327.5217103.0482
Pu940.69022.45095.12845.03394.85750.11531.15456.229127.0741111.3150
Am950.75772.72645.41844.81984.10130.12571.30447.103532.4649118.8647
            
Cm960.75672.75655.43645.19183.56430.12391.29797.079832.7871110.1512
Bk970.74922.72675.35215.03693.53210.12171.26516.810131.6088106.4853
Cf980.81003.00015.46354.17563.50660.13101.40387.605734.018690.5226

As an indication of the accuracy with which the parameterized f values of (4.3.2.1)[link] reproduce the numerical values of the reference f values, Peng et al. (1996[link]) computed values of [\varepsilon =100 \sigma /f(0)], where σ is the square root of the mean square deviation, σ2, between the numerical and fitted scattering factors. The values of [\varepsilon] are typically in the range 0.02 to 0.05, and are consistently smaller (with a few exceptions) than the corresponding values given for the parameterizations of previous workers (Weickenmeier & Kohl, 1991[link]; Bird & King, 1990[link]; Doyle & Turner, 1968[link]).

For the absorptive scattering factors, corresponding to the imaginary parts added to the real elastic scattering factors as a consequence of inelastic scattering processes, Peng et al. (1996[link]) have tabulated values for particular elemental crystals and a selection of crystals of compounds having the zinc-blend structure. The main contribution to the absorptive scattering factors arises from the thermal vibrations of the atoms in the crystals so that the numerical values are not characteristic of the individual atom types but depend on the type of bonding of the atoms in the crystal, as indicated by the Debye–Waller factor, and must be calculated separately for each temperature. The authors offer copies of their computer programs, freely available via electronic mail, from which the parameterization of the absorptive scattering factors can be derived for other materials and temperatures, given the values of the atomic numbers of the elements, the Debye–Waller factor and the electron accelerating voltage.

4.3.3. Complex scattering factors for the diffraction of electrons by gases

| top | pdf |
A. W. Ross,d M. Fink,d R. Hilderbrandt,f J. Wangk and V. H. Smith Jrk

4.3.3.1. Introduction

| top | pdf |

This section includes tables of scattering factors of interest for gas-phase electron diffraction from atoms and molecules in the keV energy region. In addition to the tables and a description of their uses, a discussion of the theoretical uncertainties related to the material in the tables is also provided. The tables give scattering factors for elastic and inelastic scattering from free atoms. The theory of molecular scattering based on these atomic quantities is also discussed.

4.3.3.2. Complex atomic scattering factors for electrons

| top | pdf |

4.3.3.2.1. Elastic scattering factors for atoms

| top | pdf |

It has long been known that the first Born approximation provides an inadequate description at the 4% accuracy level for elastic and total differential cross sections in the 40 keV energy range for atoms heavier than Ne (Schomaker & Glauber, 1952[link]; Glauber & Schomaker, 1953[link]). Results of early experimental work have been confirmed for both atomic and molecular scattering (Kimura, Schomaker, Smith & Weinstock, 1968[link]; Bartell & Brockway, 1953[link]; Hanson, 1962[link]; Fink & Kessler, 1966[link]; Geiger, 1964[link]; Kessler, 1959[link]; Seip, 1965[link]; Schäfer & Seip, 1967[link]; Kohl & Bonham, 1967[link]; Bonham & Cox, 1967[link]; Seip & Stølevik, 1966a[link],b[link]; Seip & Seip, 1966[link]; Arnesen & Seip, 1966[link]; McClelland & Fink, 1985[link]; Coffman, Fink & Wellenstein, 1985[link]). New partial wave scattering factors based on relativistic Hartree–Fock fields (Biggs, Mendelsohn & Mann, 1975[link]) are presented here at a number of energies (Table 4.3.3.1[link]). Because of the availability of these partial wave results, first Born approximation results are no longer needed for gas-phase work in this energy range.

Table 4.3.3.1| top | pdf |   interactive version
Partial wave elastic scattering factors for neutral atoms

H; Z = 1.

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
05.3956E−012.1835E−025.7106E−011.1403E−025.8501E−019.6111E−036.0222E−018.2636E−03
14.8779E−012.3657E−025.1682E−011.2341E−025.3150E−011.0363E−025.5125E−018.8468E−03
23.7546E−012.8959E−023.9784E−011.5102E−024.1121E−011.2624E−024.3188E−011.0653E−02
32.6709E−013.7159E−022.8276E−011.9391E−022.9248E−011.6207E−023.0790E−011.3658E−02
41.8733E−014.7280E−021.9824E−012.4676E−022.0522E−012.0617E−022.1554E−011.7432E−02
51.3383E−015.8258E−021.4159E−013.0404E−021.4658E−012.5411E−021.5436E−012.1443E−02
69.8468E−026.9249E−021.0417E−013.6134E−021.0784E−013.0211E−021.1349E−012.5524E−02
77.4696E−027.9743E−027.9010E−024.1605E−028.1814E−023.4784E−028.5989E−022.9437E−02
85.8260E−028.9502E−026.1621E−024.6690E−026.3786E−023.9055E−026.7184E−023.2990E−02
94.6554E−029.8462E−024.9235E−025.1360E−025.0981E−024.2952E−025.3638E−023.6328E−02
103.7970E−021.0665E−014.0156E−025.5626E−024.1569E−024.6535E−024.3702E−023.9395E−02
113.1489E−021.1414E−013.3300E−025.9528E−023.4468E−024.9806E−023.6249E−024.2156E−02
122.6551E−021.2100E−012.8077E−026.3104E−022.9065E−025.2796E−023.0577E−024.4678E−02
132.2685E−021.2732E−012.3987E−026.6395E−022.4832E−025.5549E−022.6126E−024.7004E−02
141.9591E−021.3316E−012.0715E−026.9437E−022.1445E−025.8097E−022.2568E−024.9149E−02
151.7086E−021.3858E−011.8065E−027.2263E−021.8702E−026.0463E−021.9680E−025.1163E−02
161.5030E−021.4364E−011.5891E−027.4898E−021.6451E−026.2669E−021.7307E−025.3039E−02
171.3322E−021.4838E−011.4085E−027.7366E−021.4581E−026.4736E−021.5344E−025.4773E−02
181.1889E−021.5283E−011.2569E−027.9685E−021.3012E−026.6678E−021.3692E−025.6427E−02
191.0674E−021.5703E−011.1285E−028.1873E−021.1682E−026.8509E−021.2290E−025.7987E−02
209.6365E−031.6100E−011.0188E−028.3943E−021.0546E−027.0243E−021.1097E−025.9439E−02
218.7427E−031.6477E−019.2423E−038.5908E−029.5673E−037.1887E−021.0067E−026.0840E−02
227.9675E−031.6836E−018.4226E−038.7776E−028.7186E−037.3452E−029.1718E−036.2174E−02
237.2908E−031.7178E−017.7070E−038.9558E−027.9778E−037.4943E−028.3943E−036.3421E−02
246.6968E−031.7505E−017.0789E−039.1261E−027.3275E−037.6369E−027.7096E−036.4635E−02
256.1724E−031.7818E−016.5244E−039.2892E−026.7534E−037.7734E−027.1041E−036.5801E−02
265.7072E−031.8118E−016.0325E−039.4456E−026.2442E−037.9043E−026.5697E−036.6894E−02
275.2927E−031.8407E−015.5942E−039.5959E−025.7904E−038.0301E−026.0920E−036.7965E−02
284.9217E−031.8685E−015.2019E−039.7406E−025.3842E−038.1512E−025.6635E−036.9001E−02
294.5884E−031.8952E−014.8494E−039.8800E−025.0193E−038.2679E−025.2805E−036.9974E−02
304.2878E−031.9211E−014.5316E−031.0014E−014.6903E−038.3805E−024.9342E−037.0931E−02
314.0157E−031.9460E−014.2440E−031.0145E−014.3925E−038.4893E−024.6200E−037.1865E−02
323.7688E−031.9702E−013.9829E−031.0270E−014.1222E−038.5946E−024.3363E−037.2741E−02
333.5440E−031.9936E−013.7451E−031.0392E−013.8760E−038.6966E−024.0773E−037.3607E−02
343.3387E−032.0162E−013.5280E−031.0510E−013.6513E−038.7954E−023.8401E−037.4456E−02
353.1507E−032.0382E−013.3293E−031.0625E−013.4455E−038.8913E−023.6241E−037.5254E−02
362.9781E−032.0596E−013.1468E−031.0736E−013.2566E−038.9845E−023.4254E−037.6044E−02
372.8194E−032.0804E−012.9790E−031.0844E−013.0828E−039.0751E−023.2419E−037.6823E−02
382.6730E−032.1006E−012.8242E−031.0949E−012.9226E−039.1631E−023.0738E−037.7555E−02
392.5377E−032.1202E−012.6812E−031.1052E−012.7745E−039.2489E−022.9180E−037.8282E−02
402.4124E−032.1394E−012.5487E−031.1152E−012.6374E−039.3324E−022.7732E−037.9002E−02
412.2962E−032.1581E−012.4258E−031.1249E−012.5101E−039.4138E−022.6397E−037.9679E−02
422.1882E−032.1763E−012.3116E−031.1344E−012.3919E−039.4934E−022.5153E−038.0351E−02
432.0876E−032.1941E−012.2053E−031.1437E−012.2818E−039.5709E−022.3991E−038.1021E−02
441.9939E−032.2115E−012.1061E−031.1527E−012.1791E−039.6466E−022.2913E−038.1649E−02
451.9062E−032.2284E−012.0134E−031.1616E−012.0832E−039.7207E−022.1905E−038.2275E−02
461.8243E−032.2451E−011.9268E−031.1702E−011.9935E−039.7931E−022.0957E−038.2901E−02
471.7475E−032.2613E−011.8456E−031.1787E−011.9095E−039.8638E−022.0075E−038.3489E−02
481.6755E−032.2771E−011.7694E−031.1870E−011.8306E−039.9331E−021.9246E−038.4073E−02
491.6078E−032.2927E−011.6979E−031.1951E−011.7565E−031.0001E−011.8463E−038.4662E−02
501.5441E−032.3080E−011.6306E−031.2030E−011.6868E−031.0068E−011.7732E−038.5214E−02
511.4842E−032.3229E−011.5672E−031.2108E−011.6212E−031.0133E−011.7042E−038.5761E−02
521.4277E−032.3376E−011.5074E−031.2184E−011.5593E−031.0197E−011.6388E−038.6315E−02
531.3743E−032.3519E−011.4510E−031.2259E−011.5009E−031.0259E−011.5775E−038.6837E−02
541.3239E−032.3660E−011.3977E−031.2333E−011.4457E−031.0321E−011.5195E−038.7353E−02
551.2762E−032.3798E−011.3473E−031.2405E−011.3935E−031.0381E−011.4644E−038.7876E−02
561.2311E−032.3934E−011.2995E−031.2476E−011.3441E−031.0440E−011.4125E−038.8368E−02
571.1882E−032.4068E−011.2543E−031.2545E−011.2972E−031.0499E−011.3633E−038.8858E−02
581.1476E−032.4199E−011.2113E−031.2614E−011.2528E−031.0556E−011.3162E−038.9357E−02
591.1091E−032.4327E−011.1706E−031.2681E−011.2105E−031.0612E−011.2719E−038.9826E−02
601.0724E−032.4454E−011.1319E−031.2746E−011.1705E−031.0667E−011.2301E−039.0263E−02

He; [Z=2].

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
04.2610E−014.1776E−024.4985E−012.1809E−024.6272E−011.8383E−024.7861E−011.5783E−02
14.0739E−014.3327E−024.3041E−012.2602E−024.4354E−011.9017E−024.6026E−011.6277E−02
23.5950E−014.7901E−023.8022E−012.4959E−023.9327E−012.0925E−024.1119E−011.7781E−02
32.9975E−015.5216E−023.1704E−012.8767E−023.2862E−012.4069E−023.4590E−012.0325E−02
42.4232E−016.4811E−022.5619E−013.3776E−022.6545E−012.8275E−022.7985E−012.3848E−02
51.9367E−017.6153E−022.0478E−013.9673E−022.1206E−013.3235E−022.2303E−012.8110E−02
61.5495E−018.8676E−021.6384E−014.6186E−021.6975E−013.8674E−021.7832E−013.2760E−02
71.2497E−011.0185E−011.3209E−015.3056E−021.3689E−014.4420E−021.4407E−013.7568E−02
81.0190E−011.1529E−011.0770E−016.0041E−021.1154E−015.0301E−021.1756E−014.2489E−02
98.4110E−021.2864E−018.8879E−026.6990E−029.2057E−025.6121E−029.6885E−024.7481E−02
107.0272E−021.4169E−017.4222E−027.3795E−027.6918E−026.1790E−028.0827E−025.2361E−02
115.9355E−021.5431E−016.2676E−028.0359E−026.4950E−026.7298E−026.8289E−025.6980E−02
125.0706E−021.6642E−015.3536E−028.6655E−025.5459E−027.2590E−025.8394E−026.1393E−02
134.3748E−021.7797E−014.6181E−029.2663E−024.7842E−027.7613E−025.0369E−026.5675E−02
143.8074E−021.8895E−014.0185E−029.8371E−024.1636E−028.2387E−024.3787E−026.9788E−02
153.3405E−021.9937E−013.5252E−021.0379E−013.6518E−028.6940E−023.8403E−027.3638E−02
162.9524E−022.0926E−013.1151E−021.0893E−013.2266E−029.1254E−023.3963E−027.7224E−02
172.6267E−022.1865E−012.7711E−021.1380E−012.8707E−029.5322E−023.0223E−028.0661E−02
182.3511E−022.2755E−012.4801E−021.1843E−012.5693E−029.9196E−022.7031E−028.4002E−02
192.1160E−022.3601E−012.2319E−021.2283E−012.3117E−021.0290E−012.4310E−028.7168E−02
201.9139E−022.4407E−012.0186E−021.2701E−012.0907E−021.0640E−012.1995E−029.0098E−02
211.7392E−022.5174E−011.8342E−021.3100E−011.8999E−021.0972E−011.9998E−029.2866E−02
221.5871E−022.5906E−011.6736E−021.3480E−011.7336E−021.1291E−011.8244E−029.5585E−02
231.4539E−022.6606E−011.5330E−021.3843E−011.5876E−021.1598E−011.6700E−029.8232E−02
241.3366E−022.7275E−011.4093E−021.4191E−011.4596E−021.1888E−011.5350E−021.0071E−01
251.2329E−022.7917E−011.2999E−021.4524E−011.3464E−021.2166E−011.4166E−021.0300E−01
261.1407E−022.8533E−011.2026E−021.4844E−011.2456E−021.2435E−011.3110E−021.0524E−01
271.0585E−022.9124E−011.1158E−021.5152E−011.1555E−021.2694E−011.2158E−021.0748E−01
289.8473E−032.9695E−011.0381E−021.5447E−011.0750E−021.2940E−011.1305E−021.0963E−01
299.1842E−033.0243E−019.6810E−031.5733E−011.0027E−021.3178E−011.0546E−021.1162E−01
308.5856E−033.0772E−019.0497E−031.6007E−019.3719E−031.3410E−019.8633E−031.1350E−01
318.0433E−033.1285E−018.4779E−031.6273E−018.7787E−031.3633E−019.2390E−031.1540E−01
327.5508E−033.1779E−017.9583E−031.6530E−018.2418E−031.3846E−018.6674E−031.1729E−01
337.1020E−033.2257E−017.4850E−031.6779E−017.7520E−031.4054E−018.1506E−031.1907E−01
346.6919E−033.2722E−017.0526E−031.7019E−017.3030E−031.4258E−017.6836E−031.2071E−01
356.3164E−033.3171E−016.6564E−031.7253E−016.8925E−031.4454E−017.2541E−031.2233E−01
365.9714E−033.3608E−016.2927E−031.7480E−016.5168E−031.4641E−016.8548E−031.2399E−01
375.6538E−033.4032E−015.9580E−031.7700E−016.1700E−031.4826E−016.4869E−031.2561E−01
385.3611E−033.4444E−015.6492E−031.7914E−015.8492E−031.5008E−016.1519E−031.2710E−01
395.0903E−033.4846E−015.3637E−031.8123E−015.5538E−031.5182E−015.8440E−031.2851E−01
404.8395E−033.5236E−015.0994E−031.8325E−015.2807E−031.5349E−015.5555E−031.2996E−01
414.6069E−033.5616E−014.8540E−031.8523E−015.0263E−031.5516E−015.2853E−031.3143E−01
424.3905E−033.5988E−014.6259E−031.8716E−014.7894E−031.5679E−015.0360E−031.3281E−01
434.1891E−033.6349E−014.4136E−031.8904E−014.5698E−031.5835E−014.8068E−031.3408E−01
444.0012E−033.6703E−014.2154E−031.9087E−014.3651E−031.5987E−014.5923E−031.3535E−01
453.8256E−033.7049E−014.0303E−031.9267E−014.1730E−031.6139E−014.3890E−031.3667E−01
463.6614E−033.7386E−013.8572E−031.9442E−013.9932E−031.6288E−014.1985E−031.3797E−01
473.5074E−033.7716E−013.6949E−031.9613E−013.8257E−031.6429E−014.0225E−031.3916E−01
483.3630E−033.8038E−013.5426E−031.9781E−013.6682E−031.6568E−013.8584E−031.4028E−01
493.2273E−033.8355E−013.3996E−031.9945E−013.5195E−031.6708E−013.7024E−031.4144E−01
503.0997E−033.8664E−013.2651E−032.0106E−013.3800E−031.6843E−013.5541E−031.4265E−01
512.9795E−033.8966E−013.1383E−032.0263E−013.2493E−031.6972E−013.4155E−031.4379E−01
522.8661E−033.9264E−013.0188E−032.0417E−013.1256E−031.7102E−013.2866E−031.4482E−01
532.7591E−033.9555E−012.9060E−032.0569E−013.0082E−031.7231E−013.1646E−031.4585E−01
542.6580E−033.9840E−012.7994E−032.0717E−012.8979E−031.7355E−013.0475E−031.4695E−01
552.5623E−034.0120E−012.6986E−032.0863E−012.7939E−031.7474E−012.9364E−031.4804E−01
562.4717E−034.0396E−012.6031E−032.1005E−012.6948E−031.7595E−012.8328E−031.4903E−01
572.3858E−034.0666E−012.5125E−032.1146E−012.6006E−031.7715E−012.7354E−031.4996E−01
582.3044E−034.0930E−012.4266E−032.1284E−012.5119E−031.7829E−012.6417E−031.5094E−01
592.2271E−034.1189E−012.3451E−032.1419E−012.4280E−031.7938E−012.5516E−031.5197E−01
602.1533E−034.1451E−012.2675E−032.1553E−012.3472E−031.8053E−012.4666E−031.5295E−01

Li; [Z=3].

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
03.3440E+003.4566E−023.5370E+001.8036E−023.6606E+001.5125E−023.8345E+001.2836E−02
12.2942E+004.6591E−022.4277E+002.4302E−022.5141E+002.0369E−022.6390E+001.7258E−02
21.0905E+008.0922E−021.1545E+004.2187E−021.1963E+003.5347E−021.2584E+002.9910E−02
35.7692E−011.2235E−016.1069E−016.3773E−026.3285E−015.3436E−026.6585E−014.5230E−02
43.6834E−011.5631E−013.8977E−018.1464E−024.0391E−016.8263E−024.2502E−015.7792E−02
52.6569E−011.8224E−012.8107E−019.4973E−022.9126E−017.9585E−023.0650E−016.7386E−02
62.0504E−012.0358E−012.1686E−011.0609E−012.2472E−018.8897E−022.3649E−017.5278E−02
71.6450E−012.2257E−011.7394E−011.1596E−011.8024E−019.7177E−021.8968E−018.2294E−02
81.3523E−012.4027E−011.4296E−011.2518E−011.4814E−011.0490E−011.5589E−018.8837E−02
91.1308E−012.5720E−011.1952E−011.3398E−011.2384E−011.1227E−011.3033E−019.5088E−02
109.5794E−022.7357E−011.0122E−011.4250E−011.0488E−011.1941E−011.1037E−011.0113E−01
118.2007E−022.8939E−018.6630E−021.5072E−018.9757E−021.2630E−019.4457E−021.0697E−01
127.0897E−023.0474E−017.4873E−021.5870E−017.7575E−021.3299E−018.1634E−021.1264E−01
136.1809E−023.1959E−016.5258E−021.6641E−016.7611E−021.3945E−017.1147E−021.1812E−01
145.4277E−023.3393E−015.7291E−021.7386E−015.9355E−021.4569E−016.2458E−021.2341E−01
154.7985E−023.4776E−015.0636E−021.8105E−015.2458E−021.5172E−015.5200E−021.2851E−01
164.2685E−023.6110E−014.5031E−021.8798E−014.6650E−021.5752E−014.9087E−021.3343E−01
173.8184E−023.7395E−014.0273E−021.9465E−014.1720E−021.6311E−014.3898E−021.3816E−01
183.4337E−023.8631E−013.6206E−022.0107E−013.7506E−021.6849E−013.9463E−021.4272E−01
193.1025E−023.9820E−013.2707E−022.0724E−013.3880E−021.7366E−013.5647E−021.4710E−01
202.8158E−024.0964E−012.9678E−022.1317E−013.0741E−021.7863E−013.2344E−021.5131E−01
212.5660E−024.2064E−012.7040E−022.1888E−012.8008E−021.8341E−012.9468E−021.5536E−01
222.3473E−024.3123E−012.4730E−022.2437E−012.5615E−021.8801E−012.6950E−021.5926E−01
232.1549E−024.4142E−012.2699E−022.2966E−012.3510E−021.9244E−012.4735E−021.6301E−01
241.9847E−024.5123E−012.0903E−022.3475E−012.1650E−021.9670E−012.2777E−021.6663E−01
251.8336E−024.6069E−011.9308E−022.3965E−011.9998E−022.0081E−012.1038E−021.7011E−01
261.6988E−024.6981E−011.7886E−022.4438E−011.8525E−022.0477E−011.9489E−021.7346E−01
271.5782E−024.7861E−011.6614E−022.4894E−011.7207E−022.0859E−011.8101E−021.7670E−01
281.4698E−024.8711E−011.5471E−022.5335E−011.6022E−022.1228E−011.6855E−021.7982E−01
291.3720E−024.9532E−011.4440E−022.5761E−011.4955E−022.1585E−011.5732E−021.8285E−01
301.2836E−025.0327E−011.3508E−022.6172E−011.3989E−022.1930E−011.4716E−021.8577E−01
311.2034E−025.1096E−011.2663E−022.6571E−011.3114E−022.2264E−011.3795E−021.8859E−01
321.1304E−025.1840E−011.1894E−022.6957E−011.2317E−022.2587E−011.2957E−021.9133E−01
331.0638E−025.2562E−011.1192E−022.7331E−011.1590E−022.2900E−011.2192E−021.9398E−01
341.0029E−025.3262E−011.0550E−022.7694E−011.0925E−022.3204E−011.1492E−021.9656E−01
359.4702E−035.3942E−019.9617E−032.8046E−011.0316E−022.3499E−011.0851E−021.9906E−01
368.9566E−035.4603E−019.4206E−032.8388E−019.7552E−032.3786E−011.0261E−022.0149E−01
378.4834E−035.5245E−018.9223E−032.8721E−019.2390E−032.4065E−019.7179E−032.0385E−01
388.0465E−035.5870E−018.4623E−032.9044E−018.7626E−032.4335E−019.2166E−032.0614E−01
397.6424E−035.6478E−018.0368E−032.9359E−018.3219E−032.4599E−018.7529E−032.0838E−01
407.2678E−035.7070E−017.6424E−032.9666E−017.9134E−032.4856E−018.3232E−032.1055E−01
416.9200E−035.7647E−017.2763E−032.9965E−017.5342E−032.5107E−017.9241E−032.1267E−01
426.5965E−035.8210E−016.9357E−033.0257E−017.1814E−032.5351E−017.5530E−032.1474E−01
436.2950E−035.8760E−016.6184E−033.0542E−016.8528E−032.5589E−017.2072E−032.1676E−01
446.0137E−035.9296E−016.3223E−033.0819E−016.5461E−032.5822E−016.8846E−032.1873E−01
455.7508E−035.9820E−016.0456E−033.1091E−016.2595E−032.6049E−016.5831E−032.2066E−01
465.5047E−036.0332E−015.7866E−033.1356E−015.9913E−032.6271E−016.3009E−032.2254E−01
475.2740E−036.0833E−015.5439E−033.1615E−015.7399E−032.6488E−016.0364E−032.2438E−01
485.0574E−036.1323E−015.3160E−033.1869E−015.5039E−032.6701E−015.7882E−032.2618E−01
494.8540E−036.1802E−015.1019E−033.2117E−015.2822E−032.6909E−015.5549E−032.2794E−01
504.6625E−036.2272E−014.9005E−033.2361E−015.0735E−032.7113E−015.3354E−032.2966E−01
514.4821E−036.2731E−014.7107E−033.2599E−014.8770E−032.7312E−015.1286E−032.3135E−01
524.3120E−036.3182E−014.5317E−033.2832E−014.6917E−032.7507E−014.9336E−032.3301E−01
534.1513E−036.3623E−014.3627E−033.3061E−014.5166E−032.7699E−014.7494E−032.3463E−01
543.9995E−036.4057E−014.2030E−033.3285E−014.3512E−032.7887E−014.5754E−032.3622E−01
553.8558E−036.4482E−014.0518E−033.3505E−014.1947E−032.8071E−014.4107E−032.3779E−01
563.7197E−036.4899E−013.9087E−033.3721E−014.0464E−032.8252E−014.2548E−032.3932E−01
573.5907E−036.5308E−013.7730E−033.3933E−013.9059E−032.8430E−014.1069E−032.4082E−01
583.4683E−036.5711E−013.6442E−033.4142E−013.7725E−032.8605E−013.9666E−032.4230E−01
593.3520E−036.6105E−013.5219E−033.4347E−013.6459E−032.8776E−013.8334E−032.4375E−01
603.2415E−036.6492E−013.4058E−033.4547E−013.5255E−032.8945E−013.7068E−032.4517E−01

Be; [Z=4].

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
03.1055E+005.8862E−023.2880E+003.0761E−023.4035E+002.5806E−023.5638E+002.1939E−02
12.5308E+006.9079E−022.6815E+003.6077E−022.7773E+003.0252E−022.9164E+002.5649E−02
21.5618E+009.9147E−021.6558E+005.1749E−021.7162E+004.3368E−021.8057E+003.6714E−02
39.0894E−011.4388E−019.6387E−017.5060E−029.9918E−016.2898E−021.0515E+005.3259E−02
45.6282E−011.9294E−015.9674E−011.0060E−016.1846E−018.4322E−026.5100E−017.1403E−02
53.8082E−012.3775E−014.0346E−011.2396E−014.1816E−011.0389E−014.4012E−018.7995E−02
62.7803E−012.7538E−012.9434E−011.4359E−013.0510E−011.2032E−013.2108E−011.0193E−01
72.1472E−013.0659E−012.2727E−011.5979E−012.3550E−011.3394E−012.4788E−011.1345E−01
81.7255E−013.3310E−011.8254E−011.7362E−011.8915E−011.4552E−011.9908E−011.2327E−01
91.4259E−013.5654E−011.5076E−011.8585E−011.5625E−011.5573E−011.6443E−011.3194E−01
101.2020E−013.7796E−011.2712E−011.9689E−011.3170E−011.6504E−011.3862E−011.3980E−01
111.0282E−013.9793E−011.0872E−012.0725E−011.1263E−011.7373E−011.1855E−011.4716E−01
128.9120E−024.1676E−019.4178E−022.1709E−019.7574E−021.8195E−011.0269E−011.5414E−01
137.8000E−024.3478E−018.2389E−022.2648E−018.5364E−021.8980E−018.9832E−021.6080E−01
146.8793E−024.5213E−017.2641E−022.3549E−017.5262E−021.9735E−017.9199E−021.6720E−01
156.1093E−024.6886E−016.4491E−022.4417E−016.6814E−022.0463E−017.0308E−021.7336E−01
165.4587E−024.8503E−015.7604E−022.5256E−015.9677E−022.1166E−016.2796E−021.7932E−01
174.9039E−025.0066E−015.1732E−022.6068E−015.3593E−022.1846E−015.6392E−021.8508E−01
184.4271E−025.1580E−014.6688E−022.6853E−014.8365E−022.2503E−015.0890E−021.9065E−01
194.0146E−025.3045E−014.2324E−022.7612E−014.3843E−022.3140E−014.6130E−021.9604E−01
203.6555E−025.4463E−013.8526E−022.8348E−013.9907E−022.3756E−014.1988E−022.0126E−01
213.3411E−025.5836E−013.5202E−022.9059E−013.6463E−022.4352E−013.8364E−022.0631E−01
223.0645E−025.7166E−013.2279E−022.9748E−013.3433E−022.4929E−013.5175E−022.1120E−01
232.8200E−025.8454E−012.9695E−023.0416E−013.0756E−022.5488E−013.2357E−022.1594E−01
242.6029E−025.9701E−012.7401E−023.1062E−012.8379E−022.6029E−012.9856E−022.2052E−01
252.4093E−026.0910E−012.5357E−023.1688E−012.6261E−022.6554E−012.7627E−022.2497E−01
262.2361E−026.2081E−012.3528E−023.2295E−012.4366E−022.7062E−012.5633E−022.2927E−01
272.0805E−026.3217E−012.1886E−023.2883E−012.2665E−022.7554E−012.3843E−022.3344E−01
281.9403E−026.4318E−012.0406E−023.3453E−012.1132E−022.8032E−012.2230E−022.3749E−01
291.8135E−026.5387E−011.9069E−023.4006E−011.9747E−022.8495E−012.0772E−022.4141E−01
301.6986E−026.6424E−011.7857E−023.4542E−011.8491E−022.8944E−011.9451E−022.4521E−01
311.5941E−026.7431E−011.6755E−023.5064E−011.7349E−022.9381E−011.8249E−022.4891E−01
321.4988E−026.8410E−011.5750E−023.5570E−011.6308E−022.9805E−011.7154E−022.5250E−01
331.4116E−026.9361E−011.4832E−023.6061E−011.5357E−023.0217E−011.6153E−022.5599E−01
341.3318E−027.0286E−011.3990E−023.6540E−011.4486E−023.0617E−011.5236E−022.5938E−01
351.2584E−027.1186E−011.3218E−023.7005E−011.3686E−023.1007E−011.4395E−022.6268E−01
361.1909E−027.2061E−011.2507E−023.7458E−011.2949E−023.1386E−011.3620E−022.6589E−01
371.1286E−027.2914E−011.1851E−023.7899E−011.2270E−023.1755E−011.2905E−022.6902E−01
381.0711E−027.3745E−011.1245E−023.8328E−011.1642E−023.2115E−011.2245E−022.7207E−01
391.0177E−027.4555E−011.0684E−023.8747E−011.1061E−023.2465E−011.1633E−022.7504E−01
409.6828E−037.5345E−011.0164E−023.9155E−011.0522E−023.2807E−011.1066E−022.7793E−01
419.2231E−037.6116E−019.6798E−033.9554E−011.0021E−023.3140E−011.0539E−022.8076E−01
428.7950E−037.6869E−019.2296E−033.9942E−019.5549E−033.3466E−011.0049E−022.8351E−01
438.3959E−037.7603E−018.8098E−034.0322E−019.1202E−033.3784E−019.5912E−032.8621E−01
448.0231E−037.8321E−018.4179E−034.0693E−018.7143E−033.4095E−019.1642E−032.8884E−01
457.6745E−037.9023E−018.0514E−034.1055E−018.3348E−033.4398E−018.7648E−032.9141E−01
467.3479E−037.9710E−017.7081E−034.1410E−017.9793E−033.4695E−018.3909E−032.9392E−01
477.0417E−038.0381E−017.3862E−034.1757E−017.6460E−033.4985E−018.0403E−032.9638E−01
486.7541E−038.1038E−017.0840E−034.2096E−017.3330E−033.5270E−017.7110E−032.9879E−01
496.4837E−038.1682E−016.7998E−034.2429E−017.0388E−033.5548E−017.4015E−033.0114E−01
506.2291E−038.2312E−016.5324E−034.2754E−016.7618E−033.5820E−017.1102E−033.0345E−01
515.9892E−038.2930E−016.2803E−034.3073E−016.5008E−033.6087E−016.8356E−033.0571E−01
525.7627E−038.3535E−016.0425E−034.3386E−016.2545E−033.6349E−016.5765E−033.0793E−01
535.5489E−038.4129E−015.8179E−034.3692E−016.0220E−033.6606E−016.3319E−033.1010E−01
545.3467E−038.4711E−015.6056E−034.3993E−015.8021E−033.6858E−016.1006E−033.1224E−01
555.1553E−038.5282E−015.4046E−034.4288E−015.5940E−033.7105E−015.8817E−033.1433E−01
564.9740E−038.5843E−015.2141E−034.4578E−015.3968E−033.7347E−015.6743E−033.1638E−01
574.8020E−038.6394E−015.0336E−034.4862E−015.2099E−033.7585E−015.4776E−033.1840E−01
584.6388E−038.6934E−014.8622E−034.5142E−015.0325E−033.7819E−015.2911E−033.2037E−01
594.4837E−038.7465E−014.6995E−034.5416E−014.8640E−033.8049E−015.1137E−033.2233E−01
604.3361E−038.7993E−014.5450E−034.5683E−014.7036E−033.8276E−014.9449E−033.2425E−01

B; [Z=5].

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
02.8358E+008.0833E−023.0075E+004.2321E−023.1129E+003.5528E−023.2589E+003.0233E−02
12.4610E+009.0430E−022.6117E+004.7318E−022.7056E+003.9689E−022.8411E+003.3677E−02
21.7329E+001.1818E−011.8407E+006.1786E−021.9083E+005.1793E−022.0083E+004.3863E−02
31.1285E+001.6052E−011.1995E+008.3854E−021.2437E+007.0287E−021.3092E+005.9526E−02
47.4063E−012.1145E−017.8730E−011.1039E−018.1629E−019.2525E−028.5934E−017.8374E−02
55.0784E−012.6434E−015.3954E−011.3794E−015.5940E−011.1562E−015.8894E−019.7936E−02
63.6682E−013.1415E−013.8937E−011.6389E−014.0365E−011.3737E−014.2492E−011.1638E−01
72.7788E−013.5851E−012.9466E−011.8701E−013.0544E−011.5675E−013.2151E−011.3281E−01
82.1893E−013.9718E−012.3195E−012.0716E−012.4041E−011.7363E−012.5306E−011.4710E−01
91.7797E−014.3078E−011.8843E−012.2464E−011.9528E−011.8830E−012.0553E−011.5955E−01
101.4819E−014.6047E−011.5680E−012.4010E−011.6250E−012.0124E−011.7104E−011.7050E−01
111.2565E−014.8713E−011.3288E−012.5397E−011.3771E−012.1286E−011.4494E−011.8035E−01
121.0830E−015.1149E−011.1450E−012.6662E−011.1865E−012.2346E−011.2487E−011.8934E−01
139.4491E−025.3411E−019.9864E−022.7837E−011.0348E−012.3331E−011.0890E−011.9769E−01
148.3219E−025.5541E−018.7920E−022.8942E−019.1096E−022.4257E−019.5866E−022.0553E−01
157.3891E−025.7562E−017.8037E−022.9991E−018.0853E−022.5136E−018.5084E−022.1298E−01
166.6065E−025.9496E−016.9747E−023.0994E−017.2261E−022.5977E−017.6040E−022.2010E−01
175.9424E−026.1353E−016.2712E−023.1957E−016.4970E−022.6783E−016.8366E−022.2694E−01
185.3731E−026.3143E−015.6683E−023.2886E−015.8722E−022.7561E−016.1789E−022.3353E−01
194.8811E−026.4873E−015.1474E−023.3782E−015.3323E−022.8312E−015.6106E−022.3989E−01
204.4527E−026.6548E−014.6940E−023.4650E−014.8623E−022.9039E−015.1160E−022.4605E−01
214.0775E−026.8171E−014.2968E−023.5491E−014.4507E−022.9743E−014.6828E−022.5201E−01
223.7469E−026.9746E−013.9469E−023.6306E−014.0882E−023.0426E−014.3012E−022.5780E−01
233.4541E−027.1274E−013.6372E−023.7098E−013.7672E−023.1089E−013.9634E−022.6341E−01
243.1936E−027.2760E−013.3617E−023.7866E−013.4817E−023.1732E−013.6629E−022.6887E−01
252.9609E−027.4202E−013.1157E−023.8612E−013.2268E−023.2358E−013.3946E−022.7416E−01
262.7522E−027.5605E−012.8951E−023.9338E−012.9982E−023.2965E−013.1540E−022.7931E−01
272.5643E−027.6970E−012.6966E−024.0044E−012.7925E−023.3556E−012.9376E−022.8431E−01
282.3947E−027.8296E−012.5174E−024.0730E−012.6068E−023.4130E−012.7422E−022.8918E−01
292.2410E−027.9588E−012.3551E−024.1397E−012.4387E−023.4690E−012.5652E−022.9392E−01
302.1014E−028.0845E−012.2077E−024.2046E−012.2860E−023.5233E−012.4045E−022.9852E−01
311.9741E−028.2069E−012.0734E−024.2679E−012.1469E−023.5763E−012.2581E−023.0301E−01
321.8579E−028.3261E−011.9508E−024.3295E−012.0198E−023.6279E−012.1245E−023.0738E−01
331.7515E−028.4423E−011.8386E−024.3895E−011.9036E−023.6781E−012.0021E−023.1163E−01
341.6538E−028.5555E−011.7356E−024.4480E−011.7969E−023.7271E−011.8899E−023.1578E−01
351.5639E−028.6660E−011.6409E−024.5049E−011.6988E−023.7748E−011.7866E−023.1982E−01
361.4811E−028.7737E−011.5536E−024.5605E−011.6084E−023.8213E−011.6915E−023.2376E−01
371.4046E−028.8788E−011.4730E−024.6148E−011.5249E−023.8667E−011.6037E−023.2760E−01
381.3338E−028.9813E−011.3984E−024.6677E−011.4476E−023.9110E−011.5224E−023.3135E−01
391.2681E−029.0815E−011.3293E−024.7193E−011.3760E−023.9543E−011.4471E−023.3502E−01
401.2071E−029.1794E−011.2651E−024.7698E−011.3096E−023.9965E−011.3771E−023.3860E−01
411.1503E−029.2750E−011.2054E−024.8191E−011.2477E−024.0378E−011.3121E−023.4209E−01
421.0975E−029.3684E−011.1498E−024.8673E−011.1901E−024.0781E−011.2515E−023.4550E−01
431.0481E−029.4598E−011.0979E−024.9144E−011.1364E−024.1175E−011.1949E−023.4885E−01
441.0020E−029.5492E−011.0494E−024.9605E−011.0861E−024.1561E−011.1421E−023.5211E−01
459.5878E−039.6366E−011.0040E−025.0055E−011.0391E−024.1938E−011.0927E−023.5530E−01
469.1830E−039.7223E−019.6145E−035.0496E−019.9510E−034.2308E−011.0463E−023.5843E−01
478.8031E−039.8062E−019.2153E−035.0929E−019.5377E−034.2670E−011.0029E−023.6150E−01
488.4461E−039.8882E−018.8405E−035.1351E−019.1495E−034.3024E−019.6201E−033.6449E−01
498.1102E−039.9687E−018.4878E−035.1766E−018.7844E−034.3370E−019.2360E−033.6743E−01
507.7938E−031.0048E+008.1556E−035.2173E−018.4404E−034.3711E−018.8742E−033.7031E−01
517.4955E−031.0125E+007.8425E−035.2571E−018.1161E−034.4044E−018.5332E−033.7313E−01
527.2138E−031.0201E+007.5469E−035.2961E−017.8102E−034.4371E−018.2113E−033.7590E−01
536.9476E−031.0275E+007.2676E−035.3345E−017.5209E−034.4692E−017.9071E−033.7862E−01
546.6958E−031.0348E+007.0034E−035.3721E−017.2474E−034.5007E−017.6194E−033.8128E−01
556.4574E−031.0420E+006.7533E−035.4090E−016.9885E−034.5316E−017.3471E−033.8390E−01
566.2314E−031.0490E+006.5164E−035.4452E−016.7432E−034.5619E−017.0891E−033.8647E−01
576.0169E−031.0560E+006.2915E−035.4808E−016.5104E−034.5917E−016.8442E−033.8899E−01
585.8134E−031.0627E+006.0781E−035.5159E−016.2894E−034.6210E−016.6118E−033.9147E−01
595.6199E−031.0694E+005.8752E−035.5503E−016.0795E−034.6498E−016.3910E−033.9391E−01
605.4357E−031.0760E+005.6826E−035.5838E−015.8801E−034.6779E−016.1810E−033.9631E−01

C; [Z=6]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
02.5385E+001.0201E−012.6187E+005.4129E−022.7926E+004.4969E−022.9237E+003.8293E−02
12.2870E+001.1089E−012.3744E+005.8509E−022.5202E+004.8805E−022.6459E+004.1447E−02
21.7503E+001.3649E−011.8390E+007.1297E−021.9324E+005.9971E−022.0345E+005.0798E−02
31.2403E+001.7586E−011.3145E+009.1277E−021.3709E+007.7184E−021.4432E+006.5396E−02
48.6647E−012.2496E−019.2238E−011.1646E−019.5829E−019.8626E−021.0093E+008.3540E−02
56.1651E−012.7910E−016.5717E−011.4446E−016.8179E−011.2225E−017.1786E−011.0359E−01
64.5256E−013.3405E−014.8230E−011.7300E−015.0003E−011.4625E−015.2662E−011.2390E−01
73.4376E−013.8662E−013.6595E−012.0039E−013.7936E−011.6919E−013.9938E−011.4338E−01
82.6960E−014.3505E−012.8663E−012.2565E−012.9704E−011.9037E−013.1277E−011.6129E−01
92.1743E−014.7877E−012.3089E−012.4845E−012.3927E−012.0944E−012.5186E−011.7749E−01
101.7954E−015.1788E−011.9042E−012.6886E−011.9728E−012.2656E−012.0769E−011.9197E−01
111.5103E−015.5297E−011.6004E−012.8716E−011.6578E−012.4188E−011.7452E−012.0494E−01
121.2931E−015.8472E−011.3692E−013.0367E−011.4183E−012.5569E−011.4929E−012.1667E−01
131.1222E−016.1369E−011.1876E−013.1873E−011.2302E−012.6830E−011.2947E−012.2736E−01
149.8441E−026.4040E−011.0412E−013.3262E−011.0784E−012.7992E−011.1350E−012.3721E−01
158.7158E−026.6532E−019.2143E−023.4556E−019.5434E−022.9076E−011.0043E−012.4639E−01
167.7780E−026.8876E−018.2192E−023.5772E−018.5123E−023.0094E−018.9579E−022.5502E−01
176.9881E−027.1099E−017.3814E−023.6925E−017.6443E−023.1060E−018.0441E−022.6320E−01
186.3155E−027.3218E−016.6680E−023.8025E−016.9052E−023.1980E−017.2661E−022.7099E−01
195.7368E−027.5251E−016.0545E−023.9078E−016.2697E−023.2862E−016.5971E−022.7847E−01
205.2350E−027.7206E−015.5226E−024.0091E−015.7186E−023.3710E−016.0171E−022.8565E−01
214.7965E−027.9094E−015.0578E−024.1069E−015.2371E−023.4528E−015.5103E−022.9258E−01
224.4109E−028.0920E−014.6492E−024.2014E−014.8138E−023.5319E−015.0647E−022.9929E−01
234.0697E−028.2690E−014.2878E−024.2930E−014.4395E−023.6086E−014.6707E−023.0578E−01
243.7664E−028.4408E−013.9665E−024.3819E−014.1066E−023.6830E−014.3204E−023.1208E−01
253.4954E−028.6077E−013.6795E−024.4683E−013.8094E−023.7553E−014.0076E−023.1820E−01
263.2523E−028.7701E−013.4222E−024.5522E−013.5429E−023.8255E−013.7270E−023.2415E−01
273.0334E−028.9280E−013.1905E−024.6339E−013.3029E−023.8939E−013.4744E−023.2994E−01
282.8355E−029.0820E−012.9812E−024.7134E−013.0861E−023.9604E−013.2462E−023.3558E−01
292.6561E−029.2319E−012.7915E−024.7909E−012.8895E−024.0253E−013.0394E−023.4107E−01
302.4929E−029.3782E−012.6190E−024.8664E−012.7109E−024.0884E−012.8514E−023.4642E−01
312.3441E−029.5207E−012.4617E−024.9400E−012.5480E−024.1501E−012.6800E−023.5164E−01
322.2080E−029.6599E−012.3179E−025.0118E−012.3991E−024.2101E−012.5233E−023.5673E−01
332.0832E−029.7957E−012.1861E−025.0819E−012.2626E−024.2688E−012.3797E−023.6170E−01
341.9686E−029.9283E−012.0651E−025.1503E−012.1373E−024.3260E−012.2478E−023.6654E−01
351.8630E−021.0058E+001.9537E−025.2171E−012.0219E−024.3819E−012.1263E−023.7128E−01
361.7656E−021.0184E+001.8509E−025.2823E−011.9154E−024.4365E−012.0143E−023.7590E−01
371.6754E−021.0308E+001.7558E−025.3461E−011.8170E−024.4898E−011.9108E−023.8042E−01
381.5920E−021.0429E+001.6678E−025.4083E−011.7259E−024.5420E−011.8149E−023.8483E−01
391.5145E−021.0547E+001.5862E−025.4693E−011.6413E−024.5929E−011.7260E−023.8914E−01
401.4424E−021.0663E+001.5103E−025.5288E−011.5628E−024.6428E−011.6433E−023.9337E−01
411.3754E−021.0776E+001.4397E−025.5871E−011.4896E−024.6915E−011.5663E−023.9750E−01
421.3128E−021.0887E+001.3738E−025.6441E−011.4214E−024.7393E−011.4946E−024.0153E−01
431.2543E−021.0995E+001.3123E−025.6999E−011.3578E−024.7860E−011.4276E−024.0549E−01
441.1997E−021.1102E+001.2548E−025.7546E−011.2982E−024.8317E−011.3649E−024.0936E−01
451.1484E−021.1206E+001.2009E−025.8081E−011.2424E−024.8765E−011.3063E−024.1315E−01
461.1004E−021.1308E+001.1504E−025.8606E−011.1901E−024.9204E−011.2513E−024.1687E−01
471.0553E−021.1408E+001.1030E−025.9120E−011.1411E−024.9634E−011.1996E−024.2051E−01
481.0128E−021.1506E+001.0584E−025.9624E−011.0949E−025.0055E−011.1511E−024.2408E−01
499.7287E−031.1602E+001.0164E−026.0118E−011.0515E−025.0469E−011.1054E−024.2758E−01
509.3522E−031.1696E+009.7690E−036.0602E−011.0106E−025.0875E−011.0624E−024.3102E−01
518.9969E−031.1789E+009.3961E−036.1078E−019.7196E−035.1272E−011.0218E−024.3438E−01
528.6613E−031.1880E+009.0439E−036.1545E−019.3550E−035.1662E−019.8344E−034.3768E−01
538.3439E−031.1969E+008.7110E−036.2003E−019.0104E−035.2046E−019.4719E−034.4093E−01
548.0435E−031.2056E+008.3959E−036.2453E−018.6843E−035.2422E−019.1289E−034.4412E−01
557.7589E−031.2142E+008.0975E−036.2894E−018.3757E−035.2791E−018.8042E−034.4724E−01
567.4891E−031.2227E+007.8147E−036.3328E−018.0829E−035.3154E−018.4964E−034.5031E−01
577.2329E−031.2310E+007.5463E−036.3755E−017.8051E−035.3511E−018.2042E−034.5334E−01
586.9897E−031.2392E+007.2914E−036.4174E−017.5413E−035.3862E−017.9268E−034.5631E−01
596.7584E−031.2472E+007.0491E−036.4586E−017.2908E−035.4205E−017.6632E−034.5922E−01
606.5381E−031.2551E+006.8186E−036.4992E−017.0517E−035.4549E−017.4122E−034.6210E−01

N; [Z=7]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
02.2348E+001.2336E−012.3809E+006.4945E−022.4654E+005.4566E−022.5816E+004.6486E−02
12.0680E+001.3129E−012.2051E+006.9067E−022.2852E+005.7987E−022.3986E+004.9287E−02
21.6835E+001.5435E−011.7974E+008.1099E−021.8645E+006.8024E−021.9632E+005.7642E−02
31.2750E+001.9031E−011.3628E+009.9882E−021.4138E+008.3773E−021.4889E+007.0988E−02
49.4122E−012.3626E−011.0071E+001.2383E−011.0450E+001.0384E−011.1006E+008.8003E−02
56.9683E−012.8880E−017.4580E−011.5122E−017.7392E−011.2679E−018.1539E−011.0742E−01
65.2467E−013.4462E−015.6149E−011.8025E−015.8258E−011.5114E−016.1355E−011.2810E−01
74.0419E−014.0074E−014.3205E−012.0952E−014.4829E−011.7565E−014.7225E−011.4883E−01
83.1894E−014.5502E−013.4051E−012.3775E−013.5321E−011.9933E−013.7199E−011.6893E−01
92.5750E−015.0604E−012.7443E−012.6438E−012.8464E−012.2164E−012.9972E−011.8784E−01
102.1220E−015.5319E−012.2579E−012.8896E−012.3414E−012.4224E−012.4658E−012.0526E−01
111.7790E−015.9639E−011.8903E−013.1144E−011.9598E−012.6110E−012.0636E−012.2125E−01
121.5171E−016.3586E−011.6098E−013.3201E−011.6687E−012.7834E−011.7568E−012.3587E−01
131.3114E−016.7197E−011.3899E−013.5081E−011.4406E−012.9409E−011.5164E−012.4924E−01
141.1461E−017.0515E−011.2136E−013.6806E−011.2577E−013.0855E−011.3238E−012.6149E−01
151.0116E−017.3584E−011.0702E−013.8401E−011.1091E−013.2191E−011.1673E−012.7281E−01
169.0036E−027.6443E−019.5191E−023.9884E−019.8637E−023.3434E−011.0381E−012.8335E−01
178.0725E−027.9124E−018.5294E−024.1274E−018.8376E−023.4598E−019.3003E−022.9321E−01
187.2838E−028.1654E−017.6917E−024.2586E−017.9692E−023.5697E−018.3861E−023.0252E−01
196.6089E−028.4056E−016.9753E−024.3830E−017.2265E−023.6739E−017.6042E−023.1135E−01
206.0261E−028.6348E−016.3570E−024.5016E−016.5856E−023.7732E−016.9295E−023.1976E−01
215.5188E−028.8544E−015.8191E−024.6152E−016.0279E−023.8684E−016.3425E−023.2782E−01
225.0741E−029.0656E−015.3476E−024.7244E−015.5392E−023.9598E−015.8280E−023.3557E−01
234.6817E−029.2693E−014.9317E−024.8297E−015.1082E−024.0480E−015.3743E−023.4304E−01
244.3335E−029.4663E−014.5628E−024.9315E−014.7258E−024.1333E−014.9718E−023.5026E−01
254.0230E−029.6572E−014.2339E−025.0301E−014.3849E−024.2158E−014.6130E−023.5725E−01
263.7447E−029.8425E−013.9392E−025.1257E−014.0795E−024.2959E−014.2916E−023.6404E−01
273.4944E−021.0022E+003.6741E−025.2187E−013.8048E−024.3737E−014.0024E−023.7063E−01
283.2682E−021.0198E+003.4348E−025.3091E−013.5567E−024.4494E−013.7413E−023.7704E−01
293.0632E−021.0368E+003.2179E−025.3972E−013.3319E−024.5231E−013.5048E−023.8328E−01
302.8768E−021.0535E+003.0206E−025.4830E−013.1276E−024.5950E−013.2896E−023.8937E−01
312.7067E−021.0697E+002.8408E−025.5666E−012.9412E−024.6650E−013.0936E−023.9529E−01
322.5512E−021.0856E+002.6764E−025.6483E−012.7709E−024.7333E−012.9142E−024.0108E−01
332.4085E−021.1011E+002.5256E−025.7280E−012.6147E−024.8001E−012.7498E−024.0674E−01
342.2774E−021.1162E+002.3871E−025.8059E−012.4711E−024.8653E−012.5988E−024.1225E−01
352.1565E−021.1310E+002.2595E−025.8820E−012.3389E−024.9290E−012.4597E−024.1765E−01
362.0450E−021.1454E+002.1417E−025.9564E−012.2169E−024.9912E−012.3312E−024.2292E−01
371.9417E−021.1596E+002.0327E−026.0292E−012.1040E−025.0521E−012.2125E−024.2808E−01
381.8460E−021.1734E+001.9318E−026.1003E−011.9994E−025.1117E−012.1024E−024.3313E−01
391.7571E−021.1870E+001.8380E−026.1700E−011.9023E−025.1701E−012.0003E−024.3806E−01
401.6744E−021.2003E+001.7509E−026.2382E−011.8120E−025.2271E−011.9052E−024.4289E−01
411.5973E−021.2132E+001.6697E−026.3050E−011.7279E−025.2830E−011.8167E−024.4763E−01
421.5254E−021.2260E+001.5939E−026.3705E−011.6494E−025.3378E−011.7342E−024.5226E−01
431.4581E−021.2385E+001.5231E−026.4346E−011.5761E−025.3914E−011.6570E−024.5681E−01
441.3952E−021.2507E+001.4569E−026.4974E−011.5075E−025.4440E−011.5849E−024.6125E−01
451.3362E−021.2627E+001.3948E−026.5590E−011.4432E−025.4956E−011.5173E−024.6562E−01
461.2808E−021.2745E+001.3366E−026.6195E−011.3829E−025.5461E−011.4538E−024.6990E−01
471.2288E−021.2860E+001.2819E−026.6786E−011.3263E−025.5957E−011.3942E−024.7409E−01
481.1798E−021.2974E+001.2304E−026.7368E−011.2730E−025.6443E−011.3382E−024.7821E−01
491.1336E−021.3085E+001.1819E−026.7939E−011.2228E−025.6921E−011.2854E−024.8226E−01
501.0901E−021.3194E+001.1363E−026.8499E−011.1755E−025.7389E−011.2357E−024.8622E−01
511.0491E−021.3302E+001.0932E−026.9048E−011.1309E−025.7849E−011.1887E−024.9011E−01
521.0102E−021.3407E+001.0524E−026.9588E−011.0887E−025.8301E−011.1444E−024.9394E−01
539.7352E−031.3511E+001.0139E−027.0119E−011.0488E−025.8745E−011.1024E−024.9769E−01
549.3874E−031.3612E+009.7746E−037.0640E−011.0111E−025.9180E−011.0627E−025.0138E−01
559.0578E−031.3712E+009.4292E−037.1152E−019.7534E−035.9608E−011.0251E−025.0500E−01
568.7450E−031.3811E+009.1015E−037.1655E−019.4142E−036.0030E−019.8944E−035.0857E−01
578.4481E−031.3908E+008.7904E−037.2151E−019.0922E−036.0444E−019.5557E−035.1208E−01
588.1659E−031.4003E+008.4949E−037.2638E−018.7864E−036.0851E−019.2342E−035.1552E−01
597.8974E−031.4096E+008.2141E−037.3115E−018.4957E−036.1251E−018.9284E−035.1891E−01
607.6418E−031.4189E+007.9471E−037.3582E−018.2189E−036.1645E−018.6373E−035.2226E−01

O; [Z=8]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.9959E+001.4403E−012.1119E+007.6444E−022.2088E+006.3972E−022.3140E+005.4509E−02
11.8787E+001.5125E−011.9924E+008.0108E−022.0827E+006.7068E−022.1859E+005.7045E−02
21.5943E+001.7229E−011.6986E+009.0879E−021.7721E+007.6214E−021.8657E+006.4628E−02
31.2675E+002.0544E−011.3557E+001.0800E−011.4107E+009.0760E−021.4866E+007.6903E−02
49.7811E−012.4839E−011.0491E+001.3025E−011.0904E+001.0954E−011.1484E+009.2878E−02
57.5031E−012.9858E−018.0606E−011.5631E−018.3734E−011.3145E−018.8238E−011.1141E−01
65.8005E−013.5335E−016.2353E−011.8477E−016.4731E−011.5539E−016.8227E−011.3167E−01
74.5495E−014.1030E−014.8897E−012.1435E−015.0759E−011.8018E−015.3468E−011.5276E−01
83.6316E−014.6723E−013.8989E−012.4398E−014.0460E−012.0505E−014.2634E−011.7377E−01
92.9510E−015.2266E−013.1636E−012.7283E−013.2814E−012.2928E−013.4578E−011.9428E−01
102.4394E−015.7543E−012.6102E−013.0035E−012.7077E−012.5227E−012.8511E−012.1389E−01
112.0472E−016.2496E−012.1862E−013.2620E−012.2675E−012.7392E−012.3871E−012.3224E−01
121.7445E−016.7117E−011.8593E−013.5031E−011.9278E−012.9414E−012.0299E−012.4933E−01
131.5055E−017.1403E−011.6018E−013.7266E−011.6604E−013.1287E−011.7482E−012.6520E−01
141.3133E−017.5371E−011.3951E−013.9335E−011.4459E−013.3021E−011.5222E−012.7986E−01
151.1567E−017.9052E−011.2272E−014.1252E−011.2716E−013.4626E−011.3387E−012.9347E−01
161.0276E−018.2479E−011.0888E−014.3033E−011.1282E−013.6117E−011.1874E−013.0614E−01
179.1961E−028.5681E−019.7346E−024.4697E−011.0085E−013.7512E−011.0614E−013.1792E−01
188.2843E−028.8688E−018.7616E−024.6256E−019.0759E−023.8817E−019.5520E−023.2899E−01
197.5063E−029.1524E−017.9326E−024.7726E−018.2168E−024.0047E−018.6462E−023.3945E−01
206.8366E−029.4213E−017.2198E−024.9119E−017.4773E−024.1216E−017.8684E−023.4931E−01
216.2554E−029.6773E−016.6017E−025.0443E−016.8368E−024.2323E−017.1941E−023.5869E−01
225.7473E−029.9219E−016.0618E−025.1708E−016.2775E−024.3381E−016.6045E−023.6769E−01
235.3002E−021.0157E+005.5870E−025.2921E−015.7849E−024.4400E−016.0866E−023.7627E−01
244.9044E−021.0382E+005.1668E−025.4087E−015.3498E−024.5373E−015.6286E−023.8452E−01
254.5521E−021.0600E+004.7931E−025.5211E−014.9627E−024.6314E−015.2206E−023.9252E−01
264.2370E−021.0811E+004.4589E−025.6298E−014.6161E−024.7227E−014.8561E−024.0022E−01
273.9539E−021.1015E+004.1588E−025.7351E−014.3054E−024.8104E−014.5292E−024.0765E−01
283.6986E−021.1213E+003.8881E−025.8372E−014.0250E−024.8959E−014.2337E−024.1492E−01
293.4673E−021.1405E+003.6431E−025.9365E−013.7709E−024.9793E−013.9665E−024.2196E−01
303.2572E−021.1593E+003.4205E−026.0331E−013.5406E−025.0597E−013.7241E−024.2877E−01
313.0656E−021.1775E+003.2177E−026.1271E−013.3305E−025.1385E−013.5028E−024.3546E−01
322.8905E−021.1954E+003.0323E−026.2189E−013.1382E−025.2156E−013.3006E−024.4197E−01
332.7299E−021.2127E+002.8624E−026.3084E−012.9625E−025.2900E−013.1156E−024.4827E−01
342.5823E−021.2298E+002.7063E−026.3958E−012.8007E−025.3633E−012.9453E−024.5448E−01
352.4463E−021.2464E+002.5625E−026.4812E−012.6516E−025.4350E−012.7884E−024.6055E−01
362.3207E−021.2626E+002.4297E−026.5647E−012.5143E−025.5044E−012.6439E−024.6643E−01
372.2045E−021.2785E+002.3070E−026.6464E−012.3871E−025.5730E−012.5101E−024.7222E−01
382.0967E−021.2941E+002.1931E−026.7263E−012.2691E−025.6400E−012.3859E−024.7792E−01
391.9966E−021.3093E+002.0875E−026.8046E−012.1598E−025.7050E−012.2709E−024.8342E−01
401.9035E−021.3242E+001.9891E−026.8813E−012.0579E−025.7695E−012.1638E−024.8885E−01
411.8166E−021.3389E+001.8975E−026.9564E−011.9630E−025.8324E−012.0638E−024.9421E−01
421.7355E−021.3532E+001.8120E−027.0300E−011.8746E−025.8935E−011.9707E−024.9939E−01
431.6597E−021.3673E+001.7321E−027.1021E−011.7917E−025.9544E−011.8837E−025.0448E−01
441.5887E−021.3811E+001.6573E−027.1729E−011.7142E−026.0135E−011.8021E−025.0954E−01
451.5221E−021.3947E+001.5871E−027.2424E−011.6417E−026.0711E−011.7257E−025.1443E−01
461.4596E−021.4080E+001.5213E−027.3105E−011.5735E−026.1287E−011.6541E−025.1923E−01
471.4008E−021.4210E+001.4595E−027.3774E−011.5095E−026.1844E−011.5866E−025.2401E−01
481.3454E−021.4339E+001.4013E−027.4430E−011.4493E−026.2389E−011.5233E−025.2864E−01
491.2933E−021.4465E+001.3464E−027.5075E−011.3924E−026.2935E−011.4636E−025.3317E−01
501.2441E−021.4588E+001.2947E−027.5708E−011.3389E−026.3460E−011.4073E−025.3769E−01
511.1976E−021.4710E+001.2459E−027.6330E−011.2884E−026.3978E−011.3541E−025.4209E−01
521.1536E−021.4830E+001.1997E−027.6942E−011.2406E−026.4496E−011.3039E−025.4638E−01
531.1120E−021.4947E+001.1561E−027.7543E−011.1954E−026.4993E−011.2563E−025.5067E−01
541.0726E−021.5063E+001.1147E−027.8133E−011.1527E−026.5486E−011.2113E−025.5486E−01
551.0352E−021.5177E+001.0755E−027.8714E−011.1120E−026.5978E−011.1688E−025.5892E−01
569.9977E−031.5288E+001.0384E−027.9286E−011.0736E−026.6450E−011.1282E−025.6299E−01
579.6607E−031.5398E+001.0031E−027.9847E−011.0371E−026.6921E−011.0898E−025.6700E−01
589.3404E−031.5507E+009.6952E−038.0400E−011.0023E−026.7387E−011.0534E−025.7085E−01
599.0356E−031.5613E+009.3762E−038.0944E−019.6947E−036.7829E−011.0187E−025.7468E−01
608.7453E−031.5719E+009.0724E−038.1480E−019.3803E−036.8278E−019.8539E−035.7861E−01

F; [Z=9]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.8023E+001.6411E−011.9323E+008.7053E−022.0022E+007.3216E−022.0984E+006.2406E−02
11.7164E+001.7076E−011.8420E+009.0491E−021.9098E+007.6062E−022.0047E+006.4733E−02
21.5003E+001.9016E−011.6125E+001.0064E−011.6740E+008.4489E−021.7623E+007.1697E−02
31.2370E+002.2094E−011.3316E+001.1676E−011.3827E+009.8003E−021.4577E+008.3057E−02
49.8895E−012.6122E−011.0663E+001.3781E−011.1072E+001.1567E−011.1668E+009.8079E−02
57.8208E−013.0892E−018.4435E−011.6269E−018.7712E−011.3649E−019.2429E−011.1575E−01
66.1949E−013.6194E−016.6931E−011.9031E−016.9525E−011.5966E−017.3312E−011.3531E−01
74.9500E−014.1823E−015.3482E−012.1960E−015.5551E−011.8422E−015.8563E−011.5616E−01
84.0042E−014.7594E−014.3234E−012.4963E−014.4912E−012.0935E−014.7327E−011.7752E−01
93.2842E−015.3352E−013.5412E−012.7960E−013.6776E−012.3449E−013.8768E−011.9874E−01
102.7314E−015.8974E−012.9397E−013.0888E−013.0520E−012.5907E−013.2172E−012.1954E−01
112.3010E−016.4374E−012.4713E−013.3703E−012.5652E−012.8266E−012.7032E−012.3956E−01
121.9645E−016.9511E−012.1051E−013.6382E−012.1846E−013.0510E−012.3017E−012.5859E−01
131.6965E−017.4354E−011.8139E−013.8908E−011.8820E−013.2627E−011.9825E−012.7654E−01
141.4799E−017.8898E−011.5790E−014.1278E−011.6379E−013.4611E−011.7249E−012.9341E−01
151.3029E−018.3153E−011.3873E−014.3496E−011.4388E−013.6472E−011.5149E−013.0917E−01
161.1564E−018.7138E−011.2292E−014.5571E−011.2744E−013.8213E−011.3419E−013.2388E−01
171.0340E−019.0873E−011.0973E−014.7514E−011.1376E−013.9838E−011.1975E−013.3769E−01
189.3051E−029.4383E−019.8614E−024.9337E−011.0222E−014.1366E−011.0758E−013.5067E−01
198.4230E−029.7690E−018.9156E−025.1054E−019.2392E−024.2808E−019.7247E−023.6283E−01
207.6644E−021.0082E+008.1038E−025.2675E−018.3973E−024.4162E−018.8378E−023.7432E−01
217.0069E−021.0378E+007.4014E−025.4210E−017.6690E−024.5447E−018.0697E−023.8525E−01
226.4330E−021.0661E+006.7893E−025.5671E−017.0335E−024.6675E−017.4009E−023.9561E−01
235.9289E−021.0930E+006.2522E−025.7064E−016.4766E−024.7840E−016.8149E−024.0546E−01
245.4833E−021.1189E+005.7780E−025.8398E−015.9853E−024.8953E−016.2970E−024.1494E−01
255.0874E−021.1437E+005.3571E−025.9679E−015.5484E−025.0030E−015.8371E−024.2404E−01
264.7338E−021.1676E+004.9814E−026.0911E−015.1589E−025.1062E−015.4275E−024.3275E−01
274.4166E−021.1907E+004.6447E−026.2101E−014.8103E−025.2053E−015.0601E−024.4118E−01
284.1308E−021.2130E+004.3414E−026.3251E−014.4957E−025.3020E−014.7289E−024.4936E−01
293.8723E−021.2347E+004.0673E−026.4366E−014.2113E−025.3955E−014.4298E−024.5726E−01
303.6377E−021.2557E+003.8186E−026.5447E−013.9539E−025.4854E−014.1587E−024.6489E−01
313.4240E−021.2761E+003.5922E−026.6499E−013.7192E−025.5737E−013.9116E−024.7236E−01
323.2288E−021.2960E+003.3854E−026.7522E−013.5046E−025.6597E−013.6859E−024.7964E−01
333.0499E−021.3154E+003.1961E−026.8519E−013.3087E−025.7426E−013.4795E−024.8667E−01
342.8856E−021.3344E+003.0222E−026.9491E−013.1285E−025.8240E−013.2899E−024.9355E−01
352.7343E−021.3529E+002.8621E−027.0441E−012.9623E−025.9040E−013.1151E−025.0031E−01
362.5946E−021.3709E+002.7144E−027.1368E−012.8094E−025.9811E−012.9541E−025.0687E−01
372.4653E−021.3886E+002.5777E−027.2275E−012.6679E−026.0567E−012.8052E−025.1327E−01
382.3455E−021.4059E+002.4511E−027.3162E−012.5365E−026.1317E−012.6671E−025.1957E−01
392.2342E−021.4229E+002.3336E−027.4030E−012.4148E−026.2040E−012.5388E−025.2573E−01
402.1307E−021.4395E+002.2242E−027.4880E−012.3017E−026.2746E−012.4197E−025.3173E−01
412.0341E−021.4557E+002.1223E−027.5714E−012.1959E−026.3451E−012.3087E−025.3763E−01
421.9439E−021.4717E+002.0272E−027.6530E−012.0973E−026.4133E−012.2048E−025.4344E−01
431.8596E−021.4873E+001.9382E−027.7331E−012.0054E−026.4796E−012.1080E−025.4910E−01
441.7806E−021.5027E+001.8550E−027.8117E−011.9190E−026.5459E−012.0173E−025.5463E−01
451.7066E−021.5178E+001.7769E−027.8888E−011.8381E−026.6106E−011.9322E−025.6011E−01
461.6370E−021.5326E+001.7036E−027.9644E−011.7624E−026.6731E−011.8523E−025.6548E−01
471.5716E−021.5471E+001.6348E−028.0387E−011.6910E−026.7357E−011.7773E−025.7071E−01
481.5100E−021.5614E+001.5699E−028.1117E−011.6237E−026.7972E−011.7067E−025.7588E−01
491.4519E−021.5755E+001.5089E−028.1834E−011.5606E−026.8563E−011.6401E−025.8098E−01
501.3971E−021.5893E+001.4512E−028.2538E−011.5009E−026.9154E−011.5774E−025.8595E−01
511.3453E−021.6028E+001.3968E−028.3231E−011.4445E−026.9740E−011.5181E−025.9083E−01
521.2963E−021.6162E+001.3454E−028.3912E−011.3913E−027.0301E−011.4620E−025.9567E−01
531.2499E−021.6293E+001.2967E−028.4580E−011.3409E−027.0860E−011.4090E−026.0041E−01
541.2059E−021.6422E+001.2506E−028.5238E−011.2931E−027.1419E−011.3589E−026.0504E−01
551.1643E−021.6549E+001.2068E−028.5886E−011.2479E−027.1954E−011.3112E−026.0963E−01
561.1247E−021.6675E+001.1653E−028.6524E−011.2050E−027.2483E−011.2660E−026.1416E−01
571.0870E−021.6798E+001.1259E−028.7150E−011.1640E−027.3017E−011.2231E−026.1858E−01
581.0513E−021.6919E+001.0885E−028.7767E−011.1253E−027.3528E−011.1824E−026.2292E−01
591.0172E−021.7038E+001.0528E−028.8375E−011.0886E−027.4020E−011.1435E−026.2726E−01
609.8480E−031.7156E+001.0189E−028.8974E−011.0532E−027.4543E−011.1066E−026.3151E−01

Ne; [Z=10]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.6416E+001.8367E−011.7500E+009.8299E−021.8315E+008.2346E−021.9202E+007.0210E−02
11.5766E+001.8982E−011.6841E+001.0140E−011.7616E+008.4983E−021.8494E+007.2364E−02
21.4086E+002.0785E−011.5114E+001.1057E−011.5783E+009.2804E−021.6616E+007.8813E−02
31.1946E+002.3660E−011.2873E+001.2537E−011.3414E+001.0543E−011.4147E+008.9387E−02
49.8264E−012.7450E−011.0625E+001.4501E−011.1054E+001.2210E−011.1656E+001.0354E−01
57.9732E−013.1983E−018.6405E−011.6857E−018.9880E−011.4193E−019.4736E−011.2041E−01
66.4543E−013.7084E−017.0032E−011.9512E−017.2862E−011.6420E−017.6840E−011.3924E−01
75.2482E−014.2582E−015.6975E−012.2373E−015.9271E−011.8823E−016.2533E−011.5954E−01
84.3037E−014.8318E−014.6714E−012.5354E−014.8598E−012.1322E−015.1245E−011.8081E−01
93.5663E−015.4148E−013.8675E−012.8383E−014.0238E−012.3859E−014.2418E−012.0235E−01
102.9884E−015.9953E−013.2361E−013.1400E−013.3655E−012.6394E−013.5494E−012.2373E−01
112.5314E−016.5635E−012.7359E−013.4355E−012.8444E−012.8874E−012.9994E−012.4477E−01
122.1690E−017.1135E−012.3388E−013.7219E−012.4311E−013.1274E−012.5622E−012.6520E−01
131.8777E−017.6404E−012.0195E−013.9964E−012.0985E−013.3580E−012.2113E−012.8470E−01
141.6404E−018.1416E−011.7597E−014.2578E−011.8279E−013.5776E−011.9263E−013.0323E−01
151.4453E−018.6164E−011.5466E−014.5054E−011.6061E−013.7850E−011.6922E−013.2086E−01
161.2833E−019.0650E−011.3700E−014.7393E−011.4225E−013.9808E−011.4980E−013.3755E−01
171.1475E−019.4884E−011.2222E−014.9600E−011.2687E−014.1663E−011.3360E−013.5319E−01
181.0325E−019.8881E−011.0975E−015.1680E−011.1390E−014.3409E−011.1995E−013.6791E−01
199.3428E−021.0266E+009.9136E−025.3644E−011.0287E−014.5049E−011.0830E−013.8191E−01
208.4979E−021.0623E+009.0026E−025.5499E−019.3402E−024.6606E−019.8298E−023.9517E−01
217.7655E−021.0963E+008.2148E−025.7257E−018.5204E−024.8086E−018.9682E−024.0760E−01
227.1262E−021.1285E+007.5289E−025.8926E−017.8080E−024.9482E−018.2187E−024.1939E−01
236.5648E−021.1593E+006.9278E−026.0515E−017.1844E−025.0809E−017.5597E−024.3074E−01
246.0690E−021.1887E+006.3979E−026.2032E−016.6334E−025.2087E−016.9788E−024.4159E−01
255.6287E−021.2168E+005.9281E−026.3484E−016.1451E−025.3308E−016.4659E−024.5182E−01
265.2358E−021.2439E+005.5095E−026.4877E−015.7112E−025.4468E−016.0092E−024.6164E−01
274.8837E−021.2699E+005.1347E−026.6218E−015.3223E−025.5590E−015.5986E−024.7124E−01
284.5667E−021.2951E+004.7977E−026.7509E−014.9718E−025.6682E−015.2295E−024.8048E−01
294.2802E−021.3193E+004.4934E−026.8758E−014.6561E−025.7725E−014.8979E−024.8924E−01
304.0205E−021.3429E+004.2176E−026.9966E−014.3706E−025.8729E−014.5974E−024.9774E−01
313.7840E−021.3657E+003.9669E−027.1137E−014.1101E−025.9717E−014.3227E−025.0615E−01
323.5682E−021.3879E+003.7381E−027.2275E−013.8724E−026.0675E−014.0723E−025.1428E−01
333.3706E−021.4094E+003.5288E−027.3381E−013.6557E−026.1592E−013.8445E−025.2202E−01
343.1892E−021.4304E+003.3367E−027.4458E−013.4567E−026.2492E−013.6353E−025.2958E−01
353.0222E−021.4509E+003.1600E−027.5508E−013.2729E−026.3381E−013.4417E−025.3714E−01
362.8682E−021.4709E+002.9970E−027.6532E−013.1039E−026.4237E−013.2634E−025.4447E−01
372.7257E−021.4905E+002.8464E−027.7532E−012.9481E−026.5064E−013.0996E−025.5143E−01
382.5937E−021.5096E+002.7068E−027.8510E−012.8032E−026.5888E−012.9477E−025.5829E−01
392.4711E−021.5283E+002.5773E−027.9466E−012.6686E−026.6697E−012.8057E−025.6520E−01
402.3570E−021.5466E+002.4568E−028.0402E−012.5440E−026.7471E−012.6740E−025.7189E−01
412.2507E−021.5645E+002.3446E−028.1319E−012.4278E−026.8233E−012.5521E−025.7824E−01
422.1514E−021.5821E+002.2399E−028.2217E−012.3189E−026.8997E−012.4381E−025.8455E−01
432.0586E−021.5994E+002.1419E−028.3097E−012.2174E−026.9733E−012.3308E−025.9092E−01
441.9717E−021.6163E+002.0503E−028.3961E−012.1227E−027.0443E−012.2306E−025.9710E−01
451.8902E−021.6329E+001.9644E−028.4808E−012.0335E−027.1158E−012.1374E−026.0295E−01
461.8136E−021.6492E+001.8837E−028.5639E−011.9496E−027.1864E−012.0496E−026.0878E−01
471.7415E−021.6652E+001.8079E−028.6456E−011.8712E−027.2537E−011.9664E−026.1472E−01
481.6737E−021.6810E+001.7365E−028.7258E−011.7974E−027.3202E−011.8885E−026.2045E−01
491.6098E−021.6965E+001.6692E−028.8046E−011.7274E−027.3874E−011.8156E−026.2586E−01
501.5494E−021.7117E+001.6058E−028.8820E−011.6616E−027.4523E−011.7465E−026.3130E−01
511.4924E−021.7266E+001.5458E−028.9582E−011.5998E−027.5146E−011.6808E−026.3686E−01
521.4384E−021.7414E+001.4891E−029.0330E−011.5410E−027.5778E−011.6189E−026.4220E−01
531.3873E−021.7558E+001.4355E−029.1067E−011.4852E−027.6406E−011.5608E−026.4723E−01
541.3389E−021.7701E+001.3847E−029.1791E−011.4327E−027.7001E−011.5055E−026.5232E−01
551.2929E−021.7841E+001.3365E−029.2504E−011.3829E−027.7589E−011.4526E−026.5756E−01
561.2493E−021.7980E+001.2908E−029.3206E−011.3353E−027.8191E−011.4028E−026.6254E−01
571.2078E−021.8116E+001.2473E−029.3897E−011.2903E−027.8770E−011.3557E−026.6723E−01
581.1683E−021.8250E+001.2060E−029.4577E−011.2477E−027.9322E−011.3108E−026.7203E−01
591.1308E−021.8382E+001.1667E−029.5247E−011.2069E−027.9882E−011.2676E−026.7700E−01
601.0950E−021.8512E+001.1292E−029.5906E−011.1678E−028.0465E−011.2267E−026.8173E−01

Na; [Z=11]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
04.7823E+009.9384E−025.1198E+005.3502E−025.3083E+004.5039E−025.5741E+003.8348E−02
13.4260E+001.3450E−013.6809E+007.2184E−023.8196E+006.0722E−024.0180E+005.1618E−02
21.9625E+002.1863E−012.1215E+001.1663E−012.2038E+009.8007E−022.3226E+008.3181E−02
31.3298E+002.9721E−011.4427E+001.5792E−011.4994E+001.3265E−011.5810E+001.1255E−01
41.0167E+003.5796E−011.1057E+001.8976E−011.1495E+001.5935E−011.2123E+001.3519E−01
58.1364E−014.1211E−018.8654E−012.1809E−019.2185E−011.8310E−019.7242E−011.5532E−01
66.6281E−014.6596E−017.2329E−012.4619E−017.5222E−012.0666E−017.9358E−011.7529E−01
75.4547E−015.2136E−015.9581E−012.7505E−016.1971E−012.3085E−016.5384E−011.9579E−01
84.5282E−015.7840E−014.9477E−013.0474E−015.1463E−012.5573E−015.4299E−012.1687E−01
93.7923E−016.3655E−014.1421E−013.3498E−014.3082E−012.8108E−014.5455E−012.3835E−01
103.2049E−016.9509E−013.4969E−013.6543E−013.6367E−013.0659E−013.8366E−012.5998E−01
112.7332E−017.5314E−012.9774E−013.9564E−013.0958E−013.3191E−013.2656E−012.8143E−01
122.3532E−018.1020E−012.5580E−014.2535E−012.6591E−013.5681E−012.8045E−013.0254E−01
132.0442E−018.6564E−012.2166E−014.5425E−012.3036E−013.8104E−012.4290E−013.2307E−01
141.7904E−019.1910E−011.9362E−014.8214E−012.0116E−014.0442E−012.1207E−013.4289E−01
151.5803E−019.7036E−011.7043E−015.0890E−011.7701E−014.2685E−011.8657E−013.6191E−01
161.4049E−011.0193E+001.5109E−015.3445E−011.5688E−014.4828E−011.6532E−013.8007E−01
171.2572E−011.0659E+001.3484E−015.5879E−011.3996E−014.6868E−011.4746E−013.9737E−01
181.1317E−011.1102E+001.2108E−015.8191E−011.2564E−014.8806E−011.3235E−014.1380E−01
191.0244E−011.1523E+001.0934E−016.0386E−011.1342E−015.0646E−011.1945E−014.2940E−01
209.3180E−021.1924E+009.9242E−026.2470E−011.0293E−015.2393E−011.0838E−014.4420E−01
218.5147E−021.2304E+009.0507E−026.4449E−019.3844E−025.4052E−019.8803E−024.5826E−01
227.8130E−021.2667E+008.2899E−026.6332E−018.5938E−025.5629E−019.0466E−024.7163E−01
237.1965E−021.3012E+007.6232E−026.8125E−017.9012E−025.7131E−018.3164E−024.8436E−01
246.6517E−021.3343E+007.0357E−026.9836E−017.2911E−025.8565E−017.6733E−024.9650E−01
256.1680E−021.3659E+006.5153E−027.1472E−016.7507E−025.9935E−017.1039E−025.0811E−01
265.7364E−021.3962E+006.0519E−027.3038E−016.2698E−026.1247E−016.5971E−025.1922E−01
275.3496E−021.4254E+005.6375E−027.4543E−015.8396E−026.2506E−016.1440E−025.2989E−01
285.0015E−021.4535E+005.2652E−027.5990E−015.4534E−026.3717E−015.7371E−025.4015E−01
294.6871E−021.4806E+004.9294E−027.7384E−015.1050E−026.4885E−015.3702E−025.5003E−01
304.4021E−021.5067E+004.6254E−027.8731E−014.7897E−026.6012E−015.0382E−025.5958E−01
314.1428E−021.5321E+004.3492E−028.0033E−014.5033E−026.7102E−014.7366E−025.6880E−01
323.9063E−021.5567E+004.0975E−028.1295E−014.2423E−026.8158E−014.4618E−025.7774E−01
333.6898E−021.5806E+003.8674E−028.2520E−014.0037E−026.9182E−014.2106E−025.8642E−01
343.4912E−021.6038E+003.6564E−028.3710E−013.7850E−027.0178E−013.9803E−025.9485E−01
353.3084E−021.6264E+003.4624E−028.4867E−013.5839E−027.1146E−013.7687E−026.0304E−01
363.1399E−021.6484E+003.2837E−028.5995E−013.3986E−027.2090E−013.5736E−026.1103E−01
372.9841E−021.6699E+003.1185E−028.7095E−013.2274E−027.3010E−013.3935E−026.1882E−01
382.8398E−021.6909E+002.9657E−028.8168E−013.0690E−027.3907E−013.2267E−026.2642E−01
392.7059E−021.7114E+002.8238E−028.9217E−012.9220E−027.4785E−013.0720E−026.3384E−01
402.5813E−021.7315E+002.6920E−029.0242E−012.7853E−027.5642E−012.9282E−026.4110E−01
412.4652E−021.7511E+002.5691E−029.1245E−012.6581E−027.6481E−012.7943E−026.4820E−01
422.3568E−021.7703E+002.4546E−029.2228E−012.5394E−027.7303E−012.6693E−026.5515E−01
432.2555E−021.7892E+002.3475E−029.3190E−012.4285E−027.8108E−012.5526E−026.6196E−01
442.1607E−021.8077E+002.2473E−029.4134E−012.3246E−027.8896E−012.4434E−026.6864E−01
452.0717E−021.8259E+002.1534E−029.5059E−012.2273E−027.9670E−012.3410E−026.7518E−01
461.9882E−021.8437E+002.0652E−029.5967E−012.1360E−028.0429E−012.2449E−026.8160E−01
471.9096E−021.8612E+001.9823E−029.6858E−012.0501E−028.1174E−012.1546E−026.8791E−01
481.8356E−021.8784E+001.9043E−029.7734E−011.9693E−028.1906E−012.0696E−026.9410E−01
491.7659E−021.8953E+001.8308E−029.8594E−011.8932E−028.2625E−011.9895E−027.0019E−01
501.7000E−021.9119E+001.7615E−029.9439E−011.8214E−028.3332E−011.9139E−027.0616E−01
511.6378E−021.9283E+001.6960E−021.0027E+001.7536E−028.4026E−011.8425E−027.1204E−01
521.5790E−021.9444E+001.6340E−021.0109E+001.6894E−028.4709E−011.7751E−027.1781E−01
531.5232E−021.9602E+001.5754E−021.0189E+001.6287E−028.5380E−011.7112E−027.2350E−01
541.4704E−021.9757E+001.5199E−021.0268E+001.5712E−028.6041E−011.6507E−027.2909E−01
551.4202E−021.9911E+001.4672E−021.0346E+001.5166E−028.6692E−011.5933E−027.3459E−01
561.3726E−022.0062E+001.4172E−021.0423E+001.4649E−028.7332E−011.5389E−027.4000E−01
571.3274E−022.0211E+001.3697E−021.0498E+001.4157E−028.7962E−011.4872E−027.4533E−01
581.2843E−022.0357E+001.3245E−021.0572E+001.3689E−028.8583E−011.4380E−027.5059E−01
591.2433E−022.0502E+001.2815E−021.0646E+001.3244E−028.9194E−011.3912E−027.5576E−01
601.2042E−022.0644E+001.2406E−021.0718E+001.2820E−028.9796E−011.3466E−027.6084E−01

Mg; [Z=12]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
05.1990E+001.1836E−015.5799E+006.3908E−025.7880E+005.3816E−026.0792E+004.5838E−02
14.0878E+001.4577E−014.4006E+007.8538E−024.5679E+006.6096E−024.8079E+005.6191E−02
22.4698E+002.2243E−012.6760E+001.1921E−012.7807E+001.0024E−012.9317E+008.5105E−02
31.5529E+003.1959E−011.6913E+001.7043E−011.7586E+001.4322E−011.8547E+001.2157E−01
41.1017E+004.0638E−011.2033E+002.1601E−011.2516E+001.8145E−011.3205E+001.5398E−01
58.4946E−014.7758E−019.2971E−012.5331E−019.6728E−012.1274E−011.0209E+001.8047E−01
66.8426E−015.3991E−017.5017E−012.8589E−017.8060E−012.4007E−018.2385E−012.0367E−01
75.6388E−015.9897E−016.1899E−013.1671E−016.4419E−012.6590E−016.7986E−012.2559E−01
84.7110E−016.5741E−015.1751E−013.4716E−015.3866E−012.9140E−015.6862E−012.4716E−01
93.9760E−017.1608E−014.3683E−013.7768E−014.5469E−013.1697E−014.7999E−012.6883E−01
103.3855E−017.7492E−013.7178E−014.0826E−013.8691E−013.4264E−014.0833E−012.9065E−01
112.9058E−018.3370E−013.1874E−014.3882E−013.3166E−013.6825E−013.4996E−013.1237E−01
122.5152E−018.9187E−012.7540E−014.6911E−012.8653E−013.9362E−013.0236E−013.3382E−01
132.1941E−019.4903E−012.3971E−014.9889E−012.4934E−014.1857E−012.6309E−013.5495E−01
141.9279E−011.0048E+002.1009E−015.2795E−012.1847E−014.4293E−012.3047E−013.7560E−01
151.7060E−011.0588E+001.8538E−015.5615E−011.9271E−014.6657E−012.0325E−013.9564E−01
161.5194E−011.1110E+001.6463E−015.8337E−011.7108E−014.8939E−011.8040E−014.1499E−01
171.3616E−011.1611E+001.4709E−016.0953E−011.5280E−015.1133E−011.6108E−014.3359E−01
181.2270E−011.2091E+001.3217E−016.3461E−011.3725E−015.3235E−011.4466E−014.5141E−01
191.1115E−011.2550E+001.1938E−016.5858E−011.2394E−015.5246E−011.3059E−014.6845E−01
201.0116E−011.2988E+001.0837E−016.8148E−011.1247E−015.7165E−011.1848E−014.8473E−01
219.2480E−021.3407E+009.8818E−027.0333E−011.0253E−015.8997E−011.0799E−015.0025E−01
228.4883E−021.3808E+009.0489E−027.2418E−019.3860E−026.0745E−019.8842E−025.1507E−01
237.8199E−021.4190E+008.3184E−027.4409E−018.6262E−026.2413E−019.0826E−025.2921E−01
247.2288E−021.4557E+007.6745E−027.6312E−017.9566E−026.4008E−018.3762E−025.4272E−01
256.7035E−021.4908E+007.1039E−027.8132E−017.3635E−026.5533E−017.7508E−025.5564E−01
266.2345E−021.5245E+006.5960E−027.9876E−016.8358E−026.6993E−017.1943E−025.6802E−01
275.8141E−021.5568E+006.1419E−028.1549E−016.3640E−026.8395E−016.6970E−025.7989E−01
285.4357E−021.5880E+005.7341E−028.3157E−015.9406E−026.9741E−016.2507E−025.9130E−01
295.0938E−021.6180E+005.3665E−028.4705E−015.5590E−027.1037E−015.8486E−026.0227E−01
304.7838E−021.6470E+005.0340E−028.6197E−015.2138E−027.2286E−015.4849E−026.1285E−01
314.5019E−021.6750E+004.7320E−028.7638E−014.9005E−027.3492E−015.1549E−026.2306E−01
324.2447E−021.7021E+004.4570E−028.9031E−014.6151E−027.4658E−014.8544E−026.3294E−01
334.0094E−021.7284E+004.2058E−029.0382E−014.3545E−027.5788E−014.5799E−026.4250E−01
343.7935E−021.7540E+003.9756E−029.1691E−014.1157E−027.6884E−014.3284E−026.5178E−01
353.5950E−021.7788E+003.7641E−029.2963E−013.8964E−027.7948E−014.0975E−026.6079E−01
363.4119E−021.8030E+003.5693E−029.4200E−013.6945E−027.8983E−013.8849E−026.6955E−01
373.2427E−021.8265E+003.3895E−029.5405E−013.5080E−027.9991E−013.6886E−026.7808E−01
383.0860E−021.8495E+003.2231E−029.6579E−013.3355E−028.0972E−013.5070E−026.8638E−01
392.9406E−021.8719E+003.0688E−029.7724E−013.1756E−028.1931E−013.3386E−026.9449E−01
402.8054E−021.8938E+002.9254E−029.8843E−013.0270E−028.2866E−013.1822E−027.0241E−01
412.6795E−021.9153E+002.7920E−029.9937E−012.8886E−028.3780E−013.0366E−027.1015E−01
422.5619E−021.9363E+002.6675E−021.0101E+002.7596E−028.4675E−012.9009E−027.1771E−01
432.4521E−021.9568E+002.5512E−021.0205E+002.6392E−028.5550E−012.7741E−027.2512E−01
442.3492E−021.9770E+002.4424E−021.0308E+002.5264E−028.6407E−012.6554E−027.3238E−01
452.2528E−021.9967E+002.3405E−021.0408E+002.4208E−028.7248E−012.5443E−027.3949E−01
462.1623E−022.0161E+002.2448E−021.0507E+002.3217E−028.8072E−012.4400E−027.4646E−01
472.0771E−022.0351E+002.1549E−021.0604E+002.2285E−028.8880E−012.3419E−027.5330E−01
481.9970E−022.0538E+002.0703E−021.0699E+002.1409E−028.9674E−012.2497E−027.6001E−01
491.9214E−022.0721E+001.9906E−021.0792E+002.0583E−029.0453E−012.1628E−027.6660E−01
501.8501E−022.0902E+001.9153E−021.0884E+001.9804E−029.1219E−012.0808E−027.7308E−01
511.7827E−022.1079E+001.8443E−021.0974E+001.9068E−029.1971E−012.0034E−027.7945E−01
521.7190E−022.1253E+001.7771E−021.1062E+001.8372E−029.2711E−011.9303E−027.8570E−01
531.6586E−022.1425E+001.7136E−021.1149E+001.7714E−029.3439E−011.8610E−027.9186E−01
541.6014E−022.1594E+001.6533E−021.1235E+001.7090E−029.4155E−011.7954E−027.9791E−01
551.5471E−022.1761E+001.5962E−021.1319E+001.6499E−029.4859E−011.7332E−028.0387E−01
561.4955E−022.1925E+001.5420E−021.1402E+001.5937E−029.5552E−011.6741E−028.0974E−01
571.4465E−022.2086E+001.4905E−021.1484E+001.5404E−029.6235E−011.6180E−028.1551E−01
581.3999E−022.2245E+001.4415E−021.1564E+001.4897E−029.6907E−011.5647E−028.2119E−01
591.3554E−022.2402E+001.3949E−021.1644E+001.4414E−029.7569E−011.5139E−028.2679E−01
601.3131E−022.2557E+001.3505E−021.1722E+001.3954E−029.8222E−011.4655E−028.3235E−01

Al; [Z=13]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
05.8588E+001.3210E−016.3025E+007.1601E−026.5403E+006.0318E−026.8747E+005.1372E−02
14.6839E+001.5975E−015.0545E+008.6406E−025.2486E+007.2754E−025.5260E+006.1871E−02
22.8993E+002.3638E−013.1505E+001.2722E−013.2750E+001.0703E−013.4536E+009.0908E−02
31.7944E+003.4084E−011.9621E+001.8246E−012.0413E+001.5340E−012.1539E+001.3024E−01
41.2198E+004.4565E−011.3385E+002.3762E−011.3932E+001.9968E−011.4705E+001.6949E−01
59.0675E−015.3577E−019.9701E−012.8493E−011.0379E+002.3937E−011.0957E+002.0316E−01
67.1549E−016.1144E−017.8795E−013.2457E−018.2038E−012.7264E−018.6618E−012.3136E−01
75.8495E−016.7819E−016.4509E−013.5947E−016.7174E−013.0191E−017.0934E−012.5616E−01
84.8851E−017.4063E−015.3930E−013.9204E−015.6169E−013.2918E−015.9317E−012.7929E−01
94.1370E−018.0125E−014.5698E−014.2360E−014.7600E−013.5562E−015.0268E−013.0170E−01
103.5399E−018.6110E−013.9104E−014.5470E−014.0727E−013.8173E−014.3007E−013.2384E−01
113.0538E−019.2064E−013.3713E−014.8566E−013.5110E−014.0766E−013.7073E−013.4583E−01
122.6561E−019.7964E−012.9285E−015.1638E−013.0494E−014.3339E−013.2198E−013.6761E−01
132.3268E−011.0380E+002.5607E−015.4673E−012.6659E−014.5882E−012.8146E−013.8916E−01
142.0517E−011.0953E+002.2528E−015.7658E−012.3448E−014.8384E−012.4751E−014.1037E−01
151.8206E−011.1513E+001.9939E−016.0579E−012.0747E−015.0833E−012.1895E−014.3112E−01
161.6253E−011.2058E+001.7749E−016.3423E−011.8462E−015.3217E−011.9479E−014.5133E−01
171.4592E−011.2586E+001.5886E−016.6180E−011.6518E−015.5528E−011.7424E−014.7093E−01
181.3169E−011.3096E+001.4292E−016.8843E−011.4856E−015.7762E−011.5667E−014.8986E−01
191.1943E−011.3586E+001.2922E−017.1409E−011.3426E−015.9913E−011.4156E−015.0810E−01
201.0881E−011.4058E+001.1736E−017.3875E−011.2190E−016.1981E−011.2849E−015.2563E−01
219.9546E−021.4511E+001.0705E−017.6242E−011.1116E−016.3965E−011.1714E−015.4246E−01
229.1426E−021.4946E+009.8045E−027.8511E−011.0177E−016.5868E−011.0723E−015.5859E−01
238.4269E−021.5363E+009.0132E−028.0686E−019.3529E−026.7692E−019.8521E−025.7405E−01
247.7931E−021.5763E+008.3147E−028.2772E−018.6256E−026.9440E−019.0842E−025.8886E−01
257.2292E−021.6148E+007.6953E−028.4771E−017.9809E−027.1115E−018.4037E−026.0307E−01
266.7252E−021.6517E+007.1436E−028.6689E−017.4069E−027.2723E−017.7980E−026.1669E−01
276.2730E−021.6873E+006.6501E−028.8531E−016.8937E−027.4266E−017.2565E−026.2977E−01
285.8656E−021.7215E+006.2070E−029.0302E−016.4330E−027.5750E−016.7706E−026.4234E−01
295.4974E−021.7544E+005.8076E−029.2007E−016.0179E−027.7178E−016.3329E−026.5443E−01
305.1634E−021.7863E+005.4463E−029.3650E−015.6425E−027.8553E−015.9371E−026.6608E−01
314.8595E−021.8170E+005.1183E−029.5235E−015.3019E−027.9880E−015.5781E−026.7732E−01
324.5822E−021.8468E+004.8198E−029.6767E−014.9918E−028.1163E−015.2514E−026.8818E−01
334.3284E−021.8757E+004.5471E−029.8249E−014.7088E−028.2403E−014.9531E−026.9869E−01
344.0955E−021.9037E+004.2973E−029.9685E−014.4496E−028.3605E−014.6800E−027.0886E−01
353.8813E−021.9308E+004.0680E−021.0108E+004.2116E−028.4770E−014.4294E−027.1873E−01
363.6838E−021.9573E+003.8569E−021.0243E+003.9926E−028.5902E−014.1987E−027.2831E−01
373.5013E−021.9830E+003.6621E−021.0375E+003.7906E−028.7003E−013.9859E−027.3762E−01
383.3322E−022.0080E+003.4819E−021.0503E+003.6037E−028.8074E−013.7891E−027.4669E−01
393.1754E−022.0325E+003.3149E−021.0628E+003.4305E−028.9118E−013.6068E−027.5552E−01
403.0296E−022.0563E+003.1599E−021.0749E+003.2697E−029.0135E−013.4375E−027.6414E−01
412.8937E−022.0796E+003.0155E−021.0868E+003.1201E−029.1129E−013.2800E−027.7255E−01
422.7670E−022.1024E+002.8810E−021.0984E+002.9806E−029.2100E−013.1332E−027.8076E−01
432.6486E−022.1247E+002.7554E−021.1098E+002.8504E−029.3050E−012.9961E−027.8879E−01
442.5377E−022.1466E+002.6378E−021.1209E+002.7286E−029.3979E−012.8679E−027.9666E−01
452.4338E−022.1680E+002.5278E−021.1318E+002.6145E−029.4888E−012.7478E−028.0435E−01
462.3362E−022.1890E+002.4244E−021.1424E+002.5074E−029.5780E−012.6352E−028.1189E−01
472.2445E−022.2096E+002.3274E−021.1529E+002.4069E−029.6654E−012.5293E−028.1929E−01
482.1582E−022.2298E+002.2361E−021.1632E+002.3123E−029.7511E−012.4298E−028.2654E−01
492.0768E−022.2496E+002.1501E−021.1732E+002.2232E−029.8353E−012.3360E−028.3366E−01
502.0000E−022.2691E+002.0690E−021.1831E+002.1391E−029.9179E−012.2476E−028.4065E−01
511.9274E−022.2883E+001.9924E−021.1928E+002.0598E−029.9991E−012.1641E−028.4751E−01
521.8587E−022.3071E+001.9200E−021.2024E+001.9848E−021.0079E+002.0852E−028.5426E−01
531.7937E−022.3257E+001.8514E−021.2118E+001.9138E−021.0157E+002.0105E−028.6090E−01
541.7321E−022.3439E+001.7865E−021.2210E+001.8465E−021.0235E+001.9398E−028.6742E−01
551.6737E−022.3619E+001.7249E−021.2301E+001.7828E−021.0310E+001.8727E−028.7384E−01
561.6182E−022.3796E+001.6665E−021.2390E+001.7222E−021.0385E+001.8090E−028.8016E−01
571.5654E−022.3970E+001.6109E−021.2478E+001.6647E−021.0459E+001.7485E−028.8638E−01
581.5152E−022.4142E+001.5581E−021.2565E+001.6100E−021.0531E+001.6910E−028.9250E−01
591.4673E−022.4311E+001.5079E−021.2651E+001.5580E−021.0602E+001.6363E−028.9853E−01
601.4218E−022.4478E+001.4600E−021.2734E+001.5085E−021.0673E+001.5842E−029.0448E−01

Si; [Z=14]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
05.7670E+001.5342E−016.2279E+008.3536E−026.4654E+007.0425E−026.7983E+006.0010E−02
14.8204E+001.7816E−015.2205E+009.6834E−025.4236E+008.1585E−025.7124E+006.9415E−02
23.1875E+002.4867E−013.4760E+001.3453E−013.6152E+001.1325E−013.8137E+009.6236E−02
32.0207E+003.5156E−012.2195E+001.8911E−012.3103E+001.5910E−012.4388E+001.3513E−01
41.3552E+004.6543E−011.4952E+002.4918E−011.5573E+002.0952E−011.6445E+001.7791E−01
59.8182E−015.7164E−011.0853E+003.0509E−011.1307E+002.5643E−011.1942E+002.1770E−01
67.5804E−016.6307E−018.3889E−013.5311E−018.7403E−012.9671E−019.2322E−012.5186E−01
76.1157E−017.4140E−016.7753E−013.9414E−017.0598E−013.3113E−017.4578E−012.8105E−01
85.0775E−018.1102E−015.6308E−014.3055E−015.8679E−013.6166E−016.1992E−013.0693E−01
94.2953E−018.7578E−014.7675E−014.6432E−014.9689E−013.8996E−015.2497E−013.3092E−01
103.6811E−019.3811E−014.0879E−014.9671E−014.2608E−014.1710E−014.5017E−013.5392E−01
113.1849E−019.9907E−013.5366E−015.2841E−013.6861E−014.4366E−013.8945E−013.7643E−01
122.7802E−011.0590E+003.0848E−015.5962E−013.2149E−014.6983E−013.3964E−013.9860E−01
132.4442E−011.1183E+002.7084E−015.9046E−012.8221E−014.9567E−012.9812E−014.2050E−01
142.1623E−011.1768E+002.3915E−016.2089E−012.4915E−015.2117E−012.6315E−014.4212E−01
151.9242E−011.2343E+002.1234E−016.5082E−012.2115E−015.4626E−012.3354E−014.6338E−01
161.7220E−011.2905E+001.8952E−016.8015E−011.9733E−015.7084E−012.0834E−014.8421E−01
171.5492E−011.3454E+001.7000E−017.0877E−011.7694E−015.9484E−011.8677E−015.0456E−01
181.4006E−011.3987E+001.5321E−017.3662E−011.5941E−016.1819E−011.6822E−015.2435E−01
191.2721E−011.4504E+001.3870E−017.6363E−011.4426E−016.4083E−011.5220E−015.4355E−01
201.1604E−011.5003E+001.2610E−017.8975E−011.3111E−016.6274E−011.3828E−015.6213E−01
211.0627E−011.5485E+001.1511E−018.1497E−011.1964E−016.8389E−011.2615E−015.8006E−01
229.7686E−021.5950E+001.0548E−018.3928E−011.0959E−017.0428E−011.1553E−015.9734E−01
239.0108E−021.6398E+009.7002E−028.6268E−011.0074E−017.2390E−011.0617E−016.1398E−01
248.3384E−021.6830E+008.9502E−028.8521E−019.2919E−027.4278E−019.7910E−026.2999E−01
257.7393E−021.7245E+008.2842E−029.0687E−018.5977E−027.6095E−019.0575E−026.4539E−01
267.2032E−021.7645E+007.6904E−029.2771E−017.9790E−027.7842E−018.4039E−026.6020E−01
276.7216E−021.8031E+007.1587E−029.4777E−017.4253E−027.9523E−017.8192E−026.7444E−01
286.2873E−021.8403E+006.6811E−029.6707E−016.9280E−028.1141E−017.2942E−026.8815E−01
295.8944E−021.8762E+006.2503E−029.8568E−016.4797E−028.2699E−016.8211E−027.0136E−01
305.5377E−021.9108E+005.8606E−021.0036E+006.0743E−028.4202E−016.3933E−027.1409E−01
315.2130E−021.9444E+005.5068E−021.0209E+005.7064E−028.5652E−016.0052E−027.2638E−01
324.9165E−021.9768E+005.1847E−021.0377E+005.3716E−028.7053E−015.6521E−027.3824E−01
334.6449E−022.0082E+004.8906E−021.0538E+005.0660E−028.8408E−015.3299E−027.4972E−01
344.3957E−022.0387E+004.6212E−021.0695E+004.7862E−028.9719E−015.0349E−027.6082E−01
354.1663E−022.0683E+004.3740E−021.0847E+004.5294E−029.0990E−014.7642E−027.7159E−01
363.9547E−022.0970E+004.1464E−021.0994E+004.2931E−029.2224E−014.5153E−027.8203E−01
373.7592E−022.1250E+003.9364E−021.1138E+004.0752E−029.3422E−014.2856E−027.9217E−01
383.5780E−022.1522E+003.7423E−021.1277E+003.8737E−029.4587E−014.0734E−028.0203E−01
393.4099E−022.1788E+003.5624E−021.1412E+003.6871E−029.5720E−013.8768E−028.1163E−01
403.2536E−022.2046E+003.3955E−021.1545E+003.5138E−029.6825E−013.6944E−028.2097E−01
413.1080E−022.2299E+003.2401E−021.1673E+003.3527E−029.7902E−013.5247E−028.3009E−01
422.9722E−022.2546E+003.0954E−021.1799E+003.2026E−029.8954E−013.3666E−028.3899E−01
432.8452E−022.2788E+002.9602E−021.1922E+003.0625E−029.9980E−013.2191E−028.4768E−01
442.7263E−022.3024E+002.8339E−021.2042E+002.9314E−021.0099E+003.0812E−028.5617E−01
452.6149E−022.3255E+002.7155E−021.2160E+002.8088E−021.0197E+002.9520E−028.6448E−01
462.5103E−022.3482E+002.6045E−021.2275E+002.6937E−021.0293E+002.8309E−028.7262E−01
472.4120E−022.3704E+002.5002E−021.2387E+002.5856E−021.0387E+002.7172E−028.8059E−01
482.3194E−022.3922E+002.4022E−021.2498E+002.4840E−021.0480E+002.6102E−028.8841E−01
492.2322E−022.4136E+002.3098E−021.2606E+002.3883E−021.0570E+002.5095E−028.9607E−01
502.1499E−022.4346E+002.2227E−021.2713E+002.2980E−021.0659E+002.4145E−029.0359E−01
512.0721E−022.4553E+002.1405E−021.2817E+002.2128E−021.0746E+002.3248E−029.1097E−01
521.9986E−022.4755E+002.0627E−021.2920E+002.1323E−021.0832E+002.2401E−029.1822E−01
531.9289E−022.4955E+001.9892E−021.3021E+002.0561E−021.0916E+002.1600E−029.2535E−01
541.8629E−022.5151E+001.9195E−021.3120E+001.9839E−021.0999E+002.0840E−029.3236E−01
551.8003E−022.5345E+001.8535E−021.3218E+001.9155E−021.1081E+002.0120E−029.3925E−01
561.7408E−022.5535E+001.7908E−021.3314E+001.8506E−021.1161E+001.9437E−029.4603E−01
571.6843E−022.5722E+001.7312E−021.3408E+001.7889E−021.1240E+001.8788E−029.5270E−01
581.6305E−022.5907E+001.6746E−021.3501E+001.7303E−021.1317E+001.8172E−029.5926E−01
591.5793E−022.6088E+001.6207E−021.3593E+001.6744E−021.1394E+001.7585E−029.6573E−01
601.5305E−022.6268E+001.5693E−021.3683E+001.6213E−021.1470E+001.7025E−029.7211E−01

P; [Z=15]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
05.4043E+001.7700E−015.8630E+009.6904E−026.0901E+008.1757E−026.4054E+006.9716E−02
14.6991E+001.9853E−015.1119E+001.0850E−015.3138E+009.1488E−025.5987E+007.7888E−02
23.3312E+002.6134E−013.6481E+001.4221E−013.7964E+001.1981E−014.0063E+001.0187E−01
32.2044E+003.5783E−012.4327E+001.9360E−012.5340E+001.6299E−012.6761E+001.3851E−01
41.4906E+004.7310E−011.6542E+002.5457E−011.7242E+002.1419E−011.8217E+001.8196E−01
51.0670E+005.8970E−011.1870E+003.1606E−011.2376E+002.6579E−011.3080E+002.2573E−01
68.1013E−016.9558E−019.0182E−013.7181E−019.4031E−013.1258E−019.9378E−012.6542E−01
76.4462E−017.8740E−017.1774E−014.2010E−017.4839E−013.5310E−017.9094E−012.9979E−01
85.3036E−018.6737E−015.9083E−014.6203E−016.1611E−013.8827E−016.5119E−013.2960E−01
94.4664E−019.3899E−014.9795E−014.9945E−015.1930E−014.1964E−015.4887E−013.5621E−01
103.8226E−011.0056E+004.2643E−015.3419E−014.4475E−014.4875E−014.7010E−013.8088E−01
113.3092E−011.0692E+003.6927E−015.6730E−013.8514E−014.7650E−014.0710E−014.0440E−01
122.8940E−011.1310E+003.2289E−015.9937E−013.3675E−015.0338E−013.5595E−014.2717E−01
132.5504E−011.1915E+002.8435E−016.3082E−012.9653E−015.2974E−013.1342E−014.4951E−01
142.2620E−011.2511E+002.5185E−016.6181E−012.6260E−015.5570E−012.7752E−014.7151E−01
152.0180E−011.3097E+002.2427E−016.9233E−012.3379E−015.8128E−012.4704E−014.9319E−01
161.8100E−011.3673E+002.0070E−017.2233E−012.0916E−016.0642E−012.2098E−015.1450E−01
171.6317E−011.4238E+001.8044E−017.5176E−011.8799E−016.3109E−011.9857E−015.3541E−01
181.4779E−011.4790E+001.6294E−017.8054E−011.6970E−016.5522E−011.7921E−015.5587E−01
191.3444E−011.5327E+001.4775E−018.0861E−011.5382E−016.7875E−011.6240E−015.7582E−01
201.2280E−011.5849E+001.3451E−018.3592E−011.3999E−017.0165E−011.4775E−015.9523E−01
211.1260E−011.6356E+001.2292E−018.6242E−011.2787E−017.2388E−011.3493E−016.1408E−01
221.0361E−011.6847E+001.1272E−018.8810E−011.1722E−017.4541E−011.2366E−016.3234E−01
239.5662E−021.7322E+001.0373E−019.1294E−011.0782E−017.6625E−011.1371E−016.5000E−01
248.8597E−021.7781E+009.5753E−029.3695E−019.9495E−027.8638E−011.0490E−016.6707E−01
258.2290E−021.8225E+008.8657E−029.6012E−019.2088E−028.0581E−019.7067E−026.8355E−01
267.6640E−021.8653E+008.2320E−029.8249E−018.5476E−028.2457E−019.0075E−026.9945E−01
277.1557E−021.9067E+007.6641E−021.0041E+007.9552E−028.4267E−018.3812E−027.1479E−01
286.6968E−021.9467E+007.1532E−021.0249E+007.4225E−028.6013E−017.8184E−027.2959E−01
296.2812E−021.9854E+006.6921E−021.0450E+006.9420E−028.7698E−017.3108E−027.4387E−01
305.9036E−022.0228E+006.2747E−021.0644E+006.5072E−028.9324E−016.8515E−027.5766E−01
315.5594E−022.0590E+005.8956E−021.0832E+006.1125E−029.0896E−016.4348E−027.7097E−01
325.2449E−022.0940E+005.5504E−021.1013E+005.7532E−029.2415E−016.0554E−027.8384E−01
334.9567E−022.1280E+005.2350E−021.1188E+005.4251E−029.3884E−015.7092E−027.9629E−01
344.6920E−022.1610E+004.9463E−021.1358E+005.1247E−029.5307E−015.3924E−028.0834E−01
354.4482E−022.1930E+004.6811E−021.1523E+004.8491E−029.6686E−015.1016E−028.2002E−01
364.2232E−022.2241E+004.4371E−021.1683E+004.5954E−029.8023E−014.8342E−028.3134E−01
374.0151E−022.2543E+004.2120E−021.1838E+004.3616E−029.9322E−014.5876E−028.4234E−01
383.8223E−022.2838E+004.0039E−021.1989E+004.1454E−021.0058E+004.3598E−028.5302E−01
393.6433E−022.3125E+003.8111E−021.2136E+003.9452E−021.0181E+004.1488E−028.6341E−01
403.4768E−022.3405E+003.6322E−021.2278E+003.7595E−021.0301E+003.9530E−028.7353E−01
413.3217E−022.3678E+003.4657E−021.2418E+003.5867E−021.0417E+003.7710E−028.8338E−01
423.1769E−022.3944E+003.3107E−021.2553E+003.4258E−021.0531E+003.6015E−028.9299E−01
433.0415E−022.4205E+003.1659E−021.2686E+003.2756E−021.0641E+003.4434E−029.0237E−01
442.9148E−022.4459E+003.0306E−021.2816E+003.1353E−021.0750E+003.2956E−029.1152E−01
452.7960E−022.4709E+002.9040E−021.2942E+003.0039E−021.0855E+003.1572E−029.2048E−01
462.6844E−022.4953E+002.7852E−021.3066E+002.8807E−021.0959E+003.0275E−029.2924E−01
472.5795E−022.5192E+002.6736E−021.3187E+002.7650E−021.1060E+002.9057E−029.3781E−01
482.4808E−022.5426E+002.5687E−021.3306E+002.6562E−021.1160E+002.7912E−029.4621E−01
492.3878E−022.5656E+002.4699E−021.3423E+002.5538E−021.1257E+002.6834E−029.5444E−01
502.3000E−022.5882E+002.3767E−021.3537E+002.4573E−021.1352E+002.5818E−029.6251E−01
512.2170E−022.6104E+002.2888E−021.3649E+002.3662E−021.1446E+002.4859E−029.7043E−01
522.1385E−022.6322E+002.2057E−021.3759E+002.2801E−021.1538E+002.3953E−029.7821E−01
532.0643E−022.6536E+002.1271E−021.3867E+002.1986E−021.1628E+002.3096E−029.8584E−01
541.9939E−022.6746E+002.0527E−021.3973E+002.1215E−021.1717E+002.2285E−029.9334E−01
551.9271E−022.6954E+001.9821E−021.4078E+002.0484E−021.1804E+002.1515E−021.0007E+00
561.8636E−022.7157E+001.9151E−021.4181E+001.9790E−021.1890E+002.0785E−021.0080E+00
571.8033E−022.7358E+001.8515E−021.4282E+001.9131E−021.1974E+002.0092E−021.0151E+00
581.7460E−022.7556E+001.7910E−021.4381E+001.8504E−021.2057E+001.9433E−021.0221E+00
591.6914E−022.7750E+001.7334E−021.4479E+001.7908E−021.2139E+001.8806E−021.0290E+00
601.6394E−022.7943E+001.6786E−021.4575E+001.7340E−021.2220E+001.8208E−021.0359E+00

S; [Z=16]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
05.0445E+001.9983E−015.5003E+001.1006E−015.7166E+009.2940E−026.0148E+007.9309E−02
14.5062E+002.1901E−014.9261E+001.2043E−015.1240E+001.0162E−015.4007E+008.6578E−02
23.3751E+002.7550E−013.7136E+001.5086E−013.8669E+001.2720E−014.0828E+001.0821E−01
32.3354E+003.6478E−012.5903E+001.9859E−012.6999E+001.6733E−012.8526E+001.4229E−01
41.6115E+004.7690E−011.7993E+002.5809E−011.8770E+002.1731E−011.9843E+001.8470E−01
51.1541E+005.9775E−011.2931E+003.2194E−011.3494E+002.7091E−011.4270E+002.3017E−01
68.6808E−017.1423E−019.7316E−013.8340E−011.0157E+003.2250E−011.0741E+002.7395E−01
76.8299E−018.1899E−017.6521E−014.3867E−017.9856E−013.6889E−018.4450E−013.1330E−01
85.5679E−019.1077E−016.2350E−014.8699E−016.5066E−014.0943E−016.8801E−013.4771E−01
94.6595E−019.9171E−015.2180E−015.2946E−015.4451E−014.4508E−015.7581E−013.7790E−01
103.9738E−011.0649E+004.4520E−015.6770E−014.6461E−014.7711E−014.9129E−014.0510E−01
113.4348E−011.1330E+003.8498E−016.0318E−014.0179E−015.0685E−014.2485E−014.3031E−01
123.0042E−011.1976E+003.3678E−016.3679E−013.5148E−015.3503E−013.7169E−014.5417E−01
132.6504E−011.2601E+002.9705E−016.6926E−013.1001E−015.6223E−013.2783E−014.7722E−01
142.3542E−011.3212E+002.6366E−017.0098E−012.7513E−015.8881E−012.9093E−014.9973E−01
152.1040E−011.3811E+002.3533E−017.3211E−012.4553E−016.1489E−012.5960E−015.2184E−01
161.8907E−011.4399E+002.1108E−017.6271E−012.2019E−016.4054E−012.3277E−015.4358E−01
171.7075E−011.4977E+001.9019E−017.9279E−011.9834E−016.6575E−012.0963E−015.6494E−01
181.5490E−011.5543E+001.7208E−018.2231E−011.7940E−016.9049E−011.8958E−015.8591E−01
191.4113E−011.6097E+001.5631E−018.5122E−011.6290E−017.1473E−011.7210E−016.0646E−01
201.2909E−011.6638E+001.4252E−018.7947E−011.4847E−017.3842E−011.5682E−016.2654E−01
211.1851E−011.7165E+001.3040E−019.0702E−011.3579E−017.6152E−011.4339E−016.4613E−01
221.0918E−011.7678E+001.1971E−019.3384E−011.2461E−017.8401E−011.3154E−016.6520E−01
231.0090E−011.8176E+001.1025E−019.5990E−011.1472E−018.0587E−011.2106E−016.8373E−01
249.3536E−021.8660E+001.0185E−019.8519E−011.0593E−018.2708E−011.1176E−017.0171E−01
258.6951E−021.9128E+009.4349E−021.0097E+009.8093E−028.4763E−011.0346E−017.1915E−01
268.1041E−021.9582E+008.7643E−021.0334E+009.1084E−028.6754E−019.6043E−027.3603E−01
277.5719E−022.0022E+008.1623E−021.0564E+008.4795E−028.8681E−018.9388E−027.5237E−01
287.0908E−022.0448E+007.6200E−021.0786E+007.9133E−029.0546E−018.3398E−027.6817E−01
296.6546E−022.0861E+007.1301E−021.1001E+007.4019E−029.2349E−017.7990E−027.8346E−01
306.2579E−022.1261E+006.6862E−021.1210E+006.9388E−029.4093E−017.3093E−027.9825E−01
315.8960E−022.1648E+006.2827E−021.1411E+006.5180E−029.5782E−016.8646E−028.1256E−01
325.5649E−022.2024E+005.9150E−021.1606E+006.1347E−029.7415E−016.4596E−028.2640E−01
335.2613E−022.2389E+005.5790E−021.1795E+005.7846E−029.8998E−016.0898E−028.3981E−01
344.9821E−022.2743E+005.2712E−021.1978E+005.4640E−021.0053E+005.7513E−028.5280E−01
354.7249E−022.3087E+004.9885E−021.2155E+005.1697E−021.0202E+005.4406E−028.6539E−01
364.4873E−022.3422E+004.7282E−021.2328E+004.8989E−021.0346E+005.1548E−028.7761E−01
374.2675E−022.3747E+004.4882E−021.2495E+004.6492E−021.0486E+004.8913E−028.8946E−01
384.0636E−022.4064E+004.2662E−021.2657E+004.4184E−021.0622E+004.6478E−029.0098E−01
393.8743E−022.4372E+004.0605E−021.2816E+004.2046E−021.0754E+004.4224E−029.1219E−01
403.6980E−022.4673E+003.8696E−021.2969E+004.0062E−021.0883E+004.2133E−029.2308E−01
413.5337E−022.4967E+003.6921E−021.3119E+003.8218E−021.1008E+004.0188E−029.3370E−01
423.3803E−022.5253E+003.5267E−021.3266E+003.6500E−021.1131E+003.8378E−029.4404E−01
433.2368E−022.5533E+003.3724E−021.3408E+003.4898E−021.1250E+003.6689E−029.5414E−01
443.1025E−022.5807E+003.2281E−021.3547E+003.3400E−021.1366E+003.5111E−029.6398E−01
452.9765E−022.6075E+003.0930E−021.3683E+003.1999E−021.1480E+003.3634E−029.7361E−01
462.8581E−022.6337E+002.9664E−021.3816E+003.0684E−021.1591E+003.2250E−029.8301E−01
472.7468E−022.6594E+002.8475E−021.3946E+002.9451E−021.1700E+003.0951E−029.9221E−01
482.6421E−022.6845E+002.7357E−021.4074E+002.8291E−021.1806E+002.9730E−021.0012E+00
492.5433E−022.7092E+002.6304E−021.4199E+002.7199E−021.1911E+002.8580E−021.0100E+00
502.4501E−022.7334E+002.5312E−021.4321E+002.6171E−021.2013E+002.7497E−021.0187E+00
512.3620E−022.7571E+002.4375E−021.4441E+002.5200E−021.2113E+002.6475E−021.0272E+00
522.2787E−022.7805E+002.3491E−021.4559E+002.4282E−021.2211E+002.5510E−021.0355E+00
532.1998E−022.8034E+002.2653E−021.4674E+002.3415E−021.2308E+002.4597E−021.0436E+00
542.1250E−022.8259E+002.1861E−021.4788E+002.2593E−021.2403E+002.3732E−021.0516E+00
552.0541E−022.8481E+002.1109E−021.4899E+002.1815E−021.2496E+002.2912E−021.0595E+00
561.9867E−022.8698E+002.0396E−021.5009E+002.1076E−021.2587E+002.2135E−021.0673E+00
571.9227E−022.8913E+001.9719E−021.5117E+002.0374E−021.2678E+002.1397E−021.0749E+00
581.8617E−022.9124E+001.9076E−021.5223E+001.9707E−021.2766E+002.0695E−021.0824E+00
591.8038E−022.9332E+001.8463E−021.5328E+001.9073E−021.2853E+002.0028E−021.0898E+00
601.7485E−022.9537E+001.7880E−021.5430E+001.8469E−021.2939E+001.9393E−021.0970E+00

Cl; [Z=17]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
04.7069E+002.2194E−015.1598E+001.2301E−015.3666E+001.0397E−015.6495E+008.8780E−02
14.2877E+002.3926E−014.7120E+001.3241E−014.9046E+001.1184E−015.1712E+009.5354E−02
23.3531E+002.9056E−013.7081E+001.6015E−013.8640E+001.3516E−014.0819E+001.1505E−01
32.4173E+003.7298E−012.6954E+002.0440E−012.8115E+001.7238E−012.9718E+001.4669E−01
41.7110E+004.7986E−011.9222E+002.6133E−012.0068E+002.2022E−012.1230E+001.8727E−01
51.2362E+006.0057E−011.3953E+003.2524E−011.4575E+002.7389E−011.5423E+002.3284E−01
69.2764E−017.2310E−011.0483E+003.9001E−011.0952E+003.2826E−011.1591E+002.7895E−01
77.2468E−018.3821E−018.1807E−014.5087E−018.5463E−013.7935E−019.0437E−013.2233E−01
85.8626E−019.4156E−016.6076E−015.0550E−016.9014E−014.2523E−017.3026E−013.6123E−01
94.8753E−011.0330E+005.4885E−015.5374E−015.7320E−014.6570E−016.0644E−013.9558E−01
104.1394E−011.1146E+004.6582E−015.9658E−014.8643E−015.0167E−015.1462E−014.2608E−01
113.5679E−011.1890E+004.0153E−016.3545E−014.1929E−015.3427E−014.4359E−014.5371E−01
123.1166E−011.2581E+003.5082E−016.7145E−013.6636E−015.6442E−013.8759E−014.7927E−01
132.7490E−011.3237E+003.0947E−017.0556E−013.2318E−015.9299E−013.4191E−015.0349E−01
142.4430E−011.3870E+002.7494E−017.3840E−012.8711E−016.2051E−013.0374E−015.2680E−01
152.1853E−011.4486E+002.4576E−017.7036E−012.5661E−016.4729E−012.7146E−015.4949E−01
161.9661E−011.5088E+002.2082E−018.0164E−012.3054E−016.7350E−012.4385E−015.7170E−01
171.7779E−011.5679E+001.9933E−018.3235E−012.0806E−016.9923E−012.2004E−015.9350E−01
181.6151E−011.6258E+001.8067E−018.6250E−011.8853E−017.2450E−011.9936E−016.1492E−01
191.4734E−011.6827E+001.6439E−018.9210E−011.7149E−017.4931E−011.8130E−016.3595E−01
201.3494E−011.7383E+001.5011E−019.2112E−011.5654E−017.7364E−011.6545E−016.5657E−01
211.2403E−011.7927E+001.3753E−019.4953E−011.4337E−017.9746E−011.5149E−016.7676E−01
221.1438E−011.8458E+001.2640E−019.7728E−011.3172E−018.2073E−011.3914E−016.9649E−01
231.0582E−011.8976E+001.1653E−011.0044E+001.2138E−018.4344E−011.2819E−017.1575E−01
249.8189E−021.9481E+001.0774E−011.0307E+001.1217E−018.6556E−011.1843E−017.3451E−01
259.1356E−021.9971E+009.9880E−021.0564E+001.0395E−018.8709E−011.0971E−017.5276E−01
268.5216E−022.0448E+009.2835E−021.0813E+009.6575E−029.0801E−011.0190E−017.7050E−01
277.9680E−022.0911E+008.6500E−021.1056E+008.9947E−029.2833E−019.4880E−027.8773E−01
287.4671E−022.1361E+008.0785E−021.1291E+008.3970E−029.4804E−018.8551E−028.0444E−01
297.0124E−022.1797E+007.5615E−021.1519E+007.8565E−029.6716E−018.2829E−028.2066E−01
306.5984E−022.2221E+007.0925E−021.1740E+007.3664E−029.8570E−017.7641E−028.3638E−01
316.2204E−022.2633E+006.6658E−021.1954E+006.9207E−021.0037E+007.2926E−028.5162E−01
325.8742E−022.3033E+006.2766E−021.2162E+006.5144E−021.0211E+006.8628E−028.6640E−01
335.5565E−022.3421E+005.9207E−021.2364E+006.1430E−021.0380E+006.4700E−028.8073E−01
345.2642E−022.3799E+005.5944E−021.2560E+005.8027E−021.0544E+006.1103E−028.9463E−01
354.9945E−022.4166E+005.2946E−021.2750E+005.4902E−021.0703E+005.7801E−029.0811E−01
364.7453E−022.4523E+005.0186E−021.2934E+005.2025E−021.0858E+005.4762E−029.2120E−01
374.5146E−022.4871E+004.7638E−021.3113E+004.9371E−021.1008E+005.1959E−029.3392E−01
384.3004E−022.5210E+004.5282E−021.3288E+004.6918E−021.1154E+004.9369E−029.4628E−01
394.1013E−022.5540E+004.3099E−021.3457E+004.4646E−021.1296E+004.6971E−029.5830E−01
403.9159E−022.5862E+004.1072E−021.3622E+004.2537E−021.1434E+004.4746E−029.6999E−01
413.7430E−022.6176E+003.9187E−021.3783E+004.0577E−021.1568E+004.2677E−029.8138E−01
423.5814E−022.6483E+003.7431E−021.3940E+003.8751E−021.1700E+004.0752E−029.9248E−01
433.4302E−022.6783E+003.5792E−021.4093E+003.7047E−021.1827E+003.8955E−021.0033E+00
443.2886E−022.7076E+003.4260E−021.4242E+003.5455E−021.1952E+003.7277E−021.0138E+00
453.1557E−022.7362E+003.2826E−021.4387E+003.3966E−021.2074E+003.5707E−021.0242E+00
463.0308E−022.7642E+003.1481E−021.4530E+003.2569E−021.2193E+003.4235E−021.0342E+00
472.9134E−022.7917E+003.0218E−021.4669E+003.1258E−021.2309E+003.2854E−021.0441E+00
482.8027E−022.8186E+002.9031E−021.4805E+003.0026E−021.2423E+003.1556E−021.0537E+00
492.6984E−022.8450E+002.7914E−021.4939E+002.8867E−021.2535E+003.0334E−021.0631E+00
502.5999E−022.8708E+002.6860E−021.5069E+002.7774E−021.2644E+002.9183E−021.0724E+00
512.5068E−022.8962E+002.5866E−021.5197E+002.6742E−021.2751E+002.8097E−021.0814E+00
522.4187E−022.9211E+002.4927E−021.5323E+002.5768E−021.2856E+002.7071E−021.0903E+00
532.3353E−022.9456E+002.4039E−021.5446E+002.4847E−021.2959E+002.6102E−021.0990E+00
542.2562E−022.9696E+002.3198E−021.5568E+002.3975E−021.3060E+002.5184E−021.1076E+00
552.1812E−022.9933E+002.2401E−021.5687E+002.3149E−021.3159E+002.4314E−021.1160E+00
562.1099E−023.0165E+002.1644E−021.5803E+002.2365E−021.3257E+002.3489E−021.1242E+00
572.0422E−023.0394E+002.0926E−021.5918E+002.1621E−021.3353E+002.2705E−021.1323E+00
581.9777E−023.0619E+002.0243E−021.6031E+002.0913E−021.3447E+002.1961E−021.1403E+00
591.9164E−023.0840E+001.9593E−021.6142E+002.0240E−021.3540E+002.1252E−021.1481E+00
601.8579E−023.1059E+001.8975E−021.6251E+001.9599E−021.3631E+002.0578E−021.1558E+00

Ar; [Z=18]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
04.3973E+002.4333E−014.8477E+001.3577E−015.0459E+001.1486E−015.3150E+009.8141E−02
14.0647E+002.5913E−014.4918E+001.4437E−014.6788E+001.2206E−014.9352E+001.0416E−01
23.2894E+003.0611E−013.6573E+001.6988E−013.8140E+001.4350E−014.0312E+001.2223E−01
32.4585E+003.8233E−012.7563E+002.1099E−012.8772E+001.7811E−013.0431E+001.5165E−01
41.7868E+004.8330E−012.0198E+002.6497E−012.1106E+002.2348E−012.2340E+001.9017E−01
51.3088E+006.0117E−011.4882E+003.2755E−011.5561E+002.7606E−011.6479E+002.3480E−01
69.8520E−017.2591E−011.1228E+003.9359E−011.1744E+003.3150E−011.2438E+002.8188E−01
77.6737E−018.4801E−018.7381E−014.5824E−019.1391E−013.8581E−019.6800E−013.2791E−01
86.1755E−019.6119E−017.0153E−015.1825E−017.3356E−014.3619E−017.7672E−013.7073E−01
95.1086E−011.0631E+005.7893E−015.7223E−016.0516E−014.8154E−016.4071E−014.0917E−01
104.3187E−011.1540E+004.8858E−016.2030E−015.1062E−015.2188E−015.4053E−014.4341E−01
113.7106E−011.2361E+004.1940E−016.6343E−014.3828E−015.5806E−014.6390E−014.7411E−01
123.2346E−011.3112E+003.6552E−017.0271E−013.8196E−015.9101E−014.0427E−015.0203E−01
132.8499E−011.3813E+003.2206E−017.3920E−013.3653E−016.2160E−013.5619E−015.2796E−01
142.5315E−011.4478E+002.8607E−017.7376E−012.9892E−016.5055E−013.1638E−015.5248E−01
152.2648E−011.5118E+002.5584E−018.0694E−012.6733E−016.7834E−012.8294E−015.7604E−01
162.0386E−011.5739E+002.3012E−018.3913E−012.4043E−017.0531E−012.5445E−015.9889E−01
171.8448E−011.6345E+002.0799E−018.7058E−012.1727E−017.3165E−012.2992E−016.2120E−01
181.6773E−011.6939E+001.8879E−019.0139E−011.9718E−017.5747E−012.0862E−016.4308E−01
191.5317E−011.7521E+001.7202E−019.3163E−011.7962E−017.8281E−011.9001E−016.6455E−01
201.4042E−011.8091E+001.5729E−019.6132E−011.6419E−018.0769E−011.7366E−016.8564E−01
211.2919E−011.8650E+001.4430E−019.9044E−011.5058E−018.3210E−011.5922E−017.0633E−01
221.1926E−011.9197E+001.3279E−011.0190E+001.3851E−018.5603E−011.4642E−017.2661E−01
231.1044E−011.9732E+001.2254E−011.0469E+001.2778E−018.7945E−011.3504E−017.4647E−01
241.0256E−012.0254E+001.1341E−011.0742E+001.1820E−019.0234E−011.2488E−017.6588E−01
259.5506E−022.0764E+001.0522E−011.1008E+001.0962E−019.2469E−011.1578E−017.8483E−01
268.9160E−022.1260E+009.7868E−021.1268E+001.0192E−019.4649E−011.0761E−018.0331E−01
278.3432E−022.1744E+009.1245E−021.1522E+009.4977E−029.6772E−011.0026E−018.2132E−01
287.8244E−022.2215E+008.5260E−021.1768E+008.8709E−029.8839E−019.3612E−028.3885E−01
297.3530E−022.2674E+007.9839E−021.2007E+008.3033E−021.0085E+008.7596E−028.5589E−01
306.9235E−022.3120E+007.4913E−021.2241E+007.7878E−021.0280E+008.2134E−028.7246E−01
316.5309E−022.3554E+007.0428E−021.2467E+007.3185E−021.0470E+007.7164E−028.8856E−01
326.1712E−022.3976E+006.6332E−021.2687E+006.8903E−021.0655E+007.2629E−029.0421E−01
335.8407E−022.4387E+006.2583E−021.2901E+006.4985E−021.0834E+006.8481E−029.1941E−01
345.5364E−022.4787E+005.9145E−021.3109E+006.1392E−021.1008E+006.4679E−029.3417E−01
355.2555E−022.5176E+005.5983E−021.3311E+005.8090E−021.1178E+006.1186E−029.4852E−01
364.9956E−022.5555E+005.3070E−021.3507E+005.5050E−021.1342E+005.7971E−029.6246E−01
374.7548E−022.5925E+005.0380E−021.3698E+005.2244E−021.1502E+005.5004E−029.7602E−01
384.5312E−022.6285E+004.7891E−021.3884E+004.9649E−021.1658E+005.2262E−029.8920E−01
394.3231E−022.6636E+004.5585E−021.4064E+004.7244E−021.1809E+004.9721E−021.0020E+00
404.1293E−022.6979E+004.3442E−021.4240E+004.5013E−021.1956E+004.7364E−021.0145E+00
413.9483E−022.7313E+004.1450E−021.4412E+004.2937E−021.2100E+004.5173E−021.0267E+00
423.7791E−022.7640E+003.9593E−021.4579E+004.1004E−021.2240E+004.3132E−021.0385E+00
433.6207E−022.7959E+003.7859E−021.4742E+003.9200E−021.2377E+004.1229E−021.0501E+00
443.4722E−022.8272E+003.6239E−021.4902E+003.7515E−021.2510E+003.9450E−021.0614E+00
453.3328E−022.8577E+003.4722E−021.5057E+003.5937E−021.2640E+003.7786E−021.0724E+00
463.2017E−022.8876E+003.3299E−021.5209E+003.4459E−021.2767E+003.6227E−021.0831E+00
473.0784E−022.9169E+003.1964E−021.5358E+003.3071E−021.2891E+003.4763E−021.0936E+00
482.9621E−022.9455E+003.0708E−021.5503E+003.1766E−021.3012E+003.3388E−021.1039E+00
492.8524E−022.9736E+002.9526E−021.5645E+003.0538E−021.3131E+003.2094E−021.1140E+00
502.7489E−023.0012E+002.8411E−021.5785E+002.9382E−021.3248E+003.0875E−021.1238E+00
512.6510E−023.0282E+002.7360E−021.5921E+002.8290E−021.3362E+002.9725E−021.1335E+00
522.5583E−023.0547E+002.6367E−021.6055E+002.7259E−021.3474E+002.8639E−021.1429E+00
532.4705E−023.0808E+002.5427E−021.6186E+002.6284E−021.3583E+002.7612E−021.1522E+00
542.3872E−023.1064E+002.4537E−021.6315E+002.5361E−021.3691E+002.6640E−021.1613E+00
552.3082E−023.1316E+002.3694E−021.6442E+002.4487E−021.3796E+002.5720E−021.1702E+00
562.2331E−023.1563E+002.2894E−021.6566E+002.3657E−021.3900E+002.4846E−021.1790E+00
572.1618E−023.1806E+002.2135E−021.6688E+002.2870E−021.4002E+002.4017E−021.1876E+00
582.0939E−023.2046E+002.1413E−021.6808E+002.2121E−021.4102E+002.3229E−021.1960E+00
592.0292E−023.2281E+002.0726E−021.6926E+002.1409E−021.4201E+002.2480E−021.2044E+00
601.9675E−023.2513E+002.0072E−021.7042E+002.0731E−021.4297E+002.1767E−021.2125E+00

K; [Z=19]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
08.7237E+001.6059E−019.5161E+009.0866E−029.8965E+007.6992E−021.0427E+016.5797E−02
16.0203E+002.2522E−016.6280E+001.2640E−016.9024E+001.0697E−017.2836E+009.1288E−02
23.5970E+003.4923E−014.0137E+001.9370E−014.1878E+001.6365E−014.4276E+001.3942E−01
32.5066E+004.5491E−012.8249E+002.5068E−012.9511E+002.1160E−013.1230E+001.8017E−01
41.8328E+005.5955E−012.0834E+003.0678E−012.1789E+002.5879E−012.3076E+002.2025E−01
51.3635E+006.7457E−011.5603E+003.6805E−011.6331E+003.1028E−011.7305E+002.6397E−01
61.0361E+007.9761E−011.1898E+004.3333E−011.2458E+003.6511E−011.3205E+003.1051E−01
78.0891E−019.2197E−019.2903E−014.9927E−019.7286E−014.2049E−011.0312E+003.5752E−01
86.4976E−011.0412E+007.4457E−015.6262E−017.7950E−014.7371E−018.2613E−014.0268E−01
95.3560E−011.1516E+006.1180E−016.2129E−016.4027E−015.2299E−016.7839E−014.4452E−01
104.5112E−011.2518E+005.1374E−016.7455E−015.3745E−015.6774E−015.6931E−014.8250E−01
113.8644E−011.3421E+004.3916E−017.2231E−014.5931E−016.0784E−014.8644E−015.1654E−01
123.3605E−011.4245E+003.8140E−017.6572E−013.9883E−016.4427E−014.2234E−015.4744E−01
132.9559E−011.5004E+003.3528E−018.0543E−013.5057E−016.7758E−013.7122E−015.7568E−01
142.6230E−011.5713E+002.9746E−018.4239E−013.1102E−017.0855E−013.2933E−016.0192E−01
152.3454E−011.6387E+002.6593E−018.7735E−012.7805E−017.3784E−012.9441E−016.2674E−01
162.1108E−011.7034E+002.3924E−019.1087E−012.5013E−017.6592E−012.6484E−016.5053E−01
171.9104E−011.7660E+002.1637E−019.4332E−012.2620E−017.9309E−012.3949E−016.7355E−01
181.7377E−011.8271E+001.9658E−019.7493E−012.0548E−018.1958E−012.1753E−016.9599E−01
191.5876E−011.8868E+001.7931E−011.0059E+001.8739E−018.4549E−011.9835E−017.1794E−01
201.4563E−011.9452E+001.6415E−011.0362E+001.7150E−018.7090E−011.8150E−017.3947E−01
211.3408E−012.0025E+001.5076E−011.0660E+001.5747E−018.9585E−011.6662E−017.6062E−01
221.2387E−012.0586E+001.3888E−011.0952E+001.4501E−019.2034E−011.5340E−017.8137E−01
231.1479E−012.1136E+001.2830E−011.1238E+001.3392E−019.4437E−011.4163E−018.0174E−01
241.0668E−012.1674E+001.1884E−011.1519E+001.2400E−019.6791E−011.3110E−018.2170E−01
259.9416E−022.2200E+001.1036E−011.1794E+001.1510E−019.9096E−011.2166E−018.4125E−01
269.2877E−022.2714E+001.0273E−011.2063E+001.0709E−011.0135E+001.1316E−018.6036E−01
278.6971E−022.3216E+009.5839E−021.2326E+009.9866E−021.0355E+001.0549E−018.7904E−01
288.1619E−022.3706E+008.9606E−021.2582E+009.3329E−021.0570E+009.8559E−028.9727E−01
297.6754E−022.4184E+008.3951E−021.2832E+008.7400E−021.0780E+009.2270E−029.1506E−01
307.2317E−022.4650E+007.8807E−021.3076E+008.2009E−021.0984E+008.6551E−029.3239E−01
316.8259E−022.5104E+007.4117E−021.3313E+007.7094E−021.1184E+008.1340E−029.4928E−01
326.4538E−022.5547E+006.9830E−021.3544E+007.2604E−021.1377E+007.6580E−029.6572E−01
336.1117E−022.5979E+006.5902E−021.3769E+006.8492E−021.1566E+007.2223E−029.8172E−01
345.7965E−022.6399E+006.2296E−021.3988E+006.4719E−021.1750E+006.8225E−029.9730E−01
355.5053E−022.6810E+005.8978E−021.4202E+006.1248E−021.1929E+006.4549E−021.0125E+00
365.2359E−022.7210E+005.5918E−021.4409E+005.8049E−021.2103E+006.1162E−021.0272E+00
374.9859E−022.7600E+005.3092E−021.4611E+005.5096E−021.2272E+005.8036E−021.0416E+00
384.7536E−022.7980E+005.0475E−021.4808E+005.2363E−021.2437E+005.5145E−021.0556E+00
394.5374E−022.8352E+004.8049E−021.5000E+004.9830E−021.2598E+005.2466E−021.0692E+00
404.3357E−022.8714E+004.5795E−021.5187E+004.7478E−021.2754E+004.9979E−021.0824E+00
414.1474E−022.9069E+004.3697E−021.5369E+004.5290E−021.2907E+004.7666E−021.0954E+00
423.9712E−022.9415E+004.1742E−021.5547E+004.3252E−021.3056E+004.5512E−021.1080E+00
433.8061E−022.9753E+003.9916E−021.5720E+004.1350E−021.3201E+004.3503E−021.1202E+00
443.6513E−023.0085E+003.8209E−021.5889E+003.9572E−021.3343E+004.1625E−021.1322E+00
453.5058E−023.0408E+003.6611E−021.6055E+003.7907E−021.3481E+003.9868E−021.1439E+00
463.3689E−023.0726E+003.5112E−021.6216E+003.6347E−021.3616E+003.8222E−021.1554E+00
473.2401E−023.1036E+003.3704E−021.6374E+003.4883E−021.3748E+003.6676E−021.1666E+00
483.1186E−023.1340E+003.2380E−021.6529E+003.3506E−021.3877E+003.5224E−021.1775E+00
493.0039E−023.1639E+003.1134E−021.6680E+003.2211E−021.4003E+003.3858E−021.1882E+00
502.8955E−023.1931E+002.9960E−021.6828E+003.0990E−021.4127E+003.2571E−021.1987E+00
512.7930E−023.2218E+002.8851E−021.6973E+002.9838E−021.4248E+003.1356E−021.2089E+00
522.6959E−023.2500E+002.7804E−021.7115E+002.8751E−021.4367E+003.0210E−021.2189E+00
532.6040E−023.2776E+002.6813E−021.7254E+002.7722E−021.4483E+002.9126E−021.2288E+00
542.5167E−023.3048E+002.5876E−021.7391E+002.6748E−021.4598E+002.8100E−021.2384E+00
552.4339E−023.3315E+002.4987E−021.7525E+002.5826E−021.4710E+002.7128E−021.2479E+00
562.3551E−023.3577E+002.4144E−021.7657E+002.4951E−021.4820E+002.6206E−021.2572E+00
572.2803E−023.3835E+002.3343E−021.7786E+002.4120E−021.4928E+002.5332E−021.2663E+00
582.2090E−023.4089E+002.2582E−021.7914E+002.3330E−021.5034E+002.4500E−021.2753E+00
592.1411E−023.4339E+002.1858E−021.8039E+002.2580E−021.5138E+002.3709E−021.2841E+00
602.0763E−023.4585E+002.1168E−021.8161E+002.1865E−021.5240E+002.2957E−021.2928E+00

Ca; [Z=20]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.6204E+001.7308E−011.0517E+019.8165E−021.0941E+018.3216E−021.1532E+017.1133E−02
17.0378E+002.2767E−017.7570E+001.2836E−018.0803E+001.0870E−018.5292E+009.2808E−02
24.0325E+003.6260E−014.5139E+002.0193E−014.7122E+001.7071E−014.9839E+001.4551E−01
32.6145E+005.0011E−012.9605E+002.7615E−013.0951E+002.3319E−013.2771E+001.9861E−01
41.8783E+006.1900E−012.1461E+003.4001E−012.2462E+002.8692E−012.3802E+002.4426E−01
51.4068E+007.3535E−011.6192E+004.0218E−011.6963E+003.3919E−011.7987E+002.8865E−01
61.0791E+008.5643E−011.2478E+004.6659E−011.3080E+003.9331E−011.3874E+003.3460E−01
78.4690E−019.8059E−019.8064E−015.3253E−011.0281E+004.4871E−011.0907E+003.8162E−01
86.8091E−011.1031E+007.8721E−015.9768E−018.2520E−015.0344E−018.7535E−014.2808E−01
95.6044E−011.2196E+006.4574E−016.5975E−016.7664E−015.5560E−017.1756E−014.7238E−01
104.7093E−011.3274E+005.4049E−017.1731E−015.6609E−016.0398E−016.0013E−015.1345E−01
114.0241E−011.4258E+004.6030E−017.6970E−014.8189E−016.4800E−015.1073E−015.5083E−01
123.4924E−011.5157E+003.9845E−018.1739E−014.1701E−016.8805E−014.4186E−015.8483E−01
133.0669E−011.5982E+003.4934E−018.6084E−013.6554E−017.2453E−013.8727E−016.1577E−01
142.7182E−011.6745E+003.0936E−019.0086E−013.2367E−017.5809E−013.4288E−016.4423E−01
152.4285E−011.7462E+002.7626E−019.3822E−012.8902E−017.8940E−013.0616E−016.7076E−01
162.1844E−011.8144E+002.4842E−019.7357E−012.5988E−018.1902E−012.7528E−016.9586E−01
171.9765E−011.8798E+002.2467E−011.0074E+002.3503E−018.4736E−012.4894E−017.1987E−01
181.7977E−011.9430E+002.0419E−011.0401E+002.1359E−018.7475E−012.2622E−017.4306E−01
191.6426E−012.0045E+001.8638E−011.0719E+001.9492E−019.0139E−012.0643E−017.6563E−01
201.5072E−012.0645E+001.7075E−011.1030E+001.7855E−019.2742E−011.8907E−017.8768E−01
211.3881E−012.1233E+001.5696E−011.1335E+001.6409E−019.5292E−011.7373E−018.0929E−01
221.2830E−012.1808E+001.4472E−011.1633E+001.5126E−019.7795E−011.6011E−018.3050E−01
231.1895E−012.2372E+001.3382E−011.1926E+001.3982E−011.0025E+001.4797E−018.5132E−01
241.1061E−012.2925E+001.2406E−011.2214E+001.2958E−011.0266E+001.3710E−018.7176E−01
251.0314E−012.3466E+001.1530E−011.2496E+001.2038E−011.0503E+001.2733E−018.9182E−01
269.6410E−022.3996E+001.0741E−011.2773E+001.1209E−011.0735E+001.1853E−019.1148E−01
279.0334E−022.4514E+001.0028E−011.3044E+001.0460E−011.0962E+001.1058E−019.3074E−01
288.4827E−022.5021E+009.3815E−021.3309E+009.7819E−021.1184E+001.0338E−019.4959E−01
297.9818E−022.5517E+008.7945E−021.3568E+009.1656E−021.1402E+009.6834E−029.6802E−01
307.5249E−022.6001E+008.2598E−021.3821E+008.6045E−021.1614E+009.0877E−029.8603E−01
317.1069E−022.6474E+007.7717E−021.4068E+008.0923E−021.1821E+008.5441E−021.0036E+00
326.7234E−022.6936E+007.3250E−021.4309E+007.6238E−021.2024E+008.0469E−021.0208E+00
336.3707E−022.7386E+006.9154E−021.4545E+007.1943E−021.2221E+007.5912E−021.0375E+00
346.0455E−022.7826E+006.5390E−021.4774E+006.7997E−021.2414E+007.1728E−021.0539E+00
355.7450E−022.8256E+006.1923E−021.4998E+006.4366E−021.2601E+006.7877E−021.0698E+00
365.4666E−022.8676E+005.8725E−021.5216E+006.1016E−021.2785E+006.4327E−021.0853E+00
375.2083E−022.9085E+005.5768E−021.5429E+005.7921E−021.2963E+006.1047E−021.1004E+00
384.9682E−022.9485E+005.3029E−021.5637E+005.5055E−021.3137E+005.8011E−021.1152E+00
394.7444E−022.9876E+005.0487E−021.5839E+005.2398E−021.3306E+005.5198E−021.1295E+00
404.5357E−023.0258E+004.8125E−021.6036E+004.9929E−021.3472E+005.2584E−021.1435E+00
414.3405E−023.0632E+004.5926E−021.6229E+004.7632E−021.3633E+005.0153E−021.1572E+00
424.1579E−023.0997E+004.3875E−021.6417E+004.5491E−021.3791E+004.7888E−021.1705E+00
433.9867E−023.1354E+004.1960E−021.6600E+004.3492E−021.3944E+004.5775E−021.1836E+00
443.8260E−023.1703E+004.0169E−021.6779E+004.1623E−021.4094E+004.3799E−021.1963E+00
453.6749E−023.2046E+003.8491E−021.6954E+003.9874E−021.4241E+004.1950E−021.2087E+00
463.5327E−023.2381E+003.6917E−021.7125E+003.8233E−021.4384E+004.0217E−021.2208E+00
473.3987E−023.2709E+003.5439E−021.7293E+003.6693E−021.4524E+003.8591E−021.2326E+00
483.2723E−023.3031E+003.4048E−021.7456E+003.5246E−021.4661E+003.7062E−021.2442E+00
493.1529E−023.3346E+003.2739E−021.7616E+003.3883E−021.4794E+003.5624E−021.2556E+00
503.0400E−023.3656E+003.1505E−021.7773E+003.2599E−021.4926E+003.4269E−021.2666E+00
512.9332E−023.3959E+003.0341E−021.7927E+003.1388E−021.5054E+003.2991E−021.2775E+00
522.8320E−023.4257E+002.9240E−021.8077E+003.0243E−021.5180E+003.1784E−021.2881E+00
532.7361E−023.4550E+002.8199E−021.8225E+002.9161E−021.5303E+003.0643E−021.2986E+00
542.6451E−023.4837E+002.7213E−021.8370E+002.8137E−021.5424E+002.9563E−021.3088E+00
552.5586E−023.5120E+002.6279E−021.8512E+002.7166E−021.5542E+002.8540E−021.3188E+00
562.4763E−023.5397E+002.5393E−021.8651E+002.6246E−021.5659E+002.7570E−021.3287E+00
572.3981E−023.5670E+002.4551E−021.8788E+002.5372E−021.5773E+002.6649E−021.3383E+00
582.3236E−023.5938E+002.3751E−021.8922E+002.4541E−021.5885E+002.5774E−021.3478E+00
592.2526E−023.6203E+002.2990E−021.9055E+002.3752E−021.5996E+002.4942E−021.3572E+00
602.1849E−023.6463E+002.2265E−021.9185E+002.3000E−021.6104E+002.4150E−021.3663E+00

Sc; [Z=21]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
08.9757E+001.8778E−019.8570E+001.0735E−011.0261E+019.1119E−021.0820E+017.7965E−02
16.8266E+002.3883E−017.5574E+001.3573E−017.8775E+001.1508E−018.3189E+009.8340E−02
24.0920E+003.6725E−014.6023E+002.0609E−014.8079E+001.7442E−015.0878E+001.4879E−01
32.6762E+005.0666E−013.0475E+002.8159E−013.1889E+002.3802E−013.3785E+002.0286E−01
41.9252E+006.3055E−012.2134E+003.4834E−012.3189E+002.9419E−012.4589E+002.5060E−01
51.4489E+007.4933E−011.6789E+004.1199E−011.7607E+003.4773E−011.8683E+002.9609E−01
61.1179E+008.7097E−011.3025E+004.7687E−011.3669E+004.0227E−011.4511E+003.4240E−01
78.8117E−019.9590E−011.0290E+005.4336E−011.0802E+004.5814E−011.1470E+003.8983E−01
87.0984E−011.1208E+008.2826E−016.0988E−018.6941E−015.1404E−019.2312E−014.3729E−01
95.8427E−011.2418E+006.7955E−016.7445E−017.1306E−015.6831E−017.5692E−014.8338E−01
104.9047E−011.3558E+005.6796E−017.3544E−015.9566E−016.1958E−016.3208E−015.2692E−01
114.1856E−011.4611E+004.8258E−017.9180E−015.0584E−016.6697E−015.3657E−015.6717E−01
123.6276E−011.5581E+004.1665E−018.4357E−014.3652E−017.1049E−014.6288E−016.0413E−01
133.1817E−011.6472E+003.6442E−018.9089E−013.8166E−017.5024E−014.0460E−016.3787E−01
142.8172E−011.7295E+003.2207E−019.3432E−013.3723E−017.8670E−013.5744E−016.6881E−01
152.5150E−011.8063E+002.8719E−019.7457E−013.0066E−018.2046E−013.1865E−016.9743E−01
162.2608E−011.8787E+002.5799E−011.0123E+002.7007E−018.5208E−012.8621E−017.2423E−01
172.0447E−011.9476E+002.3321E−011.0481E+002.4411E−018.8203E−012.5868E−017.4961E−01
181.8592E−012.0137E+002.1192E−011.0823E+002.2181E−019.1070E−012.3504E−017.7389E−01
191.6986E−012.0777E+001.9345E−011.1153E+002.0246E−019.3837E−012.1452E−017.9733E−01
201.5585E−012.1398E+001.7730E−011.1474E+001.8553E−019.6525E−011.9656E−018.2009E−01
211.4355E−012.2004E+001.6306E−011.1788E+001.7060E−019.9149E−011.8072E−018.4232E−01
221.3269E−012.2597E+001.5044E−011.2094E+001.5736E−011.0172E+001.6668E−018.6407E−01
231.2306E−012.3177E+001.3920E−011.2395E+001.4557E−011.0423E+001.5415E−018.8540E−01
241.1447E−012.3745E+001.2914E−011.2689E+001.3500E−011.0670E+001.4293E−019.0633E−01
251.0677E−012.4301E+001.2010E−011.2979E+001.2551E−011.0913E+001.3285E−019.2689E−01
269.9847E−022.4846E+001.1196E−011.3263E+001.1695E−011.1151E+001.2376E−019.4706E−01
279.3595E−022.5381E+001.0459E−011.3541E+001.0921E−011.1384E+001.1554E−019.6686E−01
288.7930E−022.5904E+009.7907E−021.3814E+001.0219E−011.1613E+001.0808E−019.8626E−01
298.2779E−022.6416E+009.1831E−021.4082E+009.5807E−021.1838E+001.0129E−011.0053E+00
307.8080E−022.6917E+008.6293E−021.4343E+008.9987E−021.2057E+009.5109E−021.0239E+00
317.3780E−022.7407E+008.1231E−021.4599E+008.4669E−021.2272E+008.9460E−021.0421E+00
326.9836E−022.7886E+007.6595E−021.4850E+007.9800E−021.2482E+008.4289E−021.0599E+00
336.6206E−022.8355E+007.2340E−021.5095E+007.5332E−021.2687E+007.9543E−021.0774E+00
346.2859E−022.8813E+006.8426E−021.5334E+007.1223E−021.2888E+007.5181E−021.0944E+00
355.9766E−022.9261E+006.4818E−021.5567E+006.7438E−021.3084E+007.1164E−021.1110E+00
365.6899E−022.9699E+006.1487E−021.5796E+006.3944E−021.3275E+006.7456E−021.1272E+00
375.4238E−023.0127E+005.8406E−021.6018E+006.0714E−021.3462E+006.4029E−021.1430E+00
385.1762E−023.0546E+005.5549E−021.6236E+005.7720E−021.3644E+006.0855E−021.1585E+00
394.9455E−023.0955E+005.2898E−021.6448E+005.4943E−021.3822E+005.7911E−021.1736E+00
404.7302E−023.1356E+005.0432E−021.6655E+005.2362E−021.3996E+005.5175E−021.1883E+00
414.5287E−023.1748E+004.8135E−021.6858E+004.9958E−021.4166E+005.2629E−021.2027E+00
424.3401E−023.2131E+004.5992E−021.7055E+004.7717E−021.4332E+005.0256E−021.2168E+00
434.1632E−023.2506E+004.3990E−021.7249E+004.5624E−021.4493E+004.8040E−021.2305E+00
443.9970E−023.2874E+004.2116E−021.7437E+004.3667E−021.4652E+004.5969E−021.2439E+00
453.8407E−023.3234E+004.0361E−021.7622E+004.1834E−021.4806E+004.4030E−021.2570E+00
463.6935E−023.3587E+003.8714E−021.7802E+004.0115E−021.4957E+004.2212E−021.2697E+00
473.5547E−023.3932E+003.7167E−021.7979E+003.8501E−021.5105E+004.0505E−021.2823E+00
483.4237E−023.4271E+003.5711E−021.8152E+003.6983E−021.5249E+003.8901E−021.2945E+00
493.3000E−023.4604E+003.4340E−021.8321E+003.5554E−021.5391E+003.7392E−021.3065E+00
503.1829E−023.4930E+003.3048E−021.8486E+003.4208E−021.5529E+003.5969E−021.3182E+00
513.0720E−023.5250E+003.1828E−021.8648E+003.2937E−021.5665E+003.4628E−021.3297E+00
522.9669E−023.5564E+003.0675E−021.8807E+003.1737E−021.5798E+003.3361E−021.3409E+00
532.8672E−023.5873E+002.9584E−021.8963E+003.0602E−021.5928E+003.2163E−021.3519E+00
542.7726E−023.6176E+002.8551E−021.9116E+002.9527E−021.6056E+003.1029E−021.3627E+00
552.6826E−023.6474E+002.7572E−021.9266E+002.8509E−021.6181E+002.9955E−021.3733E+00
562.5971E−023.6767E+002.6643E−021.9413E+002.7543E−021.6304E+002.8936E−021.3837E+00
572.5156E−023.7055E+002.5761E−021.9558E+002.6626E−021.6424E+002.7970E−021.3939E+00
582.4381E−023.7339E+002.4922E−021.9700E+002.5755E−021.6543E+002.7051E−021.4039E+00
592.3641E−023.7617E+002.4124E−021.9839E+002.4926E−021.6659E+002.6178E−021.4138E+00
602.2935E−023.7892E+002.3364E−021.9976E+002.4138E−021.6774E+002.5347E−021.4234E+00

Ti; [Z=22]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
08.4030E+002.0031E−019.2695E+001.1551E−019.6563E+009.8169E−021.0186E+018.4087E−02
16.5652E+002.4904E−017.3006E+001.4273E−017.6151E+001.2118E−018.0455E+001.0365E−01
24.0822E+003.7245E−014.6135E+002.1068E−014.8233E+001.7852E−015.1069E+001.5242E−01
32.7075E+005.1119E−013.1010E+002.8612E−013.2477E+002.4210E−013.4430E+002.0650E−01
41.9587E+006.3742E−012.2663E+003.5434E−012.3767E+002.9955E−012.5220E+002.5533E−01
51.4827E+007.5771E−011.7300E+004.1900E−011.8162E+003.5396E−011.9287E+003.0157E−01
61.1508E+008.7970E−011.3512E+004.8425E−011.4196E+004.0883E−011.5084E+003.4818E−01
79.1135E−011.0050E+001.0735E+005.5106E−011.1284E+004.6498E−011.1992E+003.9586E−01
87.3617E−011.1314E+008.6714E−016.1846E−019.1151E−015.2163E−019.6879E−014.4396E−01
96.0657E−011.2555E+007.1252E−016.8481E−017.4875E−015.7740E−017.9564E−014.9133E−01
105.0917E−011.3743E+005.9541E−017.4847E−016.2536E−016.3094E−016.6428E−015.3680E−01
114.3428E−011.4855E+005.0528E−018.0821E−015.3037E−016.8119E−015.6314E−015.7949E−01
123.7608E−011.5889E+004.3544E−018.6371E−014.5678E−017.2787E−014.8480E−016.1915E−01
133.2962E−011.6844E+003.8009E−019.1479E−013.9851E−017.7082E−014.2280E−016.5563E−01
142.9167E−011.7727E+003.3531E−019.6176E−013.5142E−018.1029E−013.7273E−016.8914E−01
152.6023E−011.8549E+002.9854E−011.0052E+003.1280E−018.4674E−013.3170E−017.2008E−01
162.3383E−011.9320E+002.6788E−011.0456E+002.8062E−018.8068E−012.9754E−017.4885E−01
172.1140E−012.0050E+002.4195E−011.0837E+002.5342E−019.1257E−012.6868E−017.7589E−01
181.9216E−012.0747E+002.1976E−011.1198E+002.3016E−019.4284E−012.4400E−018.0153E−01
191.7551E−012.1416E+002.0057E−011.1544E+002.1004E−019.7183E−012.2266E−018.2608E−01
201.6101E−012.2063E+001.8382E−011.1878E+001.9248E−019.9980E−012.0403E−018.4977E−01
211.4829E−012.2692E+001.6909E−011.2203E+001.7704E−011.0269E+001.8764E−018.7276E−01
221.3707E−012.3304E+001.5606E−011.2519E+001.6337E−011.0534E+001.7313E−018.9516E−01
231.2712E−012.3902E+001.4446E−011.2828E+001.5119E−011.0793E+001.6020E−019.1708E−01
241.1826E−012.4486E+001.3409E−011.3130E+001.4030E−011.1046E+001.4863E−019.3855E−01
251.1033E−012.5059E+001.2478E−011.3427E+001.3051E−011.1295E+001.3823E−019.5962E−01
261.0320E−012.5620E+001.1638E−011.3718E+001.2168E−011.1539E+001.2885E−019.8030E−01
279.6764E−022.6170E+001.0878E−011.4004E+001.1370E−011.1778E+001.2036E−011.0006E+00
289.0936E−022.6708E+001.0188E−011.4284E+001.0645E−011.2013E+001.1266E−011.0205E+00
298.5639E−022.7236E+009.5611E−021.4559E+009.9850E−021.2244E+001.0564E−011.0401E+00
308.0809E−022.7753E+008.9888E−021.4829E+009.3832E−021.2470E+009.9245E−021.0593E+00
317.6391E−022.8260E+008.4655E−021.5093E+008.8328E−021.2692E+009.3393E−021.0781E+00
327.2338E−022.8756E+007.9857E−021.5352E+008.3284E−021.2909E+008.8032E−021.0965E+00
336.8610E−022.9241E+007.5451E−021.5605E+007.8651E−021.3122E+008.3108E−021.1145E+00
346.5172E−022.9716E+007.1395E−021.5854E+007.4388E−021.3330E+007.8577E−021.1321E+00
356.1993E−023.0182E+006.7653E−021.6096E+007.0457E−021.3533E+007.4400E−021.1494E+00
365.9048E−023.0637E+006.4196E−021.6333E+006.6825E−021.3732E+007.0543E−021.1663E+00
375.6313E−023.1083E+006.0996E−021.6565E+006.3465E−021.3927E+006.6975E−021.1828E+00
385.3768E−023.1519E+005.8028E−021.6792E+006.0350E−021.4117E+006.3668E−021.1989E+00
395.1396E−023.1946E+005.5271E−021.7014E+005.7458E−021.4303E+006.0598E−021.2147E+00
404.9180E−023.2364E+005.2705E−021.7231E+005.4767E−021.4485E+005.7744E−021.2301E+00
414.7108E−023.2774E+005.0314E−021.7443E+005.2262E−021.4662E+005.5086E−021.2452E+00
424.5166E−023.3175E+004.8083E−021.7650E+004.9924E−021.4836E+005.2608E−021.2599E+00
434.3344E−023.3568E+004.5997E−021.7852E+004.7740E−021.5006E+005.0293E−021.2743E+00
444.1632E−023.3953E+004.4044E−021.8051E+004.5697E−021.5172E+004.8129E−021.2883E+00
454.0021E−023.4330E+004.2214E−021.8244E+004.3783E−021.5334E+004.6101E−021.3021E+00
463.8503E−023.4700E+004.0496E−021.8434E+004.1987E−021.5493E+004.4200E−021.3155E+00
473.7071E−023.5063E+003.8882E−021.8619E+004.0300E−021.5648E+004.2415E−021.3287E+00
483.5718E−023.5419E+003.7363E−021.8801E+003.8714E−021.5800E+004.0737E−021.3416E+00
493.4440E−023.5768E+003.5932E−021.8979E+003.7220E−021.5949E+003.9157E−021.3542E+00
503.3230E−023.6110E+003.4582E−021.9153E+003.5812E−021.6095E+003.7668E−021.3665E+00
513.2083E−023.6447E+003.3308E−021.9324E+003.4483E−021.6238E+003.6264E−021.3786E+00
523.0996E−023.6777E+003.2104E−021.9491E+003.3228E−021.6378E+003.4937E−021.3904E+00
532.9964E−023.7102E+003.0964E−021.9655E+003.2040E−021.6515E+003.3683E−021.4021E+00
542.8984E−023.7421E+002.9885E−021.9816E+003.0916E−021.6649E+003.2496E−021.4134E+00
552.8052E−023.7734E+002.8861E−021.9974E+002.9851E−021.6781E+003.1371E−021.4246E+00
562.7165E−023.8043E+002.7890E−022.0129E+002.8840E−021.6911E+003.0305E−021.4355E+00
572.6321E−023.8346E+002.6968E−022.0281E+002.7881E−021.7038E+002.9292E−021.4463E+00
582.5516E−023.8644E+002.6091E−022.0431E+002.6969E−021.7163E+002.8330E−021.4568E+00
592.4748E−023.8938E+002.5257E−022.0577E+002.6102E−021.7285E+002.7415E−021.4672E+00
602.4016E−023.9227E+002.4462E−022.0722E+002.5276E−021.7406E+002.6545E−021.4774E+00

V; [Z=23]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
07.8964E+002.1149E−018.7493E+001.2304E−019.1204E+001.0472E−019.6240E+008.9803E−02
16.2982E+002.5844E−017.0348E+001.4941E−017.3431E+001.2702E−017.7618E+001.0876E−01
24.0368E+003.7776E−014.5843E+002.1546E−014.7966E+001.8281E−015.0815E+001.5622E−01
32.7172E+005.1504E−013.1298E+002.9041E−013.2809E+002.4601E−013.4805E+002.1000E−01
41.9800E+006.4225E−012.3056E+003.5939E−012.4204E+003.0412E−012.5702E+002.5942E−01
51.5083E+007.6333E−011.7722E+004.2469E−011.8626E+003.5909E−011.9795E+003.0615E−01
61.1778E+008.8534E−011.3935E+004.9014E−011.4659E+004.1416E−011.5589E+003.5293E−01
79.3731E−011.0106E+001.1136E+005.5707E−011.1720E+004.7043E−011.2469E+004.0073E−01
87.5963E−011.1377E+009.0330E−016.2497E−019.5091E−015.2751E−011.0117E+004.4920E−01
96.2699E−011.2639E+007.4402E−016.9250E−017.8307E−015.8429E−018.3302E−014.9743E−01
105.2664E−011.3863E+006.2226E−017.5818E−016.5460E−016.3953E−016.9612E−015.4436E−01
114.4921E−011.5023E+005.2792E−018.2068E−015.5500E−016.9212E−015.8993E−015.8905E−01
123.8892E−011.6113E+004.5445E−018.7942E−014.7741E−017.4155E−015.0721E−016.3106E−01
133.4075E−011.7127E+003.9610E−019.3399E−014.1584E−017.8747E−014.4159E−016.7008E−01
143.0144E−011.8068E+003.4891E−019.8443E−013.6609E−018.2990E−013.8861E−017.0612E−01
152.6889E−011.8945E+003.1022E−011.0311E+003.2536E−018.6914E−013.4527E−017.3944E−01
162.4156E−011.9766E+002.7803E−011.0745E+002.9151E−019.0559E−013.0927E−017.7037E−01
172.1834E−012.0540E+002.5089E−011.1152E+002.6299E−019.3968E−012.7898E−017.9928E−01
181.9842E−012.1276E+002.2773E−011.1535E+002.3867E−019.7182E−012.5315E−018.2653E−01
191.8120E−012.1979E+002.0775E−011.1900E+002.1771E−011.0024E+002.3090E−018.5243E−01
201.6619E−012.2655E+001.9037E−011.2250E+001.9947E−011.0317E+002.1153E−018.7724E−01
211.5304E−012.3310E+001.7511E−011.2587E+001.8346E−011.0599E+001.9454E−019.0117E−01
221.4145E−012.3945E+001.6164E−011.2915E+001.6932E−011.0874E+001.7952E−019.2438E−01
231.3117E−012.4563E+001.4966E−011.3234E+001.5674E−011.1141E+001.6617E−019.4699E−01
241.2203E−012.5167E+001.3896E−011.3545E+001.4550E−011.1401E+001.5423E−019.6908E−01
251.1385E−012.5757E+001.2935E−011.3850E+001.3541E−011.1657E+001.4350E−019.9072E−01
261.0650E−012.6335E+001.2070E−011.4149E+001.2631E−011.1907E+001.3383E−011.0119E+00
279.9870E−022.6901E+001.1286E−011.4442E+001.1808E−011.2153E+001.2508E−011.0328E+00
289.3872E−022.7456E+001.0576E−011.4730E+001.1060E−011.2394E+001.1713E−011.0532E+00
298.8424E−022.7999E+009.9293E−021.5013E+001.0380E−011.2631E+001.0989E−011.0733E+00
308.3459E−022.8532E+009.3391E−021.5290E+009.7585E−021.2863E+001.0329E−011.0929E+00
317.8920E−022.9054E+008.7992E−021.5562E+009.1902E−021.3091E+009.7241E−021.1123E+00
327.4758E−022.9566E+008.3040E−021.5828E+008.6690E−021.3315E+009.1697E−021.1313E+00
337.0930E−023.0068E+007.8488E−021.6090E+008.1900E−021.3534E+008.6602E−021.1498E+00
346.7401E−023.0559E+007.4295E−021.6346E+007.7488E−021.3749E+008.1910E−021.1681E+00
356.4140E−023.1041E+007.0427E−021.6597E+007.3418E−021.3959E+007.7582E−021.1859E+00
366.1118E−023.1513E+006.6849E−021.6843E+006.9655E−021.4166E+007.3581E−021.2034E+00
375.8312E−023.1975E+006.3535E−021.7083E+006.6171E−021.4368E+006.9877E−021.2205E+00
385.5701E−023.2428E+006.0460E−021.7319E+006.2939E−021.4565E+006.6443E−021.2373E+00
395.3267E−023.2872E+005.7602E−021.7550E+005.9936E−021.4759E+006.3253E−021.2537E+00
405.0993E−023.3307E+005.4941E−021.7775E+005.7142E−021.4948E+006.0285E−021.2697E+00
414.8866E−023.3734E+005.2460E−021.7996E+005.4538E−021.5133E+005.7520E−021.2854E+00
424.6873E−023.4152E+005.0144E−021.8212E+005.2107E−021.5314E+005.4940E−021.3008E+00
434.5001E−023.4561E+004.7977E−021.8424E+004.9835E−021.5492E+005.2529E−021.3159E+00
444.3242E−023.4963E+004.5948E−021.8631E+004.7708E−021.5665E+005.0274E−021.3306E+00
454.1587E−023.5357E+004.4046E−021.8834E+004.5715E−021.5835E+004.8161E−021.3450E+00
464.0026E−023.5744E+004.2260E−021.9032E+004.3845E−021.6001E+004.6178E−021.3591E+00
473.8553E−023.6123E+004.0581E−021.9226E+004.2088E−021.6164E+004.4316E−021.3728E+00
483.7162E−023.6496E+003.9000E−021.9417E+004.0435E−021.6324E+004.2565E−021.3863E+00
493.5845E−023.6861E+003.7511E−021.9603E+003.8878E−021.6480E+004.0917E−021.3996E+00
503.4599E−023.7220E+003.6105E−021.9786E+003.7409E−021.6633E+003.9363E−021.4125E+00
513.3418E−023.7573E+003.4779E−021.9965E+003.6024E−021.6782E+003.7897E−021.4252E+00
523.2297E−023.7919E+003.3524E−022.0141E+003.4714E−021.6929E+003.6511E−021.4376E+00
533.1233E−023.8259E+003.2337E−022.0313E+003.3475E−021.7073E+003.5202E−021.4498E+00
543.0222E−023.8594E+003.1212E−022.0482E+003.2302E−021.7215E+003.3962E−021.4618E+00
552.9259E−023.8923E+003.0145E−022.0648E+003.1190E−021.7353E+003.2787E−021.4735E+00
562.8343E−023.9246E+002.9133E−022.0810E+003.0135E−021.7489E+003.1673E−021.4850E+00
572.7471E−023.9565E+002.8171E−022.0970E+002.9134E−021.7623E+003.0615E−021.4963E+00
582.6639E−023.9878E+002.7257E−022.1127E+002.8182E−021.7754E+002.9610E−021.5074E+00
592.5844E−024.0186E+002.6387E−022.1281E+002.7276E−021.7883E+002.8654E−021.5183E+00
602.5086E−024.0490E+002.5558E−022.1433E+002.6414E−021.8009E+002.7744E−021.5290E+00

Cr; [Z=24]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
06.5487E+002.3087E−017.3124E+001.3592E−017.6308E+001.1590E−018.0559E+009.9555E−02
15.3648E+002.7679E−016.0387E+001.6179E−016.3105E+001.3779E−016.6750E+001.1813E−01
23.6934E+003.8330E−014.2223E+002.2100E−014.4225E+001.8781E−014.6887E+001.6068E−01
32.6401E+005.0123E−013.0602E+002.8576E−013.2112E+002.4247E−013.4091E+002.0721E−01
41.9810E+006.1693E−012.3230E+003.4881E−012.4413E+002.9563E−012.5945E+002.5245E−01
51.5285E+007.3384E−011.8101E+004.1210E−011.9048E+003.4893E−012.0261E+002.9778E−01
61.2016E+008.5497E−011.4339E+004.7727E−011.5104E+004.0378E−011.6078E+003.4439E−01
79.6026E−019.8061E−011.1516E+005.4458E−011.2138E+004.6039E−011.2926E+003.9248E−01
87.8043E−011.1090E+009.3749E−016.1326E−019.8843E−015.1814E−011.0528E+004.4153E−01
96.4530E−011.2374E+007.7399E−016.8203E−018.1595E−015.7597E−018.6901E−014.9066E−01
105.4255E−011.3629E+006.4812E−017.4950E−016.8294E−016.3273E−017.2713E−015.3888E−01
114.6303E−011.4831E+005.5005E−018.1435E−015.7922E−016.8730E−016.1642E−015.8526E−01
124.0097E−011.5969E+004.7331E−018.7589E−014.9802E−017.3912E−015.2971E−016.2931E−01
133.5135E−011.7035E+004.1220E−019.3355E−014.3338E−017.8766E−014.6070E−016.7058E−01
143.1085E−011.8029E+003.6273E−019.8720E−013.8109E−018.3283E−014.0492E−017.0897E−01
152.7731E−011.8958E+003.2217E−011.0371E+003.3828E−018.7476E−013.5928E−017.4460E−01
162.4914E−011.9828E+002.8845E−011.0834E+003.0274E−019.1375E−013.2143E−017.7771E−01
172.2521E−012.0648E+002.6007E−011.1268E+002.7286E−019.5016E−012.8963E−018.0861E−01
182.0467E−012.1425E+002.3590E−011.1676E+002.4743E−019.8438E−012.6260E−018.3763E−01
191.8690E−012.2165E+002.1509E−011.2062E+002.2557E−011.0167E+002.3936E−018.6507E−01
201.7141E−012.2875E+001.9702E−011.2430E+002.0659E−011.0476E+002.1919E−018.9121E−01
211.5783E−012.3559E+001.8120E−011.2784E+001.8997E−011.0772E+002.0154E−019.1629E−01
221.4586E−012.4221E+001.6724E−011.3125E+001.7531E−011.1058E+001.8597E−019.4048E−01
231.3526E−012.4863E+001.5486E−011.3456E+001.6230E−011.1335E+001.7215E−019.6395E−01
241.2582E−012.5489E+001.4380E−011.3778E+001.5069E−011.1605E+001.5981E−019.8679E−01
251.1737E−012.6099E+001.3389E−011.4093E+001.4027E−011.1868E+001.4873E−011.0091E+00
261.0980E−012.6696E+001.2497E−011.4401E+001.3088E−011.2126E+001.3875E−011.0309E+00
271.0297E−012.7280E+001.1689E−011.4702E+001.2239E−011.2378E+001.2973E−011.0523E+00
289.6791E−022.7851E+001.0957E−011.4998E+001.1469E−011.2626E+001.2153E−011.0733E+00
299.1183E−022.8411E+001.0291E−011.5288E+001.0767E−011.2869E+001.1407E−011.0939E+00
308.6076E−022.8960E+009.6828E−021.5573E+001.0127E−011.3108E+001.0726E−011.1141E+00
318.1410E−022.9499E+009.1263E−021.5852E+009.5408E−021.3342E+001.0102E−011.1340E+00
327.7134E−023.0026E+008.6158E−021.6126E+009.0031E−021.3572E+009.5296E−021.1535E+00
337.3204E−023.0544E+008.1464E−021.6395E+008.5087E−021.3798E+009.0035E−021.1726E+00
346.9582E−023.1051E+007.7139E−021.6659E+008.0532E−021.4019E+008.5186E−021.1914E+00
356.6236E−023.1549E+007.3145E−021.6918E+007.6326E−021.4236E+008.0711E−021.2098E+00
366.3137E−023.2037E+006.9452E−021.7172E+007.2436E−021.4449E+007.6572E−021.2278E+00
376.0260E−023.2516E+006.6028E−021.7421E+006.8833E−021.4658E+007.2738E−021.2455E+00
385.7583E−023.2985E+006.2850E−021.7665E+006.5488E−021.4862E+006.9180E−021.2629E+00
395.5088E−023.3445E+005.9895E−021.7904E+006.2379E−021.5063E+006.5874E−021.2799E+00
405.2758E−023.3897E+005.7142E−021.8138E+005.9484E−021.5259E+006.2796E−021.2966E+00
415.0578E−023.4339E+005.4574E−021.8367E+005.6785E−021.5452E+005.9927E−021.3129E+00
424.8535E−023.4774E+005.2175E−021.8592E+005.4264E−021.5640E+005.7249E−021.3288E+00
434.6616E−023.5200E+004.9931E−021.8812E+005.1907E−021.5825E+005.4745E−021.3445E+00
444.4813E−023.5618E+004.7829E−021.9028E+004.9700E−021.6005E+005.2401E−021.3598E+00
454.3115E−023.6028E+004.5857E−021.9239E+004.7631E−021.6182E+005.0205E−021.3748E+00
464.1514E−023.6431E+004.4004E−021.9446E+004.5688E−021.6356E+004.8144E−021.3895E+00
474.0003E−023.6827E+004.2262E−021.9649E+004.3862E−021.6526E+004.6207E−021.4039E+00
483.8574E−023.7215E+004.0622E−021.9848E+004.2144E−021.6692E+004.4385E−021.4180E+00
493.7223E−023.7597E+003.9076E−022.0043E+004.0525E−021.6855E+004.2669E−021.4318E+00
503.5943E−023.7972E+003.7617E−022.0234E+003.8998E−021.7015E+004.1051E−021.4454E+00
513.4729E−023.8340E+003.6239E−022.0421E+003.7556E−021.7172E+003.9525E−021.4587E+00
523.3577E−023.8702E+003.4935E−022.0605E+003.6194E−021.7326E+003.8082E−021.4717E+00
533.2483E−023.9058E+003.3701E−022.0785E+003.4904E−021.7477E+003.6717E−021.4845E+00
543.1442E−023.9408E+003.2532E−022.0962E+003.3683E−021.7625E+003.5425E−021.4970E+00
553.0452E−023.9752E+003.1423E−022.1135E+003.2526E−021.7770E+003.4201E−021.5093E+00
562.9508E−024.0091E+003.0371E−022.1306E+003.1427E−021.7912E+003.3040E−021.5213E+00
572.8609E−024.0424E+002.9371E−022.1474E+003.0384E−021.8052E+003.1937E−021.5332E+00
582.7752E−024.0753E+002.8419E−022.1638E+002.9393E−021.8190E+003.0889E−021.5448E+00
592.6933E−024.1076E+002.7514E−022.1799E+002.8450E−021.8325E+002.9893E−021.5562E+00
602.6151E−024.1394E+002.6652E−022.1958E+002.7552E−021.8457E+002.8944E−021.5674E+00

Mn; [Z=25]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
07.0380E+002.3139E−017.8661E+001.3708E−018.2111E+001.1703E−018.6717E+001.0059E−01
15.7919E+002.7543E−016.5264E+001.6210E−016.8223E+001.3822E−017.2186E+001.1860E−01
23.8974E+003.8806E−014.4682E+002.2511E−014.6827E+001.9151E−014.9667E+001.6398E−01
32.6962E+005.2180E−013.1400E+002.9878E−013.2977E+002.5373E−013.5031E+002.1697E−01
41.9947E+006.4920E−012.3517E+003.6836E−012.4739E+003.1241E−012.6311E+002.6692E−01
51.5387E+007.7067E−011.8327E+004.3431E−011.9306E+003.6799E−012.0551E+003.1419E−01
61.2156E+008.9207E−011.4600E+004.9985E−011.5396E+004.2317E−011.6402E+003.6111E−01
79.7702E−011.0163E+001.1803E+005.6662E−011.2457E+004.7935E−011.3278E+004.0885E−01
87.9768E−011.1434E+009.6638E−016.3473E−011.0203E+005.3664E−011.0879E+004.5752E−01
96.6153E−011.2715E+008.0116E−017.0343E−018.4591E−015.9442E−019.0193E−015.0660E−01
105.5715E−011.3982E+006.7259E−017.7156E−017.0992E−016.5174E−017.5676E−015.5531E−01
114.7592E−011.5210E+005.7156E−018.3790E−016.0292E−017.0758E−016.4243E−016.0277E−01
124.1228E−011.6386E+004.9192E−019.0162E−015.1849E−017.6123E−015.5217E−016.4838E−01
133.6135E−011.7497E+004.2821E−019.6197E−014.5096E−018.1207E−014.7996E−016.9162E−01
143.1976E−011.8541E+003.7653E−011.0186E+003.9619E−018.5979E−014.2143E−017.3220E−01
152.8534E−011.9520E+003.3412E−011.0716E+003.5131E−019.0438E−013.7349E−017.7011E−01
162.5642E−012.0439E+002.9888E−011.1210E+003.1406E−019.4597E−013.3374E−018.0545E−01
172.3184E−012.1305E+002.6925E−011.1672E+002.8278E−019.8482E−013.0039E−018.3845E−01
182.1074E−012.2124E+002.4405E−011.2106E+002.5622E−011.0213E+002.7210E−018.6938E−01
191.9246E−012.2903E+002.2240E−011.2515E+002.3342E−011.0556E+002.4783E−018.9852E−01
201.7653E−012.3647E+002.0363E−011.2904E+002.1367E−011.0882E+002.2683E−019.2614E−01
211.6254E−012.4362E+001.8722E−011.3275E+001.9641E−011.1193E+002.0848E−019.5250E−01
221.5021E−012.5052E+001.7277E−011.3631E+001.8123E−011.1492E+001.9234E−019.7779E−01
231.3928E−012.5720E+001.5997E−011.3976E+001.6777E−011.1780E+001.7804E−011.0022E+00
241.2954E−012.6369E+001.4855E−011.4310E+001.5577E−011.2059E+001.6529E−011.0259E+00
251.2084E−012.7000E+001.3833E−011.4634E+001.4502E−011.2331E+001.5386E−011.0489E+00
261.1303E−012.7616E+001.2913E−011.4951E+001.3535E−011.2596E+001.4357E−011.0713E+00
271.0599E−012.8218E+001.2082E−011.5261E+001.2660E−011.2856E+001.3427E−011.0933E+00
289.9633E−022.8807E+001.1328E−011.5565E+001.1867E−011.3110E+001.2583E−011.1149E+00
299.3861E−022.9384E+001.0643E−011.5863E+001.1145E−011.3360E+001.1815E−011.1360E+00
308.8608E−022.9950E+001.0017E−011.6155E+001.0486E−011.3604E+001.1113E−011.1567E+00
318.3812E−023.0504E+009.4442E−021.6442E+009.8823E−021.3844E+001.0471E−011.1771E+00
327.9419E−023.1047E+008.9188E−021.6723E+009.3286E−021.4080E+009.8811E−021.1971E+00
337.5385E−023.1580E+008.4356E−021.6999E+008.8194E−021.4312E+009.3388E−021.2167E+00
347.1669E−023.2103E+007.9903E−021.7271E+008.3501E−021.4540E+008.8390E−021.2360E+00
356.8238E−023.2616E+007.5791E−021.7537E+007.9166E−021.4763E+008.3774E−021.2549E+00
366.5062E−023.3119E+007.1985E−021.7798E+007.5155E−021.4982E+007.9503E−021.2735E+00
376.2116E−023.3613E+006.8457E−021.8055E+007.1436E−021.5197E+007.5544E−021.2917E+00
385.9376E−023.4098E+006.5180E−021.8306E+006.7984E−021.5408E+007.1868E−021.3096E+00
395.6822E−023.4573E+006.2132E−021.8553E+006.4773E−021.5615E+006.8450E−021.3272E+00
405.4438E−023.5040E+005.9292E−021.8795E+006.1782E−021.5818E+006.5267E−021.3444E+00
415.2207E−023.5499E+005.6641E−021.9033E+005.8991E−021.6017E+006.2298E−021.3613E+00
425.0117E−023.5949E+005.4164E−021.9266E+005.6384E−021.6213E+005.9526E−021.3779E+00
434.8155E−023.6390E+005.1845E−021.9494E+005.3946E−021.6404E+005.6932E−021.3941E+00
444.6310E−023.6824E+004.9672E−021.9718E+005.1661E−021.6592E+005.4504E−021.4100E+00
454.4573E−023.7250E+004.7633E−021.9937E+004.9518E−021.6776E+005.2227E−021.4256E+00
464.2935E−023.7669E+004.5718E−022.0152E+004.7506E−021.6956E+005.0089E−021.4409E+00
474.1389E−023.8080E+004.3915E−022.0364E+004.5614E−021.7133E+004.8080E−021.4559E+00
483.9927E−023.8484E+004.2218E−022.0570E+004.3833E−021.7306E+004.6189E−021.4706E+00
493.8544E−023.8881E+004.0617E−022.0773E+004.2154E−021.7476E+004.4407E−021.4850E+00
503.7233E−023.9271E+003.9106E−022.0973E+004.0570E−021.7643E+004.2727E−021.4991E+00
513.5990E−023.9655E+003.7678E−022.1168E+003.9074E−021.7807E+004.1141E−021.5130E+00
523.4809E−024.0032E+003.6328E−022.1360E+003.7660E−021.7967E+003.9642E−021.5266E+00
533.3688E−024.0403E+003.5049E−022.1548E+003.6322E−021.8125E+003.8224E−021.5399E+00
543.2621E−024.0768E+003.3837E−022.1732E+003.5054E−021.8279E+003.6881E−021.5530E+00
553.1605E−024.1127E+003.2687E−022.1914E+003.3852E−021.8431E+003.5608E−021.5658E+00
563.0637E−024.1481E+003.1595E−022.2092E+003.2711E−021.8580E+003.4401E−021.5784E+00
572.9714E−024.1829E+003.0558E−022.2267E+003.1627E−021.8726E+003.3254E−021.5908E+00
582.8833E−024.2172E+002.9571E−022.2439E+003.0597E−021.8870E+003.2164E−021.6030E+00
592.7992E−024.2509E+002.8632E−022.2608E+002.9617E−021.9011E+003.1128E−021.6149E+00
602.7188E−024.2841E+002.7737E−022.2774E+002.8683E−021.9150E+003.0141E−021.6266E+00

Fe; [Z=26]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
06.6697E+002.4041E−017.4861E+001.4374E−017.8200E+001.2290E−018.2623E+001.0577E−01
15.5574E+002.8320E−016.2891E+001.6818E−016.5791E+001.4362E−016.9649E+001.2338E−01
23.8154E+003.9291E−014.3944E+002.2990E−014.6092E+001.9587E−014.8917E+001.6789E−01
32.6722E+005.2480E−013.1286E+003.0289E−013.2889E+002.5755E−013.4961E+002.2045E−01
41.9914E+006.5182E−012.3619E+003.7253E−012.4873E+003.1632E−012.6473E+002.7049E−01
51.5453E+007.7314E−011.8527E+004.3863E−011.9539E+003.7206E−012.0817E+003.1792E−01
61.2275E+008.9404E−011.4850E+005.0411E−011.5680E+004.2722E−011.6719E+003.6484E−01
79.9133E−011.0176E+001.2073E+005.7068E−011.2759E+004.8326E−011.3613E+004.1247E−01
88.1244E−011.1442E+009.9315E−016.3867E−011.0502E+005.4046E−011.1209E+004.6107E−01
96.7562E−011.2724E+008.2638E−017.0753E−018.7396E−015.9839E−019.3292E−015.1030E−01
105.7003E−011.4002E+006.9555E−017.7631E−017.3543E−016.5626E−017.8492E−015.5947E−01
114.8748E−011.5251E+005.9202E−018.4388E−016.2562E−017.1314E−016.6748E−016.0782E−01
124.2259E−011.6458E+005.0989E−019.0936E−015.3841E−017.6830E−015.7412E−016.5472E−01
133.7056E−011.7608E+004.4390E−019.7197E−014.6830E−018.2105E−014.9905E−016.9959E−01
143.2807E−011.8695E+003.9021E−011.0312E+004.1128E−018.7100E−014.3800E−017.4208E−01
152.9289E−011.9719E+003.4609E−011.0870E+003.6445E−019.1798E−013.8789E−017.8205E−01
162.6334E−012.0683E+003.0940E−011.1392E+003.2556E−019.6200E−013.4631E−018.1949E−01
172.3821E−012.1593E+002.7855E−011.1882E+002.9290E−011.0032E+003.1142E−018.5454E−01
182.1662E−012.2453E+002.5233E−011.2342E+002.6519E−011.0419E+002.8185E−018.8741E−01
191.9790E−012.3271E+002.2982E−011.2776E+002.4144E−011.0783E+002.5653E−019.1833E−01
201.8156E−012.4052E+002.1034E−011.3186E+002.2089E−011.1128E+002.3465E−019.4757E−01
211.6721E−012.4800E+001.9332E−011.3577E+002.0297E−011.1456E+002.1557E−019.7536E−01
221.5454E−012.5521E+001.7836E−011.3951E+001.8723E−011.1769E+001.9882E−011.0019E+00
231.4330E−012.6216E+001.6512E−011.4311E+001.7329E−011.2070E+001.8399E−011.0274E+00
241.3328E−012.6890E+001.5333E−011.4658E+001.6089E−011.2361E+001.7080E−011.0521E+00
251.2432E−012.7546E+001.4278E−011.4995E+001.4979E−011.2643E+001.5900E−011.0759E+00
261.1628E−012.8184E+001.3329E−011.5323E+001.3981E−011.2918E+001.4838E−011.0992E+00
271.0904E−012.8806E+001.2473E−011.5643E+001.3079E−011.3185E+001.3879E−011.1218E+00
281.0249E−012.9415E+001.1697E−011.5956E+001.2262E−011.3447E+001.3009E−011.1440E+00
299.6545E−023.0010E+001.0991E−011.6262E+001.1519E−011.3704E+001.2218E−011.1657E+00
309.1140E−023.0592E+001.0347E−011.6562E+001.0840E−011.3955E+001.1495E−011.1870E+00
318.6208E−023.1163E+009.7577E−021.6856E+001.0219E−011.4201E+001.0834E−011.2078E+00
328.1694E−023.1723E+009.2172E−021.7145E+009.6494E−021.4443E+001.0227E−011.2284E+00
337.7550E−023.2272E+008.7202E−021.7429E+009.1253E−021.4681E+009.6691E−021.2485E+00
347.3736E−023.2810E+008.2621E−021.7708E+008.6421E−021.4914E+009.1544E−021.2683E+00
357.0216E−023.3339E+007.8390E−021.7981E+008.1958E−021.5144E+008.6789E−021.2877E+00
366.6960E−023.3858E+007.4474E−021.8250E+007.7827E−021.5369E+008.2387E−021.3068E+00
376.3941E−023.4367E+007.0842E−021.8514E+007.3997E−021.5590E+007.8307E−021.3256E+00
386.1135E−023.4867E+006.7469E−021.8773E+007.0439E−021.5808E+007.4516E−021.3440E+00
395.8521E−023.5358E+006.4330E−021.9027E+006.7129E−021.6021E+007.0990E−021.3621E+00
405.6081E−023.5840E+006.1404E−021.9277E+006.4044E−021.6230E+006.7704E−021.3799E+00
415.3800E−023.6314E+005.8673E−021.9522E+006.1165E−021.6436E+006.4639E−021.3973E+00
425.1663E−023.6779E+005.6120E−021.9762E+005.8475E−021.6638E+006.1774E−021.4144E+00
434.9657E−023.7236E+005.3729E−021.9998E+005.5957E−021.6836E+005.9094E−021.4312E+00
444.7771E−023.7685E+005.1488E−022.0230E+005.3597E−021.7030E+005.6583E−021.4476E+00
454.5996E−023.8126E+004.9384E−022.0457E+005.1383E−021.7220E+005.4228E−021.4638E+00
464.4323E−023.8560E+004.7407E−022.0680E+004.9303E−021.7407E+005.2016E−021.4797E+00
474.2743E−023.8987E+004.5547E−022.0899E+004.7347E−021.7591E+004.9936E−021.4952E+00
484.1249E−023.9406E+004.3794E−022.1114E+004.5504E−021.7771E+004.7978E−021.5105E+00
493.9835E−023.9818E+004.2140E−022.1325E+004.3768E−021.7947E+004.6133E−021.5254E+00
503.8495E−024.0223E+004.0579E−022.1532E+004.2129E−021.8121E+004.4392E−021.5401E+00
513.7224E−024.0622E+003.9103E−022.1735E+004.0580E−021.8291E+004.2748E−021.5545E+00
523.6017E−024.1014E+003.7707E−022.1934E+003.9116E−021.8458E+004.1194E−021.5687E+00
533.4870E−024.1400E+003.6385E−022.2130E+003.7729E−021.8622E+003.9724E−021.5826E+00
543.3778E−024.1780E+003.5131E−022.2323E+003.6416E−021.8783E+003.8331E−021.5962E+00
553.2738E−024.2154E+003.3941E−022.2512E+003.5170E−021.8941E+003.7010E−021.6096E+00
563.1747E−024.2522E+003.2811E−022.2697E+003.3988E−021.9096E+003.5757E−021.6227E+00
573.0802E−024.2885E+003.1737E−022.2880E+003.2864E−021.9249E+003.4567E−021.6357E+00
582.9900E−024.3242E+003.0715E−022.3059E+003.1796E−021.9399E+003.3436E−021.6483E+00
592.9038E−024.3594E+002.9743E−022.3235E+003.0779E−021.9546E+003.2360E−021.6608E+00
602.8214E−024.3940E+002.8816E−022.3408E+002.9811E−021.9691E+003.1336E−021.6730E+00

Co; [Z=27]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
06.3345E+002.4885E−017.1396E+001.5015E−017.4634E+001.2860E−017.8891E+001.1082E−01
15.3351E+002.9049E−016.0630E+001.7408E−016.3475E+001.4890E−016.7232E+001.2806E−01
23.7285E+003.9756E−014.3138E+002.3464E−014.5284E+002.0021E−014.8089E+001.7179E−01
32.6415E+005.2758E−013.1086E+003.0694E−013.2710E+002.6136E−013.4795E+002.2392E−01
41.9824E+006.5400E−012.3650E+003.7653E−012.4932E+003.2012E−012.6556E+002.7398E−01
51.5471E+007.7496E−011.8668E+004.4268E−011.9711E+003.7592E−012.1018E+003.2149E−01
61.2354E+008.9524E−011.5051E+005.0805E−011.5912E+004.3102E−011.6982E+003.6837E−01
71.0023E+001.0180E+001.2302E+005.7437E−011.3019E+004.8688E−011.3905E+004.1586E−01
88.2457E−011.1438E+001.0168E+006.4212E−011.0768E+005.4390E−011.1505E+004.6433E−01
96.8764E−011.2718E+008.4926E−017.1097E−018.9961E−016.0184E−019.6144E−015.1357E−01
105.8130E−011.4001E+007.1684E−017.8012E−017.5926E−016.6003E−018.1138E−015.6302E−01
114.9779E−011.5266E+006.1133E−018.4855E−016.4721E−017.1764E−016.9143E−016.1200E−01
124.3188E−011.6497E+005.2710E−019.1542E−015.5763E−017.7396E−015.9543E−016.5989E−01
133.7895E−011.7679E+004.5911E−019.7988E−014.8525E−018.2829E−015.1782E−017.0611E−01
143.3570E−011.8803E+004.0361E−011.0414E+004.2617E−018.8015E−014.5445E−017.5024E−01
152.9989E−011.9867E+003.5789E−011.0996E+003.7752E−019.2927E−014.0230E−017.9204E−01
162.6980E−012.0873E+003.1984E−011.1545E+003.3707E−019.7557E−013.5896E−018.3144E−01
172.4420E−012.1825E+002.8782E−011.2062E+003.0308E−011.0191E+003.2258E−018.6846E−01
182.2220E−012.2726E+002.6061E−011.2548E+002.7424E−011.0600E+002.9174E−019.0325E−01
192.0311E−012.3582E+002.3727E−011.3006E+002.4954E−011.0985E+002.6535E−019.3600E−01
201.8642E−012.4399E+002.1707E−011.3439E+002.2819E−011.1350E+002.4257E−019.6692E−01
211.7175E−012.5181E+001.9945E−011.3851E+002.0959E−011.1695E+002.2274E−019.9625E−01
221.5878E−012.5933E+001.8397E−011.4244E+001.9327E−011.2025E+002.0535E−011.0242E+00
231.4725E−012.6658E+001.7028E−011.4620E+001.7884E−011.2340E+001.8999E−011.0509E+00
241.3698E−012.7359E+001.5810E−011.4983E+001.6601E−011.2644E+001.7634E−011.0767E+00
251.2778E−012.8039E+001.4722E−011.5333E+001.5455E−011.2938E+001.6413E−011.1015E+00
261.1951E−012.8701E+001.3744E−011.5674E+001.4425E−011.3222E+001.5317E−011.1256E+00
271.1206E−012.9345E+001.2861E−011.6004E+001.3496E−011.3499E+001.4328E−011.1490E+00
281.0532E−012.9974E+001.2062E−011.6327E+001.2654E−011.3769E+001.3432E−011.1719E+00
299.9215E−023.0588E+001.1335E−011.6642E+001.1888E−011.4033E+001.2617E−011.1942E+00
309.3657E−023.1190E+001.0673E−011.6951E+001.1190E−011.4291E+001.1874E−011.2161E+00
318.8586E−023.1778E+001.0067E−011.7254E+001.0551E−011.4544E+001.1193E−011.2375E+00
328.3946E−023.2355E+009.5111E−021.7550E+009.9652E−021.4793E+001.0569E−011.2586E+00
337.9689E−023.2921E+009.0001E−021.7842E+009.4262E−021.5037E+009.9943E−021.2793E+00
347.5773E−023.3475E+008.5292E−021.8127E+008.9294E−021.5276E+009.4648E−021.2995E+00
357.2162E−023.4020E+008.0942E−021.8408E+008.4703E−021.5512E+008.9755E−021.3195E+00
366.8823E−023.4554E+007.6917E−021.8684E+008.0454E−021.5743E+008.5226E−021.3391E+00
376.5729E−023.5079E+007.3183E−021.8955E+007.6514E−021.5970E+008.1025E−021.3583E+00
386.2854E−023.5594E+006.9715E−021.9222E+007.2852E−021.6193E+007.7122E−021.3773E+00
396.0178E−023.6100E+006.6487E−021.9483E+006.9445E−021.6413E+007.3490E−021.3959E+00
405.7682E−023.6598E+006.3477E−021.9740E+006.6269E−021.6628E+007.0105E−021.4141E+00
415.5350E−023.7087E+006.0667E−021.9993E+006.3304E−021.6840E+006.6945E−021.4321E+00
425.3165E−023.7567E+005.8040E−022.0240E+006.0532E−021.7048E+006.3992E−021.4497E+00
435.1116E−023.8039E+005.5580E−022.0484E+005.7938E−021.7252E+006.1227E−021.4670E+00
444.9190E−023.8503E+005.3272E−022.0723E+005.5505E−021.7452E+005.8636E−021.4840E+00
454.7377E−023.8959E+005.1106E−022.0958E+005.3222E−021.7649E+005.6205E−021.5007E+00
464.5668E−023.9408E+004.9069E−022.1188E+005.1076E−021.7843E+005.3921E−021.5171E+00
474.4056E−023.9849E+004.7152E−022.1415E+004.9057E−021.8032E+005.1772E−021.5332E+00
484.2531E−024.0283E+004.5345E−022.1637E+004.7156E−021.8219E+004.9749E−021.5490E+00
494.1088E−024.0710E+004.3641E−022.1856E+004.5362E−021.8402E+004.7842E−021.5645E+00
503.9720E−024.1130E+004.2031E−022.2070E+004.3670E−021.8582E+004.6042E−021.5797E+00
513.8423E−024.1543E+004.0509E−022.2281E+004.2070E−021.8758E+004.4342E−021.5947E+00
523.7191E−024.1950E+003.9068E−022.2488E+004.0557E−021.8931E+004.2734E−021.6094E+00
533.6020E−024.2351E+003.7703E−022.2691E+003.9124E−021.9102E+004.1212E−021.6238E+00
543.4905E−024.2745E+003.6409E−022.2891E+003.7766E−021.9269E+003.9771E−021.6380E+00
553.3844E−024.3134E+003.5181E−022.3087E+003.6478E−021.9433E+003.8404E−021.6519E+00
563.2832E−024.3516E+003.4014E−022.3280E+003.5254E−021.9595E+003.7106E−021.6655E+00
573.1866E−024.3893E+003.2905E−022.3470E+003.4092E−021.9753E+003.5874E−021.6790E+00
583.0944E−024.4265E+003.1849E−022.3656E+003.2987E−021.9909E+003.4702E−021.6922E+00
593.0063E−024.4631E+003.0844E−022.3840E+003.1935E−022.0062E+003.3587E−021.7052E+00
602.9220E−024.4991E+002.9886E−022.4020E+003.0933E−022.0213E+003.2526E−021.7179E+00

Ni; [Z=28]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
06.0281E+002.5677E−016.8220E+001.5635E−017.1366E+001.3413E−017.5470E+001.1574E−01
15.1251E+002.9736E−015.8484E+001.7981E−016.1275E+001.5405E−016.4937E+001.3265E−01
23.6392E+004.0197E−014.2290E+002.3932E−014.4432E+002.0451E−014.7213E+001.7568E−01
32.6058E+005.3016E−013.0820E+003.1095E−013.2460E+002.6513E−013.4555E+002.2740E−01
41.9688E+006.5582E−012.3620E+003.8040E−012.4927E+003.2383E−012.6572E+002.7742E−01
51.5449E+007.7628E−011.8757E+004.4652E−011.9828E+003.7964E−012.1161E+003.2496E−01
61.2398E+008.9586E−011.5207E+005.1173E−011.6097E+004.3464E−011.7196E+003.7176E−01
71.0103E+001.0177E+001.2494E+005.7776E−011.3241E+004.9028E−011.4155E+004.1909E−01
88.3425E−011.1426E+001.0374E+006.4522E−011.1002E+005.4708E−011.1769E+004.6738E−01
96.9771E−011.2701E+008.6981E−017.1392E−019.2287E−016.0491E−019.8746E−015.1653E−01
105.9103E−011.3986E+007.3638E−017.8322E−017.8131E−016.6323E−018.3601E−015.6611E−01
115.0685E−011.5261E+006.2937E−018.5224E−016.6755E−017.2135E−017.1412E−016.1552E−01
124.4017E−011.6510E+005.4343E−019.2013E−015.7601E−017.7854E−016.1592E−016.6415E−01
133.8650E−011.7717E+004.7371E−019.8608E−015.0167E−018.3413E−015.3609E−017.1145E−01
143.4263E−011.8873E+004.1661E−011.0495E+004.4074E−018.8761E−014.7065E−017.5696E−01
153.0628E−011.9973E+003.6944E−011.1099E+003.9043E−019.3861E−014.1661E−018.0038E−01
162.7575E−012.1017E+003.3011E−011.1672E+003.4850E−019.8696E−013.7160E−018.4155E−01
172.4977E−012.2007E+002.9700E−011.2214E+003.1324E−011.0326E+003.3378E−018.8043E−01
182.2743E−012.2946E+002.6884E−011.2725E+002.8330E−011.0757E+003.0170E−019.1708E−01
192.0803E−012.3840E+002.4469E−011.3207E+002.5767E−011.1163E+002.7426E−019.5164E−01
201.9106E−012.4692E+002.2379E−011.3664E+002.3552E−011.1547E+002.5058E−019.8428E−01
211.7611E−012.5508E+002.0557E−011.4097E+002.1624E−011.1912E+002.2999E−011.0152E+00
221.6288E−012.6291E+001.8958E−011.4510E+001.9933E−011.2258E+002.1195E−011.0446E+00
231.5111E−012.7046E+001.7544E−011.4904E+001.8441E−011.2589E+001.9603E−011.0727E+00
241.4060E−012.7775E+001.6287E−011.5283E+001.7115E−011.2907E+001.8190E−011.0996E+00
251.3117E−012.8482E+001.5164E−011.5648E+001.5931E−011.3213E+001.6929E−011.1255E+00
261.2270E−012.9168E+001.4156E−011.6002E+001.4869E−011.3509E+001.5797E−011.1506E+00
271.1506E−012.9835E+001.3247E−011.6345E+001.3911E−011.3796E+001.4776E−011.1749E+00
281.0814E−013.0486E+001.2424E−011.6679E+001.3043E−011.4075E+001.3853E−011.1985E+00
291.0187E−013.1121E+001.1677E−011.7004E+001.2255E−011.4347E+001.3013E−011.2215E+00
309.6158E−023.1742E+001.0995E−011.7322E+001.1537E−011.4613E+001.2248E−011.2441E+00
319.0948E−023.2349E+001.0372E−011.7633E+001.0880E−011.4874E+001.1548E−011.2661E+00
328.6182E−023.2944E+009.8012E−021.7938E+001.0277E−011.5129E+001.0906E−011.2877E+00
338.1810E−023.3527E+009.2761E−021.8237E+009.7232E−021.5380E+001.0315E−011.3089E+00
347.7790E−023.4098E+008.7923E−021.8531E+009.2125E−021.5625E+009.7710E−021.3298E+00
357.4084E−023.4659E+008.3454E−021.8819E+008.7407E−021.5867E+009.2679E−021.3502E+00
367.0660E−023.5210E+007.9319E−021.9102E+008.3040E−021.6104E+008.8023E−021.3703E+00
376.7488E−023.5750E+007.5484E−021.9381E+007.8990E−021.6337E+008.3703E−021.3901E+00
386.4543E−023.6281E+007.1921E−021.9654E+007.5226E−021.6566E+007.9689E−021.4095E+00
396.1804E−023.6802E+006.8605E−021.9923E+007.1723E−021.6791E+007.5953E−021.4286E+00
405.9249E−023.7315E+006.5513E−022.0187E+006.8458E−021.7013E+007.2470E−021.4473E+00
415.6864E−023.7818E+006.2626E−022.0446E+006.5409E−021.7230E+006.9218E−021.4658E+00
425.4630E−023.8314E+005.9926E−022.0701E+006.2557E−021.7444E+006.6178E−021.4839E+00
435.2537E−023.8800E+005.7397E−022.0952E+005.9887E−021.7654E+006.3331E−021.5017E+00
445.0570E−023.9279E+005.5025E−022.1198E+005.7384E−021.7861E+006.0662E−021.5192E+00
454.8720E−023.9750E+005.2798E−022.1440E+005.5034E−021.8064E+005.8157E−021.5364E+00
464.6976E−024.0213E+005.0703E−022.1678E+005.2824E−021.8263E+005.5802E−021.5533E+00
474.5331E−024.0669E+004.8731E−022.1912E+005.0745E−021.8459E+005.3587E−021.5699E+00
484.3776E−024.1118E+004.6872E−022.2142E+004.8785E−021.8651E+005.1501E−021.5863E+00
494.2305E−024.1559E+004.5118E−022.2367E+004.6937E−021.8841E+004.9533E−021.6023E+00
504.0911E−024.1994E+004.3461E−022.2589E+004.5192E−021.9026E+004.7675E−021.6181E+00
513.9589E−024.2422E+004.1894E−022.2807E+004.3542E−021.9209E+004.5921E−021.6335E+00
523.8333E−024.2843E+004.0410E−022.3021E+004.1982E−021.9389E+004.4261E−021.6487E+00
533.7139E−024.3258E+003.9005E−022.3232E+004.0504E−021.9565E+004.2689E−021.6637E+00
543.6003E−024.3667E+003.7671E−022.3439E+003.9102E−021.9738E+004.1200E−021.6784E+00
553.4921E−024.4069E+003.6406E−022.3642E+003.7773E−021.9909E+003.9787E−021.6928E+00
563.3889E−024.4466E+003.5203E−022.3843E+003.6510E−022.0076E+003.8446E−021.7070E+00
573.2904E−024.4857E+003.4059E−022.4039E+003.5310E−022.0241E+003.7172E−021.7209E+00
583.1964E−024.5243E+003.2971E−022.4233E+003.4169E−022.0403E+003.5961E−021.7346E+00
593.1065E−024.5623E+003.1934E−022.4423E+003.3082E−022.0562E+003.4808E−021.7481E+00
603.0205E−024.5997E+003.0946E−022.4611E+003.2046E−022.0719E+003.3710E−021.7614E+00

Cu; [Z=29]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
05.0642E+002.7713E−015.7822E+001.7072E−016.0572E+001.4676E−016.4098E+001.2687E−01
14.3690E+003.1776E−015.0303E+001.9423E−015.2779E+001.6671E−015.5985E+001.4378E−01
23.2591E+004.1339E−013.8162E+002.4878E−014.0147E+002.1298E−014.2702E+001.8320E−01
32.4617E+005.2313E−012.9296E+003.1045E−013.0891E+002.6522E−013.2913E+002.2779E−01
41.9223E+006.3324E−012.3205E+003.7172E−012.4517E+003.1705E−012.6158E+002.7199E−01
51.5337E+007.4484E−011.8750E+004.3330E−011.9844E+003.6908E−012.1198E+003.1633E−01
61.2413E+008.6014E−011.5344E+004.9643E−011.6264E+004.2236E−011.7392E+003.6170E−01
71.0166E+009.8006E−011.2680E+005.6165E−011.3457E+004.7734E−011.4403E+004.0848E−01
88.4223E−011.1043E+001.0572E+006.2890E−011.1230E+005.3399E−011.2027E+004.5666E−01
97.0608E−011.2319E+008.8921E−016.9773E−019.4508E−015.9194E−011.0125E+005.0593E−01
105.9918E−011.3609E+007.5470E−017.6744E−018.0223E−016.5063E−018.5955E−015.5581E−01
115.1455E−011.4896E+006.4631E−018.3716E−016.8684E−017.0934E−017.3579E−016.0574E−01
124.4731E−011.6163E+005.5884E−019.0608E−015.9352E−017.6741E−016.3556E−016.5512E−01
133.9310E−011.7394E+004.8760E−019.7340E−015.1742E−018.2416E−015.5374E−017.0341E−01
143.4875E−011.8578E+004.2908E−011.0385E+004.5484E−018.7907E−014.8642E−017.5015E−01
153.1200E−011.9710E+003.8062E−011.1009E+004.0302E−019.3174E−014.3066E−017.9500E−01
162.8112E−012.0788E+003.4014E−011.1603E+003.5975E−019.8194E−013.8412E−018.3775E−01
172.5485E−012.1813E+003.0601E−011.2168E+003.2330E−011.0296E+003.4494E−018.7832E−01
182.3224E−012.2788E+002.7697E−011.2702E+002.9234E−011.0747E+003.1169E−019.1671E−01
192.1261E−012.3717E+002.5205E−011.3207E+002.6580E−011.1173E+002.8322E−019.5299E−01
201.9541E−012.4603E+002.3048E−011.3686E+002.4288E−011.1576E+002.5866E−019.8731E−01
211.8024E−012.5452E+002.1169E−011.4141E+002.2294E−011.1959E+002.3731E−011.0198E+00
221.6679E−012.6267E+001.9518E−011.4574E+002.0545E−011.2323E+002.1862E−011.0507E+00
231.5482E−012.7051E+001.8060E−011.4987E+001.9002E−011.2670E+002.0214E−011.0802E+00
241.4411E−012.7809E+001.6765E−011.5384E+001.7633E−011.3003E+001.8752E−011.1084E+00
251.3449E−012.8542E+001.5608E−011.5765E+001.6411E−011.3322E+001.7449E−011.1355E+00
261.2583E−012.9254E+001.4570E−011.6133E+001.5315E−011.3630E+001.6280E−011.1616E+00
271.1802E−012.9946E+001.3634E−011.6489E+001.4327E−011.3929E+001.5227E−011.1869E+00
281.1093E−013.0619E+001.2787E−011.6835E+001.3433E−011.4218E+001.4275E−011.2114E+00
291.0451E−013.1276E+001.2018E−011.7172E+001.2622E−011.4500E+001.3410E−011.2352E+00
309.8651E−023.1918E+001.1317E−011.7500E+001.1883E−011.4775E+001.2622E−011.2585E+00
319.3307E−023.2545E+001.0677E−011.7821E+001.1207E−011.5043E+001.1902E−011.2812E+00
328.8417E−023.3159E+001.0090E−011.8135E+001.0588E−011.5306E+001.1242E−011.3035E+00
338.3931E−023.3760E+009.5503E−021.8443E+001.0018E−011.5564E+001.0634E−011.3253E+00
347.9807E−023.4350E+009.0533E−021.8745E+009.4933E−021.5816E+001.0075E−011.3466E+00
357.6006E−023.4928E+008.5944E−021.9041E+009.0086E−021.6064E+009.5577E−021.3676E+00
367.2494E−023.5495E+008.1697E−021.9332E+008.5600E−021.6307E+009.0792E−021.3882E+00
376.9242E−023.6052E+007.7760E−021.9617E+008.1439E−021.6547E+008.6353E−021.4085E+00
386.6225E−023.6599E+007.4102E−021.9898E+007.7573E−021.6782E+008.2228E−021.4284E+00
396.3420E−023.7136E+007.0697E−022.0174E+007.3975E−021.7013E+007.8388E−021.4480E+00
406.0805E−023.7664E+006.7523E−022.0445E+007.0620E−021.7240E+007.4808E−021.4673E+00
415.8365E−023.8183E+006.4559E−022.0712E+006.7487E−021.7464E+007.1464E−021.4862E+00
425.6081E−023.8693E+006.1786E−022.0974E+006.4557E−021.7683E+006.8338E−021.5048E+00
435.3942E−023.9195E+005.9190E−022.1232E+006.1813E−021.7899E+006.5410E−021.5231E+00
445.1933E−023.9689E+005.6754E−022.1485E+005.9239E−021.8112E+006.2664E−021.5411E+00
455.0044E−024.0175E+005.4466E−022.1734E+005.6823E−021.8320E+006.0086E−021.5588E+00
464.8265E−024.0653E+005.2315E−022.1979E+005.4550E−021.8526E+005.7663E−021.5762E+00
474.6586E−024.1123E+005.0289E−022.2220E+005.2411E−021.8728E+005.5383E−021.5934E+00
484.5001E−024.1586E+004.8379E−022.2456E+005.0396E−021.8926E+005.3234E−021.6102E+00
494.3501E−024.2042E+004.6576E−022.2689E+004.8494E−021.9121E+005.1207E−021.6267E+00
504.2081E−024.2491E+004.4873E−022.2918E+004.6698E−021.9313E+004.9294E−021.6430E+00
514.0734E−024.2934E+004.3262E−022.3143E+004.5000E−021.9501E+004.7485E−021.6589E+00
523.9454E−024.3369E+004.1736E−022.3365E+004.3393E−021.9687E+004.5774E−021.6747E+00
533.8239E−024.3799E+004.0291E−022.3582E+004.1870E−021.9869E+004.4153E−021.6901E+00
543.7082E−024.4222E+003.8919E−022.3796E+004.0427E−022.0048E+004.2618E−021.7053E+00
553.5979E−024.4639E+003.7617E−022.4007E+003.9057E−022.0225E+004.1161E−021.7202E+00
563.4929E−024.5049E+003.6379E−022.4214E+003.7755E−022.0398E+003.9777E−021.7349E+00
573.3926E−024.5455E+003.5202E−022.4418E+003.6518E−022.0568E+003.8462E−021.7494E+00
583.2969E−024.5854E+003.4082E−022.4618E+003.5341E−022.0736E+003.7212E−021.7636E+00
593.2053E−024.6248E+003.3014E−022.4815E+003.4221E−022.0901E+003.6022E−021.7775E+00
603.1178E−024.6636E+003.1996E−022.5010E+003.3153E−022.1064E+003.4888E−021.7913E+00

Zn; [Z=30]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
05.4874E+002.7128E−016.2593E+001.6820E−016.5575E+001.4480E−016.9412E+001.2528E−01
14.7400E+003.0996E−015.4522E+001.9082E−015.7212E+001.6402E−016.0698E+001.4161E−01
23.4593E+004.1012E−014.0540E+002.4844E−014.2664E+002.1298E−014.5393E+001.8338E−01
32.5248E+005.3472E−013.0146E+003.1876E−013.1811E+002.7259E−013.3912E+002.3430E−01
41.9313E+006.5860E−012.3419E+003.8781E−012.4767E+003.3103E−012.6444E+002.8416E−01
51.5308E+007.7778E−011.8807E+004.5373E−011.9925E+003.8675E−012.1302E+003.3166E−01
61.2397E+008.9576E−011.5405E+005.1854E−011.6347E+004.4147E−011.7496E+003.7827E−01
71.0187E+001.0156E+001.2779E+005.8393E−011.3579E+004.9663E−011.4546E+004.2522E−01
88.4717E−011.1385E+001.0703E+006.5067E−011.1385E+005.5288E−011.2205E+004.7308E−01
97.1254E−011.2644E+009.0415E−017.1882E−019.6237E−016.1028E−011.0322E+005.2189E−01
106.0616E−011.3923E+007.7017E−017.8798E−018.2000E−016.6852E−018.7964E−015.7141E−01
115.2145E−011.5206E+006.6144E−018.5750E−017.0417E−017.2708E−017.5534E−016.2120E−01
124.5381E−011.6476E+005.7310E−019.2664E−016.0983E−017.8534E−016.5395E−016.7075E−01
133.9913E−011.7719E+005.0075E−019.9466E−015.3243E−018.4269E−015.7064E−017.1955E−01
143.5433E−011.8924E+004.4103E−011.0609E+004.6848E−018.9858E−015.0175E−017.6713E−01
153.1720E−012.0082E+003.9142E−011.1249E+004.1531E−019.5258E−014.4446E−018.1313E−01
162.8601E−012.1189E+003.4988E−011.1862E+003.7079E−011.0044E+003.9648E−018.5726E−01
172.5948E−012.2247E+003.1479E−011.2447E+003.3321E−011.0538E+003.5601E−018.9938E−01
182.3666E−012.3255E+002.8491E−011.3003E+003.0125E−011.1008E+003.2161E−019.3941E−01
192.1683E−012.4217E+002.5925E−011.3532E+002.7384E−011.1454E+002.9214E−019.7739E−01
201.9945E−012.5136E+002.3705E−011.4033E+002.5016E−011.1877E+002.6671E−011.0134E+00
211.8411E−012.6016E+002.1769E−011.4509E+002.2955E−011.2278E+002.4460E−011.0475E+00
221.7049E−012.6862E+002.0069E−011.4963E+002.1150E−011.2660E+002.2525E−011.0800E+00
231.5834E−012.7675E+001.8568E−011.5395E+001.9557E−011.3024E+002.0821E−011.1109E+00
241.4746E−012.8461E+001.7235E−011.5810E+001.8144E−011.3372E+001.9310E−011.1405E+00
251.3768E−012.9221E+001.6045E−011.6208E+001.6884E−011.3706E+001.7964E−011.1688E+00
261.2886E−012.9958E+001.4977E−011.6591E+001.5755E−011.4027E+001.6758E−011.1960E+00
271.2088E−013.0673E+001.4014E−011.6961E+001.4738E−011.4337E+001.5673E−011.2223E+00
281.1365E−013.1370E+001.3144E−011.7320E+001.3818E−011.4638E+001.4692E−011.2477E+00
291.0707E−013.2049E+001.2353E−011.7668E+001.2984E−011.4929E+001.3802E−011.2724E+00
301.0108E−013.2711E+001.1633E−011.8008E+001.2224E−011.5213E+001.2991E−011.2964E+00
319.5606E−023.3358E+001.0976E−011.8339E+001.1529E−011.5490E+001.2251E−011.3199E+00
329.0596E−023.3991E+001.0373E−011.8662E+001.0893E−011.5761E+001.1572E−011.3428E+00
338.5998E−023.4611E+009.8190E−021.8978E+001.0308E−011.6025E+001.0948E−011.3652E+00
348.1770E−023.5219E+009.3090E−021.9288E+009.7689E−021.6285E+001.0373E−011.3871E+00
357.7874E−023.5814E+008.8381E−021.9592E+009.2714E−021.6539E+009.8425E−021.4087E+00
367.4275E−023.6398E+008.4024E−021.9891E+008.8110E−021.6789E+009.3512E−021.4298E+00
377.0943E−023.6971E+007.9985E−022.0184E+008.3840E−021.7034E+008.8955E−021.4506E+00
386.7853E−023.7534E+007.6233E−022.0472E+007.9873E−021.7275E+008.4720E−021.4710E+00
396.4980E−023.8087E+007.2741E−022.0755E+007.6181E−021.7512E+008.0779E−021.4911E+00
406.2305E−023.8631E+006.9486E−022.1033E+007.2738E−021.7745E+007.7103E−021.5108E+00
415.9809E−023.9165E+006.6446E−022.1306E+006.9523E−021.7974E+007.3671E−021.5302E+00
425.7475E−023.9690E+006.3603E−022.1575E+006.6516E−021.8199E+007.0460E−021.5493E+00
435.5289E−024.0207E+006.0940E−022.1840E+006.3700E−021.8421E+006.7453E−021.5681E+00
445.3238E−024.0715E+005.8442E−022.2100E+006.1058E−021.8639E+006.4633E−021.5865E+00
455.1311E−024.1215E+005.6096E−022.2356E+005.8577E−021.8853E+006.1985E−021.6047E+00
464.9496E−024.1708E+005.3889E−022.2608E+005.6244E−021.9064E+005.9495E−021.6226E+00
474.7785E−024.2192E+005.1811E−022.2855E+005.4047E−021.9272E+005.7151E−021.6402E+00
484.6170E−024.2670E+004.9851E−022.3099E+005.1977E−021.9476E+005.4942E−021.6575E+00
494.4642E−024.3140E+004.8002E−022.3338E+005.0023E−021.9677E+005.2857E−021.6745E+00
504.3196E−024.3603E+004.6254E−022.3574E+004.8177E−021.9874E+005.0889E−021.6913E+00
514.1825E−024.4059E+004.4600E−022.3806E+004.6432E−022.0069E+004.9028E−021.7077E+00
524.0524E−024.4509E+004.3034E−022.4034E+004.4780E−022.0260E+004.7268E−021.7239E+00
533.9287E−024.4952E+004.1550E−022.4258E+004.3215E−022.0448E+004.5600E−021.7399E+00
543.8111E−024.5388E+004.0142E−022.4479E+004.1730E−022.0633E+004.4019E−021.7555E+00
553.6990E−024.5819E+003.8805E−022.4697E+004.0321E−022.0815E+004.2518E−021.7709E+00
563.5922E−024.6244E+003.7533E−022.4911E+003.8982E−022.0994E+004.1093E−021.7861E+00
573.4903E−024.6662E+003.6324E−022.5121E+003.7710E−022.1170E+003.9739E−021.8010E+00
583.3930E−024.7075E+003.5173E−022.5329E+003.6498E−022.1343E+003.8451E−021.8157E+00
593.2999E−024.7483E+003.4076E−022.5533E+003.5345E−022.1514E+003.7224E−021.8302E+00
603.2109E−024.7885E+003.3029E−022.5733E+003.4245E−022.1682E+003.6056E−021.8444E+00

Ga; [Z=31]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
06.4743E+002.5242E−017.3483E+001.5747E−017.6949E+001.3573E−018.1454E+001.1752E−01
15.4069E+002.9717E−016.1985E+001.8391E−016.5025E+001.5827E−016.8986E+001.3676E−01
23.7407E+004.1105E−014.3829E+002.4991E−014.6136E+002.1445E−014.9098E+001.8479E−01
32.6231E+005.5253E−013.1399E+003.3009E−013.3155E+002.8248E−013.5363E+002.4294E−01
41.9583E+006.9214E−012.3839E+004.0807E−012.5233E+003.4851E−012.6960E+002.9929E−01
51.5352E+008.2193E−011.8942E+004.8000E−012.0089E+004.0933E−012.1493E+003.5116E−01
61.2401E+009.4514E−011.5478E+005.4787E−011.6443E+004.6667E−011.7613E+004.0002E−01
71.0205E+001.0665E+001.2863E+006.1432E−011.3684E+005.2275E−011.4671E+004.4778E−01
88.5101E−011.1889E+001.0811E+006.8101E−011.1514E+005.7899E−011.2355E+004.9565E−01
97.1785E−011.3136E+009.1680E−017.4864E−019.7717E−016.3598E−011.0491E+005.4413E−01
106.1215E−011.4401E+007.8370E−018.1721E−018.3568E−016.9375E−018.9749E−015.9326E−01
115.2753E−011.5675E+006.7504E−018.8635E−017.1986E−017.5200E−017.7314E−016.4279E−01
124.5965E−011.6944E+005.8621E−019.5544E−016.2492E−018.1022E−016.7104E−016.9231E−01
134.0459E−011.8194E+005.1304E−011.0238E+005.4657E−018.6788E−015.8664E−017.4138E−01
143.5941E−011.9412E+004.5237E−011.0909E+004.8149E−019.2445E−015.1647E−017.8954E−01
153.2193E−012.0591E+004.0177E−011.1560E+004.2717E−019.7948E−014.5785E−018.3642E−01
162.9046E−012.1724E+003.5928E−011.2189E+003.8153E−011.0326E+004.0859E−018.8169E−01
172.6371E−012.2809E+003.2333E−011.2793E+003.4293E−011.0836E+003.6693E−019.2515E−01
182.4070E−012.3847E+002.9267E−011.3369E+003.1003E−011.1323E+003.3145E−019.6667E−01
192.2071E−012.4839E+002.6632E−011.3918E+002.8179E−011.1787E+003.0102E−011.0062E+00
202.0319E−012.5789E+002.4350E−011.4440E+002.5738E−011.2228E+002.7474E−011.0438E+00
211.8772E−012.6700E+002.2360E−011.4938E+002.3614E−011.2648E+002.5189E−011.0796E+00
221.7396E−012.7575E+002.0614E−011.5412E+002.1752E−011.3048E+002.3190E−011.1136E+00
231.6168E−012.8417E+001.9071E−011.5864E+002.0110E−011.3429E+002.1429E−011.1459E+00
241.5066E−012.9230E+001.7701E−011.6296E+001.8655E−011.3793E+001.9870E−011.1769E+00
251.4074E−013.0016E+001.6477E−011.6711E+001.7357E−011.4141E+001.8480E−011.2065E+00
261.3178E−013.0777E+001.5380E−011.7111E+001.6194E−011.4476E+001.7237E−011.2349E+00
271.2366E−013.1517E+001.4392E−011.7496E+001.5147E−011.4799E+001.6119E−011.2623E+00
281.1629E−013.2237E+001.3498E−011.7868E+001.4201E−011.5111E+001.5108E−011.2887E+00
291.0958E−013.2938E+001.2686E−011.8229E+001.3343E−011.5413E+001.4192E−011.3143E+00
301.0346E−013.3621E+001.1947E−011.8580E+001.2562E−011.5707E+001.3359E−011.3392E+00
319.7870E−023.4289E+001.1272E−011.8922E+001.1849E−011.5993E+001.2597E−011.3634E+00
329.2745E−023.4942E+001.0653E−011.9255E+001.1195E−011.6272E+001.1900E−011.3870E+00
338.8040E−023.5581E+001.0085E−011.9581E+001.0595E−011.6544E+001.1259E−011.4100E+00
348.3711E−023.6206E+009.5619E−021.9899E+001.0042E−011.6811E+001.0669E−011.4326E+00
357.9721E−023.6820E+009.0789E−022.0212E+009.5312E−021.7072E+001.0124E−011.4547E+00
367.6035E−023.7421E+008.6322E−022.0518E+009.0589E−021.7328E+009.6200E−021.4764E+00
377.2623E−023.8011E+008.2180E−022.0819E+008.6209E−021.7580E+009.1525E−021.4977E+00
386.9459E−023.8590E+007.8334E−022.1114E+008.2141E−021.7827E+008.7181E−021.5186E+00
396.6519E−023.9159E+007.4755E−022.1404E+007.8355E−021.8070E+008.3137E−021.5391E+00
406.3782E−023.9718E+007.1418E−022.1689E+007.4825E−021.8308E+007.9367E−021.5594E+00
416.1229E−024.0268E+006.8303E−022.1970E+007.1528E−021.8543E+007.5846E−021.5792E+00
425.8843E−024.0808E+006.5390E−022.2245E+006.8445E−021.8774E+007.2553E−021.5988E+00
435.6609E−024.1340E+006.2661E−022.2517E+006.5557E−021.9001E+006.9468E−021.6180E+00
445.4515E−024.1863E+006.0101E−022.2784E+006.2848E−021.9225E+006.6574E−021.6370E+00
455.2547E−024.2377E+005.7697E−022.3046E+006.0304E−021.9445E+006.3856E−021.6556E+00
465.0696E−024.2884E+005.5435E−022.3304E+005.7911E−021.9661E+006.1300E−021.6740E+00
474.8952E−024.3383E+005.3305E−022.3559E+005.5658E−021.9874E+005.8894E−021.6920E+00
484.7306E−024.3874E+005.1297E−022.3809E+005.3533E−022.0084E+005.6626E−021.7098E+00
494.5751E−024.4358E+004.9402E−022.4055E+005.1529E−022.0290E+005.4486E−021.7273E+00
504.4278E−024.4835E+004.7610E−022.4297E+004.9635E−022.0493E+005.2464E−021.7445E+00
514.2884E−024.5305E+004.5915E−022.4536E+004.7843E−022.0693E+005.0552E−021.7614E+00
524.1560E−024.5768E+004.4310E−022.4771E+004.6148E−022.0889E+004.8743E−021.7781E+00
534.0303E−024.6225E+004.2788E−022.5002E+004.4541E−022.1083E+004.7029E−021.7945E+00
543.9107E−024.6676E+004.1344E−022.5229E+004.3016E−022.1274E+004.5404E−021.8106E+00
553.7969E−024.7120E+003.9972E−022.5453E+004.1569E−022.1461E+004.3861E−021.8265E+00
563.6884E−024.7558E+003.8669E−022.5674E+004.0194E−022.1646E+004.2396E−021.8422E+00
573.5849E−024.7990E+003.7428E−022.5891E+003.8886E−022.1828E+004.1003E−021.8576E+00
583.4861E−024.8416E+003.6247E−022.6105E+003.7641E−022.2006E+003.9677E−021.8727E+00
593.3916E−024.8837E+003.5121E−022.6315E+003.6456E−022.2183E+003.8415E−021.8876E+00
603.3013E−024.9252E+003.4047E−022.6523E+003.5325E−022.2356E+003.7213E−021.9023E+00

Ge; [Z=32]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
06.6981E+002.6067E−017.6145E+001.6293E−017.9769E+001.4055E−018.4472E+001.2177E−01
15.6931E+003.0111E−016.5316E+001.8695E−016.8541E+001.6105E−017.2738E+001.3926E−01
23.9785E+004.1065E−014.6644E+002.5086E−014.9115E+002.1551E−015.2283E+001.8587E−01
32.7452E+005.5806E−013.2934E+003.3485E−013.4796E+002.8685E−013.7132E+002.4690E−01
42.0062E+007.1109E−012.4511E+004.2056E−012.5966E+003.5947E−012.7762E+003.0891E−01
51.5507E+008.5381E−011.9211E+004.9980E−012.0394E+004.2650E−012.1836E+003.6609E−01
61.2449E+009.8548E−011.5601E+005.7250E−011.6590E+004.8795E−011.7784E+004.1847E−01
71.0233E+001.1109E+001.2952E+006.4139E−011.3793E+005.4613E−011.4801E+004.6803E−01
88.5457E−011.2344E+001.0906E+007.0889E−011.1628E+006.0307E−011.2489E+005.1652E−01
97.2243E−011.3585E+009.2759E−017.7641E−019.8991E−016.6001E−011.0639E+005.6497E−01
106.1735E−011.4839E+007.9544E−018.4452E−018.4938E−017.1741E−019.1319E−016.1380E−01
115.3292E−011.6103E+006.8711E−019.1320E−017.3387E−017.7528E−017.8913E−016.6302E−01
124.6491E−011.7366E+005.9811E−019.8202E−016.3871E−018.3328E−016.8674E−017.1236E−01
134.0956E−011.8617E+005.2442E−011.0505E+005.5974E−018.9100E−016.0162E−017.6148E−01
143.6404E−011.9844E+004.6302E−011.1180E+004.9380E−019.4798E−015.3046E−018.0999E−01
153.2625E−012.1037E+004.1162E−011.1840E+004.3853E−011.0037E+004.7074E−018.5749E−01
162.9452E−012.2190E+003.6831E−011.2481E+003.9192E−011.0579E+004.2036E−019.0366E−01
172.6756E−012.3300E+003.3158E−011.3100E+003.5239E−011.1102E+003.7762E−019.4824E−01
182.4439E−012.4364E+003.0020E−011.3694E+003.1863E−011.1604E+003.4115E−019.9107E−01
192.2427E−012.5384E+002.7320E−011.4262E+002.8962E−011.2085E+003.0981E−011.0320E+00
202.0664E−012.6363E+002.4981E−011.4804E+002.6452E−011.2543E+002.8272E−011.0711E+00
211.9106E−012.7302E+002.2941E−011.5322E+002.4266E−011.2981E+002.5916E−011.1084E+00
221.7720E−012.8204E+002.1149E−011.5815E+002.2350E−011.3398E+002.3853E−011.1439E+00
231.6482E−012.9074E+001.9566E−011.6287E+002.0660E−011.3795E+002.2037E−011.1778E+00
241.5369E−012.9913E+001.8161E−011.6738E+001.9162E−011.4175E+002.0429E−011.2101E+00
251.4365E−013.0725E+001.6905E−011.7170E+001.7827E−011.4539E+001.8997E−011.2410E+00
261.3458E−013.1511E+001.5780E−011.7586E+001.6631E−011.4888E+001.7716E−011.2707E+00
271.2634E−013.2275E+001.4765E−011.7986E+001.5555E−011.5224E+001.6564E−011.2992E+00
281.1885E−013.3017E+001.3848E−011.8373E+001.4583E−011.5549E+001.5524E−011.3267E+00
291.1203E−013.3741E+001.3016E−011.8747E+001.3701E−011.5862E+001.4582E−011.3533E+00
301.0580E−013.4446E+001.2258E−011.9110E+001.2899E−011.6166E+001.3725E−011.3790E+00
311.0009E−013.5134E+001.1565E−011.9463E+001.2166E−011.6462E+001.2942E−011.4040E+00
329.4861E−023.5807E+001.0931E−011.9807E+001.1495E−011.6750E+001.2226E−011.4284E+00
339.0054E−023.6465E+001.0349E−012.0143E+001.0879E−011.7030E+001.1568E−011.4522E+00
348.5629E−023.7109E+009.8122E−022.0471E+001.0312E−011.7305E+001.0962E−011.4754E+00
358.1548E−023.7741E+009.3172E−022.0792E+009.7884E−021.7573E+001.0403E−011.4981E+00
367.7777E−023.8360E+008.8593E−022.1107E+009.3041E−021.7837E+009.8861E−021.5204E+00
377.4286E−023.8967E+008.4350E−022.1416E+008.8552E−021.8095E+009.4067E−021.5422E+00
387.1049E−023.9563E+008.0408E−022.1718E+008.4382E−021.8348E+008.9613E−021.5636E+00
396.8041E−024.0148E+007.6742E−022.2016E+008.0501E−021.8597E+008.5468E−021.5847E+00
406.5241E−024.0723E+007.3324E−022.2308E+007.6884E−021.8841E+008.1603E−021.6054E+00
416.2630E−024.1288E+007.0133E−022.2595E+007.3506E−021.9082E+007.7993E−021.6258E+00
426.0191E−024.1844E+006.7149E−022.2878E+007.0347E−021.9318E+007.4617E−021.6458E+00
435.7909E−024.2391E+006.4355E−022.3156E+006.7388E−021.9551E+007.1455E−021.6655E+00
445.5769E−024.2929E+006.1733E−022.3429E+006.4612E−021.9780E+006.8488E−021.6849E+00
455.3761E−024.3458E+005.9271E−022.3698E+006.2005E−022.0005E+006.5702E−021.7040E+00
465.1873E−024.3979E+005.6956E−022.3963E+005.9552E−022.0227E+006.3082E−021.7228E+00
475.0094E−024.4492E+005.4775E−022.4224E+005.7243E−022.0445E+006.0614E−021.7413E+00
484.8417E−024.4998E+005.2719E−022.4481E+005.5067E−022.0660E+005.8288E−021.7595E+00
494.6832E−024.5496E+005.0778E−022.4733E+005.3012E−022.0872E+005.6093E−021.7774E+00
504.5334E−024.5987E+004.8943E−022.4982E+005.1070E−022.1080E+005.4019E−021.7951E+00
514.3914E−024.6470E+004.7207E−022.5227E+004.9234E−022.1286E+005.2057E−021.8125E+00
524.2568E−024.6947E+004.5563E−022.5468E+004.7495E−022.1488E+005.0201E−021.8296E+00
534.1290E−024.7418E+004.4005E−022.5706E+004.5847E−022.1687E+004.8441E−021.8464E+00
544.0076E−024.7881E+004.2526E−022.5940E+004.4284E−022.1883E+004.6773E−021.8630E+00
553.8920E−024.8339E+004.1121E−022.6170E+004.2799E−022.2076E+004.5189E−021.8794E+00
563.7818E−024.8790E+003.9785E−022.6397E+004.1389E−022.2266E+004.3684E−021.8955E+00
573.6768E−024.9236E+003.8514E−022.6621E+004.0047E−022.2453E+004.2253E−021.9114E+00
583.5766E−024.9675E+003.7304E−022.6841E+003.8770E−022.2637E+004.0891E−021.9270E+00
593.4808E−025.0109E+003.6150E−022.7058E+003.7553E−022.2818E+003.9595E−021.9423E+00
603.3892E−025.0538E+003.5049E−022.7272E+003.6392E−022.2997E+003.8359E−021.9575E+00

As; [Z=33]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
06.6112E+002.7657E−017.5499E+001.7312E−017.9099E+001.4950E−018.3809E+001.2961E−01
15.7554E+003.1195E−016.6239E+001.9427E−016.9531E+001.6751E−017.3824E+001.4496E−01
24.1475E+004.1229E−014.8706E+002.5321E−015.1306E+002.1774E−015.4636E+001.8797E−01
32.8694E+005.5772E−013.4504E+003.3657E−013.6475E+002.8861E−013.8942E+002.4865E−01
42.0681E+007.1917E−012.5359E+004.2733E−012.6887E+003.6555E−012.8765E+003.1438E−01
51.5764E+008.7454E−011.9610E+005.1379E−012.0836E+004.3872E−012.2327E+003.7682E−01
61.2551E+001.0169E+001.5790E+005.9259E−011.6806E+005.0533E−011.8030E+004.3363E−01
71.0284E+001.1488E+001.3065E+006.6531E−011.3925E+005.6676E−011.4955E+004.8598E−01
88.5870E−011.2753E+001.1001E+007.3466E−011.1740E+006.2530E−011.2619E+005.3584E−01
97.2682E−011.4000E+009.3737E−018.0274E−011.0013E+006.8272E−011.0771E+005.8472E−01
106.2211E−011.5248E+008.0594E−018.7069E−018.6148E−017.4002E−019.2713E−016.3348E−01
115.3781E−011.6503E+006.9823E−019.3894E−017.4636E−017.9758E−018.0346E−016.8245E−01
124.6971E−011.7758E+006.0919E−011.0074E+006.5123E−018.5527E−017.0106E−017.3154E−01
134.1412E−011.9007E+005.3512E−011.0757E+005.7191E−019.1288E−016.1552E−017.8056E−01
143.6830E−012.0237E+004.7319E−011.1435E+005.0536E−019.7002E−015.4365E−018.2921E−01
153.3022E−012.1441E+004.2113E−011.2100E+004.4932E−011.0263E+004.8305E−018.7712E−01
162.9824E−012.2609E+003.7713E−011.2751E+004.0190E−011.0812E+004.3173E−019.2396E−01
172.7108E−012.3738E+003.3971E−011.3381E+003.6155E−011.1346E+003.8804E−019.6945E−01
182.4776E−012.4826E+003.0769E−011.3989E+003.2702E−011.1861E+003.5065E−011.0134E+00
192.2752E−012.5871E+002.8010E−011.4574E+002.9729E−011.2356E+003.1848E−011.0556E+00
202.0980E−012.6875E+002.5617E−011.5134E+002.7153E−011.2830E+002.9063E−011.0961E+00
211.9414E−012.7841E+002.3528E−011.5670E+002.4909E−011.3284E+002.6638E−011.1348E+00
221.8021E−012.8770E+002.1693E−011.6182E+002.2940E−011.3717E+002.4514E−011.1717E+00
231.6774E−012.9665E+002.0072E−011.6672E+002.1205E−011.4131E+002.2643E−011.2070E+00
241.5653E−013.0530E+001.8632E−011.7140E+001.9666E−011.4527E+002.0987E−011.2407E+00
251.4641E−013.1367E+001.7346E−011.7590E+001.8294E−011.4907E+001.9512E−011.2730E+00
261.3724E−013.2177E+001.6193E−011.8021E+001.7065E−011.5270E+001.8194E−011.3039E+00
271.2891E−013.2964E+001.5153E−011.8436E+001.5960E−011.5620E+001.7008E−011.3336E+00
281.2133E−013.3729E+001.4213E−011.8837E+001.4962E−011.5957E+001.5939E−011.3622E+00
291.1440E−013.4474E+001.3360E−011.9224E+001.4057E−011.6283E+001.4970E−011.3898E+00
301.0807E−013.5201E+001.2583E−011.9599E+001.3233E−011.6598E+001.4089E−011.4166E+00
311.0226E−013.5910E+001.1873E−011.9964E+001.2482E−011.6904E+001.3286E−011.4425E+00
329.6935E−023.6603E+001.1223E−012.0318E+001.1794E−011.7201E+001.2550E−011.4676E+00
339.2034E−023.7281E+001.0626E−012.0663E+001.1162E−011.7491E+001.1875E−011.4921E+00
348.7519E−023.7944E+001.0076E−012.1000E+001.0580E−011.7773E+001.1254E−011.5160E+00
358.3352E−023.8594E+009.5683E−022.1329E+001.0044E−011.8049E+001.0680E−011.5394E+00
367.9499E−023.9231E+009.0988E−022.1651E+009.5472E−021.8320E+001.0150E−011.5623E+00
377.5932E−023.9855E+008.6637E−022.1967E+009.0871E−021.8585E+009.6586E−021.5847E+00
387.2622E−024.0469E+008.2598E−022.2276E+008.6599E−021.8845E+009.2021E−021.6067E+00
396.9547E−024.1071E+007.8839E−022.2580E+008.2624E−021.9100E+008.7773E−021.6283E+00
406.6684E−024.1662E+007.5335E−022.2878E+007.8919E−021.9350E+008.3813E−021.6495E+00
416.4015E−024.2243E+007.2064E−022.3172E+007.5459E−021.9597E+008.0115E−021.6703E+00
426.1522E−024.2815E+006.9005E−022.3460E+007.2224E−021.9839E+007.6657E−021.6908E+00
435.9191E−024.3377E+006.6141E−022.3743E+006.9194E−022.0077E+007.3417E−021.7110E+00
445.7006E−024.3930E+006.3453E−022.4022E+006.6351E−022.0311E+007.0378E−021.7308E+00
455.4956E−024.4474E+006.0929E−022.4296E+006.3682E−022.0542E+006.7524E−021.7504E+00
465.3029E−024.5009E+005.8555E−022.4566E+006.1171E−022.0769E+006.4839E−021.7696E+00
475.1215E−024.5537E+005.6319E−022.4831E+005.8807E−022.0993E+006.2311E−021.7886E+00
484.9505E−024.6057E+005.4211E−022.5093E+005.6577E−022.1213E+005.9928E−021.8072E+00
494.7891E−024.6569E+005.2221E−022.5350E+005.4473E−022.1430E+005.7678E−021.8256E+00
504.6365E−024.7074E+005.0339E−022.5603E+005.2485E−022.1644E+005.5553E−021.8437E+00
514.4921E−024.7571E+004.8558E−022.5853E+005.0604E−022.1854E+005.3543E−021.8615E+00
524.3552E−024.8062E+004.6872E−022.6099E+004.8823E−022.2061E+005.1639E−021.8791E+00
534.2253E−024.8546E+004.5273E−022.6341E+004.7135E−022.2266E+004.9836E−021.8964E+00
544.1019E−024.9023E+004.3756E−022.6579E+004.5534E−022.2467E+004.8125E−021.9134E+00
553.9845E−024.9494E+004.2313E−022.6814E+004.4013E−022.2665E+004.6500E−021.9302E+00
563.8727E−024.9959E+004.0942E−022.7046E+004.2567E−022.2860E+004.4957E−021.9468E+00
573.7662E−025.0417E+003.9637E−022.7274E+004.1192E−022.3052E+004.3489E−021.9631E+00
583.6645E−025.0870E+003.8394E−022.7498E+003.9883E−022.3242E+004.2092E−021.9791E+00
593.5674E−025.1317E+003.7209E−022.7720E+003.8635E−022.3429E+004.0761E−021.9949E+00
603.4746E−025.1758E+003.6078E−022.7938E+003.7446E−022.3613E+003.9493E−022.0105E+00

Se; [Z=34]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
06.4543E+002.9336E−017.3989E+001.8414E−017.7633E+001.5910E−018.2306E+001.3803E−01
15.7250E+003.2496E−016.6111E+002.0304E−016.9468E+001.7524E−017.3799E+001.5176E−01
24.2546E+004.1681E−015.0079E+002.5721E−015.2786E+002.2149E−015.6238E+001.9139E−01
32.9808E+005.5661E−013.5930E+003.3778E−013.8008E+002.9008E−014.0599E+002.5016E−01
42.1362E+007.2123E−012.6289E+004.3070E−012.7897E+003.6893E−012.9866E+003.1758E−01
51.6101E+008.8679E−012.0113E+005.2302E−012.1393E+004.4711E−012.2941E+003.8432E−01
61.2707E+001.0404E+001.6048E+006.0824E−011.7099E+005.1921E−011.8360E+004.4582E−01
71.0364E+001.1809E+001.3208E+006.8591E−011.4094E+005.8487E−011.5148E+005.0180E−01
88.6408E−011.3124E+001.1102E+007.5824E−011.1861E+006.4597E−011.2760E+005.5386E−01
97.3156E−011.4392E+009.4644E−018.2769E−011.0122E+007.0459E−011.0898E+006.0379E−01
106.2678E−011.5643E+008.1505E−018.9601E−018.7245E−017.6222E−019.3981E−016.5284E−01
115.4243E−011.6893E+007.0736E−019.6414E−017.5757E−018.1966E−018.1636E−017.0173E−01
124.7421E−011.8141E+006.1854E−011.0322E+006.6256E−018.7708E−017.1407E−017.5059E−01
134.1839E−011.9384E+005.4444E−011.1003E+005.8308E−019.3447E−016.2834E−017.9944E−01
143.7228E−012.0615E+004.8217E−011.1680E+005.1612E−019.9160E−015.5599E−018.4807E−01
153.3391E−012.1824E+004.2963E−011.2349E+004.5950E−011.0481E+004.9472E−018.9619E−01
163.0168E−012.3004E+003.8506E−011.3005E+004.1141E−011.1036E+004.4262E−019.4349E−01
172.7432E−012.4149E+003.4706E−011.3645E+003.7036E−011.1577E+003.9812E−019.8967E−01
182.5085E−012.5255E+003.1447E−011.4266E+003.3514E−011.2103E+003.5993E−011.0345E+00
192.3050E−012.6323E+002.8635E−011.4866E+003.0476E−011.2610E+003.2698E−011.0778E+00
202.1269E−012.7350E+002.6194E−011.5443E+002.7840E−011.3099E+002.9842E−011.1195E+00
211.9696E−012.8340E+002.4061E−011.5996E+002.5541E−011.3568E+002.7352E−011.1595E+00
221.8297E−012.9294E+002.2186E−011.6527E+002.3523E−011.4017E+002.5169E−011.1978E+00
231.7045E−013.0214E+002.0529E−011.7035E+002.1743E−011.4447E+002.3246E−011.2345E+00
241.5918E−013.1103E+001.9057E−011.7522E+002.0164E−011.4858E+002.1543E−011.2696E+00
251.4900E−013.1963E+001.7742E−011.7989E+001.8756E−011.5253E+002.0026E−011.3032E+00
261.3976E−013.2797E+001.6563E−011.8438E+001.7496E−011.5631E+001.8670E−011.3354E+00
271.3136E−013.3607E+001.5500E−011.8870E+001.6362E−011.5995E+001.7452E−011.3663E+00
281.2369E−013.4394E+001.4539E−011.9287E+001.5338E−011.6345E+001.6353E−011.3961E+00
291.1668E−013.5161E+001.3666E−011.9689E+001.4410E−011.6683E+001.5358E−011.4247E+00
301.1026E−013.5908E+001.2871E−012.0078E+001.3566E−011.7010E+001.4453E−011.4525E+00
311.0437E−013.6638E+001.2145E−012.0456E+001.2795E−011.7326E+001.3628E−011.4793E+00
329.8957E−023.7351E+001.1480E−012.0823E+001.2090E−011.7633E+001.2873E−011.5053E+00
339.3972E−023.8048E+001.0869E−012.1180E+001.1443E−011.7932E+001.2181E−011.5306E+00
348.9374E−023.8730E+001.0306E−012.1529E+001.0847E−011.8224E+001.1543E−011.5553E+00
358.5126E−023.9399E+009.7872E−022.1869E+001.0297E−011.8508E+001.0956E−011.5794E+00
368.1197E−024.0054E+009.3072E−022.2201E+009.7882E−021.8786E+001.0412E−011.6029E+00
377.7556E−024.0696E+008.8623E−022.2527E+009.3171E−021.9059E+009.9085E−021.6259E+00
387.4177E−024.1327E+008.4492E−022.2846E+008.8796E−021.9325E+009.4408E−021.6485E+00
397.1036E−024.1946E+008.0649E−022.3159E+008.4726E−021.9587E+009.0057E−021.6706E+00
406.8112E−024.2554E+007.7068E−022.3466E+008.0932E−021.9844E+008.6002E−021.6923E+00
416.5386E−024.3151E+007.3725E−022.3768E+007.7391E−022.0096E+008.2215E−021.7137E+00
426.2840E−024.3739E+007.0600E−022.4065E+007.4079E−022.0344E+007.8674E−021.7347E+00
436.0458E−024.4316E+006.7674E−022.4356E+007.0978E−022.0588E+007.5357E−021.7553E+00
445.8227E−024.4885E+006.4929E−022.4643E+006.8069E−022.0828E+007.2246E−021.7756E+00
455.6135E−024.5444E+006.2352E−022.4925E+006.5337E−022.1064E+006.9324E−021.7956E+00
465.4168E−024.5995E+005.9928E−022.5203E+006.2768E−022.1297E+006.6575E−021.8153E+00
475.2318E−024.6537E+005.7646E−022.5477E+006.0348E−022.1525E+006.3987E−021.8347E+00
485.0575E−024.7071E+005.5495E−022.5747E+005.8067E−022.1751E+006.1547E−021.8538E+00
494.8931E−024.7597E+005.3464E−022.6012E+005.5914E−022.1973E+005.9244E−021.8726E+00
504.7377E−024.8116E+005.1544E−022.6273E+005.3880E−022.2192E+005.7068E−021.8911E+00
514.5907E−024.8628E+004.9729E−022.6531E+005.1955E−022.2407E+005.5009E−021.9094E+00
524.4514E−024.9132E+004.8009E−022.6785E+005.0132E−022.2620E+005.3060E−021.9274E+00
534.3194E−024.9630E+004.6378E−022.7034E+004.8405E−022.2829E+005.1213E−021.9451E+00
544.1940E−025.0120E+004.4831E−022.7281E+004.6765E−022.3035E+004.9460E−021.9626E+00
554.0748E−025.0605E+004.3361E−022.7524E+004.5209E−022.3239E+004.7796E−021.9798E+00
563.9613E−025.1083E+004.1964E−022.7763E+004.3729E−022.3439E+004.6215E−021.9967E+00
573.8532E−025.1554E+004.0633E−022.7999E+004.2321E−022.3636E+004.4711E−022.0135E+00
583.7502E−025.2020E+003.9367E−022.8231E+004.0981E−022.3831E+004.3279E−022.0299E+00
593.6518E−025.2480E+003.8159E−022.8461E+003.9704E−022.4023E+004.1915E−022.0462E+00
603.5577E−025.2935E+003.7007E−022.8687E+003.8486E−022.4212E+004.0615E−022.0622E+00

Br; [Z=35]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
06.2644E+003.1037E−017.2156E+001.9538E−017.5777E+001.6896E−018.0394E+001.4670E−01
15.6398E+003.3900E−016.5399E+002.1255E−016.8776E+001.8362E−017.3109E+001.5916E−01
24.3108E+004.2341E−015.0893E+002.6255E−015.3679E+002.2636E−015.7221E+001.9578E−01
33.0732E+005.5614E−013.7143E+003.3948E−013.9317E+002.9193E−014.2021E+002.5201E−01
42.2045E+007.1996E−012.7230E+004.3236E−012.8919E+003.7082E−013.0981E+003.1951E−01
51.6488E+008.9233E−012.0690E+005.2874E−012.2029E+004.5248E−012.3643E+003.8925E−01
61.2908E+001.0564E+001.6372E+006.1998E−011.7463E+005.2970E−011.8766E+004.5516E−01
71.0473E+001.2066E+001.3393E+007.0323E−011.4305E+006.0013E−011.5388E+005.1522E−01
88.7105E−011.3448E+001.1222E+007.7958E−011.2001E+006.6465E−011.2921E+005.7022E−01
97.3704E−011.4754E+009.5597E−018.5135E−011.0234E+007.2527E−011.1027E+006.2189E−01
106.3172E−011.6020E+008.2389E−019.2070E−018.8282E−017.8380E−019.5182E−016.7171E−01
115.4706E−011.7272E+007.1609E−019.8908E−017.6781E−018.4148E−018.2819E−017.2081E−01
124.7860E−011.8515E+006.2734E−011.0570E+006.7286E−018.9876E−017.2594E−017.6957E−01
134.2250E−011.9753E+005.5318E−011.1248E+005.9332E−019.5593E−016.4013E−018.1824E−01
143.7608E−012.0982E+004.9067E−011.1923E+005.2609E−011.0129E+005.6746E−018.6677E−01
153.3741E−012.2193E+004.3776E−011.2593E+004.6905E−011.0695E+005.0570E−019.1495E−01
163.0491E−012.3380E+003.9275E−011.3253E+004.2042E−011.1253E+004.5299E−019.6251E−01
172.7734E−012.4537E+003.5425E−011.3900E+003.7879E−011.1800E+004.0780E−011.0092E+00
182.5370E−012.5659E+003.2117E−011.4531E+003.4297E−011.2334E+003.6891E−011.0547E+00
192.3324E−012.6745E+002.9257E−011.5142E+003.1201E−011.2852E+003.3528E−011.0990E+00
202.1534E−012.7793E+002.6770E−011.5733E+002.8510E−011.3353E+003.0606E−011.1417E+00
211.9955E−012.8805E+002.4596E−011.6302E+002.6159E−011.3835E+002.8055E−011.1829E+00
221.8552E−012.9781E+002.2684E−011.6849E+002.4095E−011.4298E+002.5817E−011.2225E+00
231.7295E−013.0724E+002.0994E−011.7374E+002.2272E−011.4743E+002.3843E−011.2604E+00
241.6164E−013.1636E+001.9491E−011.7879E+002.0655E−011.5170E+002.2095E−011.2968E+00
251.5141E−013.2519E+001.8149E−011.8363E+001.9214E−011.5579E+002.0538E−011.3317E+00
261.4212E−013.3375E+001.6944E−011.8828E+001.7922E−011.5972E+001.9145E−011.3652E+00
271.3366E−013.4207E+001.5858E−011.9276E+001.6761E−011.6350E+001.7894E−011.3973E+00
281.2594E−013.5016E+001.4876E−011.9708E+001.5712E−011.6713E+001.6766E−011.4283E+00
291.1886E−013.5804E+001.3984E−012.0124E+001.4761E−011.7064E+001.5744E−011.4581E+00
301.1237E−013.6572E+001.3172E−012.0528E+001.3896E−011.7403E+001.4816E−011.4868E+00
311.0641E−013.7322E+001.2430E−012.0918E+001.3107E−011.7730E+001.3969E−011.5146E+00
321.0092E−013.8054E+001.1750E−012.1298E+001.2385E−011.8048E+001.3195E−011.5416E+00
339.5858E−023.8771E+001.1125E−012.1666E+001.1721E−011.8357E+001.2485E−011.5677E+00
349.1185E−023.9472E+001.0550E−012.2025E+001.1111E−011.8658E+001.1832E−011.5932E+00
358.6865E−024.0159E+001.0019E−012.2376E+001.0548E−011.8951E+001.1229E−011.6180E+00
368.2865E−024.0833E+009.5281E−022.2718E+001.0028E−011.9237E+001.0673E−011.6422E+00
377.9155E−024.1493E+009.0731E−022.3053E+009.5452E−021.9517E+001.0157E−011.6659E+00
387.5710E−024.2141E+008.6505E−022.3381E+009.0975E−021.9791E+009.6778E−021.6890E+00
397.2507E−024.2777E+008.2575E−022.3702E+008.6809E−022.0059E+009.2323E−021.7118E+00
406.9523E−024.3402E+007.8912E−022.4017E+008.2927E−022.0323E+008.8171E−021.7340E+00
416.6741E−024.4016E+007.5493E−022.4326E+007.9304E−022.0581E+008.4295E−021.7559E+00
426.4142E−024.4620E+007.2297E−022.4630E+007.5915E−022.0835E+008.0671E−021.7774E+00
436.1711E−024.5213E+006.9304E−022.4929E+007.2743E−022.1085E+007.7277E−021.7985E+00
445.9435E−024.5797E+006.6498E−022.5223E+006.9767E−022.1331E+007.4094E−021.8193E+00
455.7299E−024.6372E+006.3863E−022.5512E+006.6973E−022.1572E+007.1104E−021.8397E+00
465.5293E−024.6938E+006.1385E−022.5796E+006.4345E−022.1810E+006.8292E−021.8599E+00
475.3407E−024.7495E+005.9052E−022.6077E+006.1871E−022.2044E+006.5644E−021.8797E+00
485.1630E−024.8044E+005.6853E−022.6352E+005.9538E−022.2275E+006.3147E−021.8992E+00
494.9954E−024.8585E+005.4777E−022.6624E+005.7336E−022.2502E+006.0791E−021.9184E+00
504.8371E−024.9118E+005.2816E−022.6892E+005.5255E−022.2726E+005.8564E−021.9374E+00
514.6875E−024.9643E+005.0960E−022.7155E+005.3287E−022.2947E+005.6458E−021.9561E+00
524.5458E−025.0161E+004.9203E−022.7415E+005.1423E−022.3164E+005.4463E−021.9745E+00
534.4115E−025.0673E+004.7537E−022.7671E+004.9657E−022.3379E+005.2573E−021.9927E+00
544.2840E−025.1177E+004.5956E−022.7924E+004.7980E−022.3590E+005.0779E−022.0105E+00
554.1630E−025.1675E+004.4454E−022.8173E+004.6388E−022.3798E+004.9076E−022.0282E+00
564.0478E−025.2166E+004.3026E−022.8418E+004.4875E−022.4003E+004.7457E−022.0456E+00
573.9382E−025.2651E+004.1667E−022.8660E+004.3435E−022.4206E+004.5918E−022.0627E+00
583.8337E−025.3130E+004.0373E−022.8898E+004.2064E−022.4405E+004.4452E−022.0796E+00
593.7340E−025.3603E+003.9139E−022.9134E+004.0757E−022.4602E+004.3055E−022.0963E+00
603.6387E−025.4071E+003.7962E−022.9365E+003.9511E−022.4796E+004.1724E−022.1127E+00

Kr; [Z=36]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
06.0600E+003.2728E−017.0151E+002.0669E−017.3740E+001.7892E−017.8299E+001.5545E−01
15.5219E+003.5349E−016.4320E+002.2246E−016.7701E+001.9238E−017.2009E+001.6691E−01
24.3272E+004.3146E−015.1262E+002.6884E−015.4109E+002.3205E−015.7716E+002.0088E−01
33.1447E+005.5680E−013.8119E+003.4187E−014.0378E+002.9437E−014.3178E+002.5439E−01
42.2687E+007.1718E−012.8126E+004.3323E−012.9897E+003.7205E−013.2052E+003.2087E−01
51.6900E+008.9301E−012.1308E+005.3184E−012.2710E+004.5566E−012.4393E+003.9236E−01
61.3142E+001.0658E+001.6748E+006.2809E−011.7884E+005.3716E−011.9236E+004.6191E−01
71.0607E+001.2257E+001.3617E+007.1702E−011.4560E+006.1242E−011.5675E+005.2615E−01
88.7963E−011.3719E+001.1364E+007.9811E−011.2165E+006.8100E−011.3108E+005.8462E−01
97.4347E−011.5077E+009.6636E−018.7311E−011.0355E+007.4439E−011.1166E+006.3867E−01
106.3715E−011.6372E+008.3272E−019.4426E−018.9312E−018.0448E−019.6369E−016.8985E−01
115.5191E−011.7635E+007.2435E−011.0134E+007.7746E−018.6284E−018.3933E−017.3954E−01
124.8305E−011.8879E+006.3546E−011.0815E+006.8237E−019.2026E−017.3692E−017.8843E−01
134.2659E−012.0114E+005.6122E−011.1491E+006.0274E−019.7731E−016.5100E−018.3700E−01
143.7980E−012.1340E+004.9853E−011.2164E+005.3532E−011.0342E+005.7811E−018.8540E−01
153.4079E−012.2551E+004.4533E−011.2834E+004.7796E−011.0907E+005.1599E−019.3354E−01
163.0800E−012.3742E+003.9996E−011.3496E+004.2892E−011.1466E+004.6279E−019.8122E−01
172.8018E−012.4907E+003.6106E−011.4147E+003.8680E−011.2017E+004.1705E−011.0282E+00
182.5637E−012.6042E+003.2754E−011.4785E+003.5048E−011.2557E+003.7756E−011.0743E+00
192.3577E−012.7143E+002.9852E−011.5406E+003.1900E−011.3083E+003.4332E−011.1192E+00
202.1778E−012.8210E+002.7325E−011.6009E+002.9159E−011.3594E+003.1351E−011.1629E+00
212.0193E−012.9241E+002.5114E−011.6591E+002.6761E−011.4088E+002.8745E−011.2051E+00
221.8785E−013.0238E+002.3167E−011.7153E+002.4654E−011.4565E+002.6454E−011.2458E+00
231.7526E−013.1202E+002.1445E−011.7694E+002.2792E−011.5023E+002.4433E−011.2849E+00
241.6391E−013.2135E+001.9914E−011.8214E+002.1138E−011.5464E+002.2641E−011.3226E+00
251.5365E−013.3040E+001.8545E−011.8715E+001.9664E−011.5888E+002.1045E−011.3587E+00
261.4433E−013.3917E+001.7317E−011.9196E+001.8343E−011.6295E+001.9617E−011.3935E+00
271.3583E−013.4770E+001.6210E−011.9660E+001.7155E−011.6686E+001.8334E−011.4268E+00
281.2806E−013.5599E+001.5208E−012.0107E+001.6082E−011.7063E+001.7176E−011.4589E+00
291.2093E−013.6407E+001.4298E−012.0538E+001.5109E−011.7427E+001.6129E−011.4898E+00
301.1438E−013.7195E+001.3469E−012.0955E+001.4224E−011.7778E+001.5177E−011.5197E+00
311.0836E−013.7965E+001.2711E−012.1359E+001.3416E−011.8117E+001.4309E−011.5485E+00
321.0281E−013.8717E+001.2017E−012.1751E+001.2677E−011.8446E+001.3516E−011.5764E+00
339.7684E−023.9453E+001.1379E−012.2132E+001.1998E−011.8765E+001.2788E−011.6034E+00
349.2946E−024.0173E+001.0791E−012.2502E+001.1374E−011.9075E+001.2119E−011.6297E+00
358.8561E−024.0878E+001.0249E−012.2863E+001.0798E−011.9378E+001.1502E−011.6553E+00
368.4496E−024.1570E+009.7470E−022.3215E+001.0265E−011.9672E+001.0932E−011.6803E+00
378.0723E−024.2248E+009.2819E−022.3560E+009.7717E−021.9960E+001.0403E−011.7046E+00
387.7217E−024.2913E+008.8500E−022.3897E+009.3137E−022.0242E+009.9132E−021.7284E+00
397.3955E−024.3567E+008.4483E−022.4226E+008.8876E−022.0517E+009.4573E−021.7517E+00
407.0915E−024.4209E+008.0739E−022.4550E+008.4906E−022.0788E+009.0324E−021.7746E+00
416.8079E−024.4840E+007.7244E−022.4867E+008.1199E−022.1053E+008.6359E−021.7970E+00
426.5429E−024.5460E+007.3977E−022.5179E+007.7735E−022.1313E+008.2651E−021.8190E+00
436.2950E−024.6069E+007.0919E−022.5485E+007.4491E−022.1569E+007.9179E−021.8406E+00
446.0628E−024.6669E+006.8051E−022.5786E+007.1448E−022.1820E+007.5923E−021.8619E+00
455.8450E−024.7260E+006.5358E−022.6082E+006.8591E−022.2067E+007.2865E−021.8828E+00
465.6404E−024.7841E+006.2826E−022.6373E+006.5905E−022.2311E+006.9990E−021.9034E+00
475.4481E−024.8413E+006.0442E−022.6660E+006.3376E−022.2550E+006.7282E−021.9237E+00
485.2670E−024.8977E+005.8195E−022.6942E+006.0991E−022.2786E+006.4729E−021.9436E+00
495.0962E−024.9532E+005.6074E−022.7220E+005.8741E−022.3019E+006.2320E−021.9633E+00
504.9350E−025.0080E+005.4070E−022.7494E+005.6614E−022.3248E+006.0043E−021.9827E+00
514.7827E−025.0620E+005.2175E−022.7764E+005.4602E−022.3473E+005.7889E−022.0018E+00
524.6385E−025.1152E+005.0380E−022.8029E+005.2697E−022.3696E+005.5849E−022.0206E+00
534.5019E−025.1677E+004.8679E−022.8292E+005.0892E−022.3915E+005.3916E−022.0392E+00
544.3724E−025.2196E+004.7064E−022.8550E+004.9178E−022.4131E+005.2082E−022.0575E+00
554.2494E−025.2707E+004.5531E−022.8805E+004.7551E−022.4345E+005.0340E−022.0755E+00
564.1325E−025.3212E+004.4073E−022.9056E+004.6005E−022.4555E+004.8685E−022.0933E+00
574.0212E−025.3710E+004.2685E−022.9304E+004.4533E−022.4762E+004.7110E−022.1109E+00
583.9152E−025.4202E+004.1364E−022.9548E+004.3132E−022.4966E+004.5610E−022.1282E+00
593.8142E−025.4689E+004.0104E−022.9789E+004.1797E−022.5168E+004.4182E−022.1453E+00
603.7177E−025.5169E+003.8902E−023.0027E+004.0523E−022.5367E+004.2820E−022.1621E+00

Rb; [Z=37]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.0749E+012.2111E−011.2119E+011.4172E−011.2690E+011.2303E−011.3445E+011.0707E−01
17.4644E+003.0977E−018.5844E+001.9532E−019.0189E+001.6907E−019.5832E+001.4675E−01
24.5885E+004.7190E−015.4384E+002.9089E−015.7421E+002.5080E−016.1261E+002.1698E−01
33.1976E+006.2097E−013.8864E+003.7750E−014.1196E+003.2470E−014.4079E+002.8041E−01
42.3153E+007.8149E−012.8786E+004.6924E−013.0621E+004.0276E−013.2848E+003.4729E−01
51.7283E+009.5641E−012.1871E+005.6771E−012.3332E+004.8632E−012.5080E+004.1874E−01
61.3398E+001.1332E+001.7149E+006.6649E−011.8331E+005.7002E−011.9733E+004.9022E−01
71.0768E+001.3008E+001.3879E+007.5987E−011.4856E+006.4908E−011.6009E+005.5771E−01
88.9022E−011.4548E+001.1536E+008.4563E−011.2362E+007.2167E−011.3331E+006.1965E−01
97.5122E−011.5969E+009.7851E−019.2448E−011.0495E+007.8835E−011.1326E+006.7652E−01
106.4345E−011.7307E+008.4223E−019.9838E−019.0412E−018.5080E−019.7631E−017.2976E−01
115.5732E−011.8592E+007.3272E−011.0689E+007.8717E−019.1038E−018.5050E−017.8052E−01
124.8789E−011.9847E+006.4327E−011.1378E+006.9145E−019.6847E−017.4737E−018.2999E−01
134.3092E−012.1084E+005.6877E−011.2055E+006.1155E−011.0257E+006.6115E−018.7870E−01
143.8367E−012.2308E+005.0587E−011.2728E+005.4391E−011.0825E+005.8803E−019.2704E−01
153.4425E−012.3519E+004.5242E−011.3396E+004.8629E−011.1389E+005.2562E−019.7510E−01
163.1110E−012.4713E+004.0674E−011.4058E+004.3692E−011.1948E+004.7204E−011.0228E+00
172.8300E−012.5883E+003.6749E−011.4712E+003.9440E−011.2501E+004.2585E−011.0700E+00
182.5896E−012.7027E+003.3361E−011.5355E+003.5764E−011.3046E+003.8586E−011.1164E+00
192.3819E−012.8141E+003.0422E−011.5984E+003.2572E−011.3578E+003.5109E−011.1618E+00
202.2009E−012.9222E+002.7859E−011.6596E+002.9787E−011.4097E+003.2076E−011.2062E+00
212.0416E−013.0270E+002.5613E−011.7190E+002.7347E−011.4601E+002.9419E−011.2493E+00
221.9002E−013.1286E+002.3634E−011.7765E+002.5199E−011.5089E+002.7081E−011.2909E+00
231.7739E−013.2269E+002.1883E−011.8320E+002.3300E−011.5560E+002.5014E−011.3312E+00
241.6602E−013.3222E+002.0325E−011.8855E+002.1613E−011.6014E+002.3181E−011.3700E+00
251.5574E−013.4146E+001.8932E−011.9370E+002.0107E−011.6451E+002.1547E−011.4073E+00
261.4639E−013.5043E+001.7681E−011.9867E+001.8758E−011.6872E+002.0084E−011.4433E+00
271.3786E−013.5916E+001.6554E−012.0346E+001.7544E−011.7277E+001.8770E−011.4778E+00
281.3005E−013.6765E+001.5533E−012.0808E+001.6447E−011.7667E+001.7585E−011.5111E+00
291.2289E−013.7592E+001.4606E−012.1254E+001.5453E−011.8043E+001.6512E−011.5431E+00
301.1630E−013.8399E+001.3761E−012.1685E+001.4548E−011.8406E+001.5537E−011.5740E+00
311.1022E−013.9188E+001.2988E−012.2102E+001.3722E−011.8757E+001.4648E−011.6039E+00
321.0462E−013.9958E+001.2280E−012.2506E+001.2967E−011.9097E+001.3835E−011.6327E+00
339.9441E−024.0712E+001.1629E−012.2899E+001.2273E−011.9427E+001.3090E−011.6607E+00
349.4648E−024.1451E+001.1029E−012.3281E+001.1635E−011.9747E+001.2405E−011.6879E+00
359.0205E−024.2174E+001.0476E−012.3653E+001.1046E−012.0059E+001.1773E−011.7143E+00
368.6083E−024.2883E+009.9637E−022.4016E+001.0501E−012.0363E+001.1190E−011.7400E+00
378.2254E−024.3579E+009.4889E−022.4370E+009.9967E−022.0659E+001.0649E−011.7651E+00
387.8692E−024.4262E+009.0478E−022.4716E+009.5284E−022.0949E+001.0148E−011.7896E+00
397.5374E−024.4932E+008.6375E−022.5055E+009.0928E−022.1232E+009.6810E−021.8135E+00
407.2281E−024.5591E+008.2550E−022.5387E+008.6869E−022.1509E+009.2464E−021.8370E+00
416.9394E−024.6238E+007.8981E−022.5713E+008.3081E−022.1781E+008.8409E−021.8600E+00
426.6695E−024.6875E+007.5644E−022.6032E+007.9540E−022.2048E+008.4617E−021.8825E+00
436.4170E−024.7500E+007.2519E−022.6346E+007.6224E−022.2310E+008.1067E−021.9047E+00
446.1804E−024.8116E+006.9589E−022.6654E+007.3115E−022.2567E+007.7738E−021.9264E+00
455.9584E−024.8722E+006.6838E−022.6957E+007.0195E−022.2820E+007.4612E−021.9478E+00
465.7500E−024.9319E+006.4251E−022.7255E+006.7450E−022.3069E+007.1672E−021.9689E+00
475.5540E−024.9906E+006.1816E−022.7548E+006.4865E−022.3314E+006.8904E−021.9896E+00
485.3694E−025.0485E+005.9522E−022.7837E+006.2429E−022.3556E+006.6295E−022.0100E+00
495.1954E−025.1055E+005.7356E−022.8122E+006.0129E−022.3793E+006.3833E−022.0301E+00
505.0313E−025.1617E+005.5310E−022.8402E+005.7957E−022.4027E+006.1506E−022.0499E+00
514.8762E−025.2171E+005.3374E−022.8678E+005.5902E−022.4258E+005.9304E−022.0694E+00
524.7295E−025.2718E+005.1542E−022.8950E+005.3956E−022.4485E+005.7220E−022.0887E+00
534.5905E−025.3257E+004.9805E−022.9218E+005.2111E−022.4710E+005.5244E−022.1077E+00
544.4588E−025.3789E+004.8157E−022.9482E+005.0361E−022.4931E+005.3370E−022.1264E+00
554.3338E−025.4314E+004.6592E−022.9743E+004.8699E−022.5149E+005.1590E−022.1448E+00
564.2151E−025.4832E+004.5104E−023.0000E+004.7120E−022.5364E+004.9898E−022.1630E+00
574.1021E−025.5344E+004.3687E−023.0254E+004.5616E−022.5576E+004.8288E−022.1810E+00
583.9946E−025.5849E+004.2339E−023.0504E+004.4185E−022.5785E+004.6755E−022.1987E+00
593.8922E−025.6348E+004.1053E−023.0751E+004.2821E−022.5991E+004.5295E−022.2162E+00
603.7945E−025.6842E+003.9826E−023.0994E+004.1520E−022.6195E+004.3902E−022.2334E+00

Sr; [Z=38]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.2019E+012.2526E−011.3533E+011.4349E−011.4169E+011.2451E−011.5012E+011.0832E−01
18.6382E+003.0252E−019.8978E+001.9041E−011.0394E+011.6486E−011.1042E+011.4313E−01
24.9783E+004.8384E−015.8977E+002.9752E−016.2275E+002.5654E−016.6448E+002.2199E−01
33.2826E+006.6408E−013.9973E+004.0195E−014.2396E+003.4563E−014.5385E+002.9847E−01
42.3569E+008.3296E−012.9372E+004.9862E−013.1267E+004.2793E−013.3560E+003.6900E−01
51.7627E+001.0073E+002.2376E+005.9710E−012.3891E+005.1157E−012.5700E+004.4057E−01
61.3655E+001.1853E+001.7550E+006.9681E−011.8778E+005.9611E−012.0232E+005.1281E−01
71.0942E+001.3580E+001.4164E+007.9333E−011.5177E+006.7788E−011.6370E+005.8264E−01
89.0209E−011.5193E+001.1730E+008.8345E−011.2582E+007.5420E−011.3581E+006.4779E−01
97.5997E−011.6683E+009.9209E−019.6652E−011.0651E+008.2451E−011.1503E+007.0779E−01
106.5046E−011.8072E+008.5254E−011.0436E+009.1597E−018.8973E−019.8987E−017.6342E−01
115.6327E−011.9391E+007.4120E−011.1164E+007.9694E−019.5123E−018.6170E−018.1584E−01
124.9310E−012.0663E+006.5094E−011.1864E+007.0031E−011.0103E+007.5755E−018.6619E−01
134.3555E−012.1908E+005.7601E−011.2547E+006.1995E−011.0680E+006.7081E−019.1531E−01
143.8776E−012.3135E+005.1280E−011.3221E+005.5200E−011.1249E+005.9736E−019.6377E−01
153.4785E−012.4347E+004.5908E−011.3889E+004.9411E−011.1813E+005.3465E−011.0118E+00
163.1429E−012.5542E+004.1312E−011.4551E+004.4444E−011.2373E+004.8076E−011.0595E+00
172.8584E−012.6716E+003.7357E−011.5206E+004.0159E−011.2926E+004.3418E−011.1067E+00
182.6152E−012.7867E+003.3937E−011.5852E+003.6446E−011.3473E+003.9377E−011.1534E+00
192.4055E−012.8990E+003.0964E−011.6486E+003.3215E−011.4010E+003.5856E−011.1992E+00
202.2229E−013.0084E+002.8369E−011.7105E+003.0391E−011.4535E+003.2777E−011.2441E+00
212.0626E−013.1147E+002.6092E−011.7709E+002.7912E−011.5048E+003.0074E−011.2879E+00
221.9206E−013.2178E+002.4084E−011.8295E+002.5728E−011.5545E+002.7691E−011.3304E+00
231.7938E−013.3179E+002.2306E−011.8862E+002.3795E−011.6027E+002.5584E−011.3716E+00
241.6798E−013.4150E+002.0722E−011.9411E+002.2075E−011.6493E+002.3712E−011.4115E+00
251.5767E−013.5092E+001.9307E−011.9941E+002.0540E−011.6942E+002.2042E−011.4499E+00
261.4830E−013.6008E+001.8035E−012.0452E+001.9164E−011.7376E+002.0546E−011.4869E+00
271.3974E−013.6899E+001.6888E−012.0945E+001.7926E−011.7794E+001.9202E−011.5226E+00
281.3191E−013.7767E+001.5850E−012.1422E+001.6806E−011.8197E+001.7990E−011.5570E+00
291.2472E−013.8613E+001.4906E−012.1882E+001.5791E−011.8586E+001.6892E−011.5902E+00
301.1810E−013.9438E+001.4046E−012.2327E+001.4868E−011.8961E+001.5894E−011.6222E+00
311.1199E−014.0245E+001.3260E−012.2757E+001.4025E−011.9324E+001.4984E−011.6531E+00
321.0634E−014.1034E+001.2538E−012.3175E+001.3253E−011.9676E+001.4153E−011.6830E+00
331.0112E−014.1806E+001.1875E−012.3580E+001.2545E−012.0016E+001.3390E−011.7119E+00
349.6275E−024.2561E+001.1264E−012.3974E+001.1893E−012.0347E+001.2689E−011.7399E+00
359.1783E−024.3302E+001.0700E−012.4357E+001.1291E−012.0668E+001.2043E−011.7672E+00
368.7611E−024.4029E+001.0177E−012.4730E+001.0735E−012.0981E+001.1446E−011.7937E+00
378.3730E−024.4742E+009.6931E−022.5095E+001.0220E−012.1286E+001.0893E−011.8196E+00
388.0118E−024.5442E+009.2431E−022.5451E+009.7412E−022.1584E+001.0380E−011.8448E+00
397.6751E−024.6129E+008.8244E−022.5799E+009.2962E−022.1876E+009.9033E−021.8694E+00
407.3609E−024.6805E+008.4341E−022.6140E+008.8816E−022.2160E+009.4590E−021.8935E+00
417.0674E−024.7469E+008.0697E−022.6474E+008.4946E−022.2439E+009.0444E−021.9171E+00
426.7930E−024.8122E+007.7291E−022.6801E+008.1328E−022.2713E+008.6568E−021.9402E+00
436.5360E−024.8764E+007.4101E−022.7123E+007.7941E−022.2982E+008.2940E−021.9629E+00
446.2952E−024.9396E+007.1109E−022.7439E+007.4764E−022.3245E+007.9538E−021.9852E+00
456.0693E−025.0017E+006.8300E−022.7749E+007.1782E−022.3504E+007.6343E−022.0071E+00
465.8570E−025.0630E+006.5660E−022.8054E+006.8978E−022.3759E+007.3340E−022.0286E+00
475.6575E−025.1233E+006.3174E−022.8354E+006.6338E−022.4010E+007.0512E−022.0498E+00
485.4696E−025.1827E+006.0831E−022.8650E+006.3850E−022.4256E+006.7846E−022.0707E+00
495.2925E−025.2412E+005.8621E−022.8941E+006.1502E−022.4499E+006.5330E−022.0912E+00
505.1254E−025.2989E+005.6532E−022.9227E+005.9284E−022.4739E+006.2953E−022.1115E+00
514.9676E−025.3558E+005.4557E−022.9510E+005.7185E−022.4975E+006.0704E−022.1314E+00
524.8183E−025.4119E+005.2687E−022.9788E+005.5198E−022.5207E+005.8575E−022.1511E+00
534.6770E−025.4672E+005.0915E−023.0062E+005.3315E−022.5436E+005.6557E−022.1705E+00
544.5432E−025.5218E+004.9233E−023.0333E+005.1529E−022.5662E+005.4643E−022.1896E+00
554.4162E−025.5757E+004.7636E−023.0599E+004.9832E−022.5885E+005.2825E−022.2085E+00
564.2956E−025.6289E+004.6118E−023.0863E+004.8219E−022.6105E+005.1096E−022.2271E+00
574.1810E−025.6814E+004.4674E−023.1122E+004.6685E−022.6322E+004.9452E−022.2454E+00
584.0720E−025.7333E+004.3298E−023.1378E+004.5224E−022.6536E+004.7887E−022.2635E+00
593.9682E−025.7846E+004.1987E−023.1630E+004.3832E−022.6747E+004.6395E−022.2814E+00
603.8692E−025.8352E+004.0736E−023.1880E+004.2504E−022.6955E+004.4973E−022.2990E+00

Y; [Z=39]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.1519E+012.4347E−011.3035E+011.5527E−011.3660E+011.3481E−011.4482E+011.1736E−01
18.6824E+003.1259E−019.9798E+001.9728E−011.0486E+011.7095E−011.1145E+011.4854E−01
25.1872E+004.8364E−016.1563E+002.9865E−016.5034E+002.5779E−016.9418E+002.2327E−01
33.3892E+006.7070E−014.1376E+004.0719E−014.3911E+003.5045E−014.7031E+003.0285E−01
42.4133E+008.4790E−013.0161E+005.0877E−013.2130E+004.3697E−013.4509E+003.7704E−01
51.7998E+001.0263E+002.2923E+006.0983E−012.4495E+005.2285E−012.6368E+004.5056E−01
61.3913E+001.2077E+001.7950E+007.1169E−011.9225E+006.0927E−012.0730E+005.2444E−01
71.1119E+001.3854E+001.4451E+008.1123E−011.5501E+006.9364E−011.6733E+005.9653E−01
89.1454E−011.5531E+001.1932E+009.0521E−011.2812E+007.7327E−011.3841E+006.6453E−01
97.6927E−011.7084E+001.0066E+009.9222E−011.0816E+008.4698E−011.1691E+007.2746E−01
106.5792E−011.8527E+008.6348E−011.0727E+009.2851E−019.1510E−011.0042E+007.8560E−01
115.6956E−011.9884E+007.5004E−011.1480E+008.0708E−019.7876E−018.7329E−018.3990E−01
124.9858E−012.1181E+006.5865E−011.2196E+007.0918E−011.0393E+007.6771E−018.9147E−01
134.4037E−012.2440E+005.8307E−011.2888E+006.2811E−011.0977E+006.8019E−019.4129E−01
143.9199E−012.3674E+005.1945E−011.3566E+005.5973E−011.1550E+006.0626E−019.9008E−01
153.5157E−012.4889E+004.6542E−011.4236E+005.0151E−011.2115E+005.4321E−011.0382E+00
163.1755E−012.6086E+004.1917E−011.4898E+004.5155E−011.2675E+004.8899E−011.0859E+00
172.8871E−012.7264E+003.7933E−011.5554E+004.0839E−011.3230E+004.4209E−011.1332E+00
182.6408E−012.8421E+003.4483E−011.6202E+003.7094E−011.3778E+004.0131E−011.1800E+00
192.4287E−012.9552E+003.1481E−011.6839E+003.3828E−011.4318E+003.6571E−011.2261E+00
202.2443E−013.0656E+002.8856E−011.7465E+003.0970E−011.4849E+003.3451E−011.2714E+00
212.0827E−013.1732E+002.6551E−011.8076E+002.8457E−011.5367E+003.0707E−011.3157E+00
221.9398E−013.2777E+002.4516E−011.8671E+002.6240E−011.5873E+002.8286E−011.3590E+00
231.8124E−013.3793E+002.2713E−011.9250E+002.4275E−011.6364E+002.6140E−011.4010E+00
241.6980E−013.4781E+002.1107E−011.9810E+002.2526E−011.6840E+002.4232E−011.4418E+00
251.5947E−013.5740E+001.9670E−012.0353E+002.0964E−011.7301E+002.2528E−011.4812E+00
261.5008E−013.6674E+001.8379E−012.0877E+001.9563E−011.7747E+002.1002E−011.5193E+00
271.4151E−013.7582E+001.7214E−012.1385E+001.8301E−011.8177E+001.9629E−011.5561E+00
281.3366E−013.8467E+001.6159E−012.1875E+001.7160E−011.8592E+001.8390E−011.5915E+00
291.2644E−013.9331E+001.5200E−012.2348E+001.6125E−011.8993E+001.7268E−011.6258E+00
301.1980E−014.0174E+001.4326E−012.2807E+001.5183E−011.9381E+001.6248E−011.6588E+00
311.1366E−014.0998E+001.3526E−012.3251E+001.4324E−011.9756E+001.5319E−011.6908E+00
321.0798E−014.1804E+001.2792E−012.3681E+001.3536E−012.0118E+001.4469E−011.7217E+00
331.0272E−014.2593E+001.2118E−012.4099E+001.2814E−012.0470E+001.3689E−011.7515E+00
349.7840E−024.3366E+001.1495E−012.4504E+001.2149E−012.0811E+001.2973E−011.7805E+00
359.3308E−024.4124E+001.0921E−012.4899E+001.1535E−012.1143E+001.2312E−011.8087E+00
368.9092E−024.4868E+001.0389E−012.5283E+001.0967E−012.1465E+001.1702E−011.8360E+00
378.5168E−024.5597E+009.8954E−022.5658E+001.0441E−012.1779E+001.1137E−011.8627E+00
388.1511E−024.6314E+009.4368E−022.6024E+009.9529E−022.2086E+001.0612E−011.8886E+00
397.8099E−024.7018E+009.0099E−022.6382E+009.4986E−022.2385E+001.0125E−011.9139E+00
407.4914E−024.7710E+008.6120E−022.6732E+009.0753E−022.2678E+009.6709E−021.9387E+00
417.1935E−024.8391E+008.2403E−022.7075E+008.6802E−022.2964E+009.2472E−021.9629E+00
426.9149E−024.9060E+007.8928E−022.7411E+008.3108E−022.3245E+008.8512E−021.9867E+00
436.6538E−024.9718E+007.5674E−022.7741E+007.9649E−022.3520E+008.4805E−022.0099E+00
446.4090E−025.0366E+007.2622E−022.8064E+007.6406E−022.3791E+008.1329E−022.0328E+00
456.1793E−025.1004E+006.9756E−022.8382E+007.3361E−022.4056E+007.8066E−022.0552E+00
465.9634E−025.1632E+006.7061E−022.8695E+007.0498E−022.4317E+007.4998E−022.0773E+00
475.7604E−025.2250E+006.4525E−022.9002E+006.7803E−022.4573E+007.2109E−022.0989E+00
485.5692E−025.2860E+006.2134E−022.9305E+006.5263E−022.4826E+006.9387E−022.1203E+00
495.3891E−025.3460E+005.9878E−022.9602E+006.2866E−022.5074E+006.6818E−022.1413E+00
505.2191E−025.4052E+005.7747E−022.9895E+006.0601E−022.5319E+006.4390E−022.1620E+00
515.0585E−025.4636E+005.5732E−023.0184E+005.8459E−022.5560E+006.2094E−022.1823E+00
524.9067E−025.5212E+005.3824E−023.0469E+005.6431E−022.5798E+005.9920E−022.2024E+00
534.7631E−025.5780E+005.2016E−023.0749E+005.4509E−022.6032E+005.7860E−022.2222E+00
544.6270E−025.6340E+005.0300E−023.1026E+005.2686E−022.6263E+005.5905E−022.2418E+00
554.4980E−025.6893E+004.8671E−023.1298E+005.0955E−022.6491E+005.4049E−022.2610E+00
564.3756E−025.7439E+004.7123E−023.1567E+004.9309E−022.6715E+005.2284E−022.2800E+00
574.2593E−025.7979E+004.5650E−023.1833E+004.7743E−022.6937E+005.0606E−022.2988E+00
584.1486E−025.8511E+004.4248E−023.2094E+004.6252E−022.7156E+004.9008E−022.3173E+00
594.0434E−025.9037E+004.2911E−023.2353E+004.4832E−022.7371E+004.7485E−022.3355E+00
603.9431E−025.9557E+004.1636E−023.2608E+004.3477E−022.7584E+004.6033E−022.3536E+00

Zr; [Z=40]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.0956E+012.5995E−011.2463E+011.6634E−011.3073E+011.4456E−011.3869E+011.2595E−01
18.5337E+003.2396E−019.8489E+002.0528E−011.0357E+011.7807E−011.1014E+011.5486E−01
25.2935E+004.8516E−016.2997E+003.0108E−016.6589E+002.6020E−017.1114E+002.2558E−01
33.4785E+006.7142E−014.2594E+004.0944E−014.5235E+003.5277E−014.8476E+003.0513E−01
42.4695E+008.5310E−013.0966E+005.1379E−013.3015E+004.4170E−013.5482E+003.8142E−01
51.8376E+001.0354E+002.3489E+006.1732E−012.5123E+005.2974E−012.7064E+004.5682E−01
61.4175E+001.2205E+001.8362E+007.2149E−011.9687E+006.1817E−012.1246E+005.3247E−01
71.1302E+001.4030E+001.4749E+008.2396E−011.5838E+007.0508E−011.7112E+006.0675E−01
89.2756E−011.5767E+001.2146E+009.2158E−011.3055E+007.8784E−011.4116E+006.7747E−01
97.7909E−011.7383E+001.0221E+001.0125E+001.0993E+008.6489E−011.1892E+007.4329E−01
106.6583E−011.8880E+008.7514E−011.0965E+009.4184E−019.3607E−011.0194E+008.0407E−01
115.7622E−012.0281E+007.5930E−011.1746E+008.1767E−011.0022E+008.8538E−018.6048E−01
125.0439E−012.1609E+006.6650E−011.2482E+007.1817E−011.0645E+007.7799E−019.1360E−01
134.4547E−012.2888E+005.9008E−011.3188E+006.3616E−011.1241E+006.8941E−019.6441E−01
143.9646E−012.4133E+005.2592E−011.3873E+005.6719E−011.1820E+006.1484E−011.0137E+00
153.5547E−012.5355E+004.7150E−011.4546E+005.0858E−011.2388E+005.5136E−011.0622E+00
163.2095E−012.6557E+004.2494E−011.5210E+004.5830E−011.2949E+004.9681E−011.1100E+00
172.9169E−012.7740E+003.8481E−011.5867E+004.1485E−011.3504E+004.4958E−011.1573E+00
182.6670E−012.8901E+003.5003E−011.6516E+003.7709E−011.4054E+004.0847E−011.2042E+00
192.4520E−013.0040E+003.1973E−011.7156E+003.4414E−011.4596E+003.7253E−011.2505E+00
202.2655E−013.1153E+002.9321E−011.7786E+003.1524E−011.5130E+003.4098E−011.2961E+00
212.1023E−013.2239E+002.6990E−011.8403E+002.8981E−011.5654E+003.1319E−011.3408E+00
221.9582E−013.3297E+002.4931E−011.9006E+002.6734E−011.6166E+002.8861E−011.3846E+00
231.8300E−013.4327E+002.3105E−011.9594E+002.4740E−011.6665E+002.6681E−011.4274E+00
241.7151E−013.5329E+002.1477E−012.0165E+002.2964E−011.7151E+002.4739E−011.4689E+00
251.6115E−013.6304E+002.0020E−012.0719E+002.1376E−011.7622E+002.3005E−011.5092E+00
261.5173E−013.7253E+001.8711E−012.1256E+001.9951E−011.8078E+002.1449E−011.5483E+00
271.4315E−013.8178E+001.7529E−012.1776E+001.8667E−011.8519E+002.0050E−011.5861E+00
281.3528E−013.9079E+001.6459E−012.2279E+001.7506E−011.8946E+001.8785E−011.6226E+00
291.2805E−013.9959E+001.5486E−012.2766E+001.6453E−011.9359E+001.7640E−011.6579E+00
301.2139E−014.0819E+001.4598E−012.3237E+001.5494E−011.9758E+001.6599E−011.6919E+00
311.1523E−014.1659E+001.3786E−012.3694E+001.4618E−012.0145E+001.5650E−011.7249E+00
321.0953E−014.2482E+001.3040E−012.4137E+001.3816E−012.0519E+001.4782E−011.7568E+00
331.0424E−014.3288E+001.2355E−012.4567E+001.3079E−012.0881E+001.3986E−011.7876E+00
349.9331E−024.4077E+001.1723E−012.4985E+001.2401E−012.1233E+001.3254E−011.8176E+00
359.4765E−024.4852E+001.1138E−012.5391E+001.1776E−012.1575E+001.2579E−011.8466E+00
369.0514E−024.5612E+001.0597E−012.5786E+001.1197E−012.1907E+001.1956E−011.8748E+00
378.6553E−024.6358E+001.0095E−012.6172E+001.0661E−012.2231E+001.1379E−011.9023E+00
388.2857E−024.7091E+009.6279E−022.6548E+001.0163E−012.2546E+001.0843E−011.9290E+00
397.9406E−024.7812E+009.1932E−022.6916E+009.6993E−022.2854E+001.0345E−011.9551E+00
407.6181E−024.8520E+008.7879E−022.7275E+009.2675E−022.3155E+009.8816E−021.9805E+00
417.3164E−024.9217E+008.4092E−022.7627E+008.8643E−022.3449E+009.4489E−022.0054E+00
427.0339E−024.9902E+008.0550E−022.7972E+008.4875E−022.3737E+009.0445E−022.0298E+00
436.7690E−025.0576E+007.7233E−022.8310E+008.1346E−022.4019E+008.6659E−022.0537E+00
446.5206E−025.1240E+007.4121E−022.8642E+007.8036E−022.4296E+008.3110E−022.0771E+00
456.2873E−025.1894E+007.1199E−022.8968E+007.4929E−022.4568E+007.9778E−022.1000E+00
466.0680E−025.2537E+006.8451E−022.9288E+007.2008E−022.4835E+007.6646E−022.1226E+00
475.8617E−025.3172E+006.5864E−022.9602E+006.9257E−022.5098E+007.3697E−022.1448E+00
485.6674E−025.3797E+006.3426E−022.9912E+006.6665E−022.5356E+007.0918E−022.1666E+00
495.4842E−025.4412E+006.1125E−023.0216E+006.4219E−022.5610E+006.8295E−022.1881E+00
505.3114E−025.5020E+005.8952E−023.0516E+006.1908E−022.5861E+006.5817E−022.2092E+00
515.1482E−025.5619E+005.6896E−023.0812E+005.9723E−022.6107E+006.3473E−022.2301E+00
524.9939E−025.6209E+005.4950E−023.1102E+005.7654E−022.6350E+006.1254E−022.2506E+00
534.8480E−025.6792E+005.3107E−023.1389E+005.5693E−022.6589E+005.9151E−022.2708E+00
544.7097E−025.7367E+005.1357E−023.1672E+005.3833E−022.6825E+005.7156E−022.2908E+00
554.5787E−025.7934E+004.9697E−023.1951E+005.2066E−022.7058E+005.5262E−022.3104E+00
564.4543E−025.8495E+004.8118E−023.2226E+005.0388E−022.7287E+005.3461E−022.3298E+00
574.3363E−025.9048E+004.6616E−023.2497E+004.8791E−022.7514E+005.1748E−022.3490E+00
584.2241E−025.9595E+004.5187E−023.2764E+004.7270E−022.7737E+005.0117E−022.3679E+00
594.1173E−026.0135E+004.3825E−023.3029E+004.5821E−022.7958E+004.8563E−022.3865E+00
604.0157E−026.0668E+004.2525E−023.3289E+004.4440E−022.8175E+004.7081E−022.4049E+00

Nb; [Z=41]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.4533E+002.8664E−011.0859E+011.8480E−011.1409E+011.6086E−011.2118E+011.4036E−01
17.6822E+003.4475E−018.9406E+002.2013E−019.4162E+001.9125E−011.0025E+011.6655E−01
25.1468E+004.8463E−016.1561E+003.0354E−016.5136E+002.6282E−016.9617E+002.2818E−01
33.5240E+006.5147E−014.3323E+004.0115E−014.6046E+003.4630E−014.9378E+002.9999E−01
42.5263E+008.2739E−013.1820E+005.0257E−013.3955E+004.3281E−013.6520E+003.7425E−01
51.8783E+001.0119E+002.4129E+006.0756E−012.5834E+005.2214E−012.7854E+004.5081E−01
61.4447E+001.2020E+001.8811E+007.1480E−012.0190E+006.1323E−012.1809E+005.2876E−01
71.1487E+001.3907E+001.5062E+008.2099E−011.6193E+007.0334E−011.7512E+006.0581E−01
89.4076E−011.5711E+001.2367E+009.2265E−011.3307E+007.8958E−011.4402E+006.7953E−01
97.8916E−011.7391E+001.0381E+001.0176E+001.1176E+008.7009E−011.2101E+007.4834E−01
106.7400E−011.8945E+008.8722E−011.1052E+009.5563E−019.4440E−011.0351E+008.1184E−01
115.8313E−012.0391E+007.6884E−011.1863E+008.2855E−011.0131E+008.9780E−018.7049E−01
125.1041E−012.1753E+006.7448E−011.2622E+007.2726E−011.0773E+007.8837E−019.2532E−01
134.5075E−012.3056E+005.9707E−011.3343E+006.4415E−011.1383E+006.9855E−019.7732E−01
144.0110E−012.4317E+005.3226E−011.4038E+005.7448E−011.1971E+006.2320E−011.0274E+00
153.5951E−012.5549E+004.7740E−011.4716E+005.1539E−011.2544E+005.5921E−011.0762E+00
163.2447E−012.6757E+004.3048E−011.5383E+004.6475E−011.3107E+005.0427E−011.1243E+00
172.9475E−012.7945E+003.9005E−011.6042E+004.2099E−011.3664E+004.5672E−011.1717E+00
182.6938E−012.9112E+003.5499E−011.6693E+003.8295E−011.4215E+004.1530E−011.2187E+00
192.4757E−013.0257E+003.2442E−011.7335E+003.4971E−011.4759E+003.7904E−011.2651E+00
202.2867E−013.1379E+002.9765E−011.7968E+003.2054E−011.5295E+003.4718E−011.3109E+00
212.1216E−013.2474E+002.7410E−011.8590E+002.9483E−011.5823E+003.1906E−011.3561E+00
221.9761E−013.3543E+002.5328E−011.9200E+002.7208E−011.6341E+002.9416E−011.4003E+00
231.8470E−013.4585E+002.3480E−011.9795E+002.5188E−011.6847E+002.7205E−011.4436E+00
241.7314E−013.5601E+002.1833E−012.0375E+002.3387E−011.7340E+002.5233E−011.4858E+00
251.6273E−013.6590E+002.0357E−012.0939E+002.1776E−011.7820E+002.3470E−011.5269E+00
261.5329E−013.7554E+001.9031E−012.1487E+002.0329E−011.8286E+002.1887E−011.5668E+00
271.4468E−013.8494E+001.7834E−012.2019E+001.9024E−011.8738E+002.0462E−011.6055E+00
281.3680E−013.9411E+001.6749E−012.2534E+001.7844E−011.9175E+001.9174E−011.6430E+00
291.2956E−014.0307E+001.5763E−012.3033E+001.6773E−011.9599E+001.8007E−011.6793E+00
301.2288E−014.1182E+001.4863E−012.3517E+001.5798E−012.0010E+001.6945E−011.7143E+00
311.1671E−014.2038E+001.4039E−012.3986E+001.4907E−012.0407E+001.5977E−011.7483E+00
321.1099E−014.2876E+001.3283E−012.4441E+001.4090E−012.0792E+001.5092E−011.7811E+00
331.0568E−014.3698E+001.2587E−012.4883E+001.3341E−012.1165E+001.4280E−011.8130E+00
341.0074E−014.4503E+001.1945E−012.5313E+001.2651E−012.1528E+001.3533E−011.8438E+00
359.6151E−024.5294E+001.1351E−012.5731E+001.2013E−012.1880E+001.2844E−011.8737E+00
369.1871E−024.6070E+001.0801E−012.6137E+001.1424E−012.2222E+001.2208E−011.9028E+00
378.7879E−024.6832E+001.0291E−012.6534E+001.0878E−012.2555E+001.1619E−011.9311E+00
388.4151E−024.7581E+009.8162E−022.6920E+001.0370E−012.2879E+001.1073E−011.9586E+00
398.0667E−024.8317E+009.3741E−022.7298E+009.8981E−022.3196E+001.0565E−011.9855E+00
407.7408E−024.9042E+008.9616E−022.7667E+009.4580E−022.3505E+001.0091E−012.0117E+00
417.4356E−024.9754E+008.5762E−022.8028E+009.0471E−022.3807E+009.6497E−022.0372E+00
427.1497E−025.0455E+008.2156E−022.8382E+008.6628E−022.4103E+009.2369E−022.0623E+00
436.8814E−025.1146E+007.8777E−022.8729E+008.3030E−022.4393E+008.8506E−022.0868E+00
446.6296E−025.1825E+007.5608E−022.9069E+007.9656E−022.4677E+008.4883E−022.1108E+00
456.3931E−025.2495E+007.2630E−022.9403E+007.6487E−022.4955E+008.1483E−022.1343E+00
466.1706E−025.3154E+006.9830E−022.9731E+007.3508E−022.5229E+007.8286E−022.1574E+00
475.9612E−025.3804E+006.7194E−023.0053E+007.0703E−022.5498E+007.5276E−022.1802E+00
485.7640E−025.4444E+006.4709E−023.0370E+006.8059E−022.5762E+007.2440E−022.2025E+00
495.5780E−025.5076E+006.2364E−023.0681E+006.5564E−022.6022E+006.9763E−022.2245E+00
505.4025E−025.5698E+006.0148E−023.0988E+006.3207E−022.6278E+006.7235E−022.2461E+00
515.2368E−025.6312E+005.8053E−023.1290E+006.0978E−022.6530E+006.4843E−022.2674E+00
525.0801E−025.6918E+005.6069E−023.1588E+005.8868E−022.6779E+006.2580E−022.2883E+00
534.9318E−025.7516E+005.4190E−023.1881E+005.6868E−022.7023E+006.0434E−022.3090E+00
544.7915E−025.8106E+005.2407E−023.2170E+005.4971E−022.7264E+005.8399E−022.3294E+00
554.6584E−025.8688E+005.0714E−023.2455E+005.3170E−022.7502E+005.6466E−022.3495E+00
564.5322E−025.9263E+004.9105E−023.2736E+005.1458E−022.7736E+005.4629E−022.3693E+00
574.4124E−025.9831E+004.7575E−023.3013E+004.9829E−022.7968E+005.2882E−022.3888E+00
584.2986E−026.0392E+004.6118E−023.3287E+004.8279E−022.8196E+005.1218E−022.4081E+00
594.1904E−026.0946E+004.4730E−023.3557E+004.6802E−022.8421E+004.9633E−022.4272E+00
604.0874E−026.1493E+004.3406E−023.3823E+004.5393E−022.8644E+004.8122E−022.4460E+00

Mo; [Z=42]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.0059E+003.0131E−011.0400E+011.9512E−011.0938E+011.7004E−011.1626E+011.4852E−01
17.4550E+003.5648E−018.7167E+002.2870E−019.1886E+001.9894E−019.7897E+001.7341E−01
25.1330E+004.8964E−016.1622E+003.0831E−016.5251E+002.6728E−016.9784E+002.3230E−01
33.5642E+006.5168E−014.3971E+004.0341E−014.6770E+003.4869E−015.0187E+003.0236E−01
42.5684E+008.2601E−013.2475E+005.0418E−013.4683E+004.3470E−013.7329E+003.7626E−01
51.9124E+001.0109E+002.4674E+006.0963E−012.6443E+005.2450E−012.8532E+004.5325E−01
61.4701E+001.2030E+001.9236E+007.1821E−012.0668E+006.1677E−012.2345E+005.3225E−01
71.1670E+001.3955E+001.5381E+008.2673E−011.6554E+007.0890E−011.7920E+006.1105E−01
89.5419E−011.5811E+001.2603E+009.3162E−011.3576E+007.9793E−011.4707E+006.8719E−01
97.9948E−011.7552E+001.0554E+001.0303E+001.1375E+008.8170E−011.2328E+007.5882E−01
106.8243E−011.9164E+009.0033E−011.1217E+009.7064E−019.5929E−011.0522E+008.2516E−01
115.9034E−012.0661E+007.7908E−011.2062E+008.4024E−011.0309E+009.1113E−018.8635E−01
125.1676E−012.2063E+006.8287E−011.2848E+007.3680E−011.0975E+007.9924E−019.4325E−01
134.5639E−012.3396E+006.0427E−011.3589E+006.5231E−011.1603E+007.0785E−019.9679E−01
144.0608E−012.4678E+005.3866E−011.4298E+005.8175E−011.2202E+006.3150E−011.0479E+00
153.6388E−012.5924E+004.8323E−011.4985E+005.2207E−011.2783E+005.6686E−011.0974E+00
163.2828E−012.7142E+004.3590E−011.5657E+004.7100E−011.3350E+005.1147E−011.1458E+00
172.9806E−012.8337E+003.9513E−011.6318E+004.2691E−011.3909E+004.6356E−011.1934E+00
182.7225E−012.9511E+003.5977E−011.6971E+003.8857E−011.4461E+004.2183E−011.2405E+00
192.5007E−013.0663E+003.2894E−011.7615E+003.5505E−011.5007E+003.8528E−011.2871E+00
202.3088E−013.1791E+003.0192E−011.8251E+003.2561E−011.5546E+003.5312E−011.3331E+00
212.1413E−013.2896E+002.7813E−011.8877E+002.9964E−011.6076E+003.2471E−011.3784E+00
221.9941E−013.3975E+002.5710E−011.9491E+002.7664E−011.6598E+002.9952E−011.4230E+00
231.8637E−013.5028E+002.3841E−012.0092E+002.5620E−011.7109E+002.7712E−011.4668E+00
241.7472E−013.6055E+002.2175E−012.0680E+002.3796E−011.7609E+002.5712E−011.5096E+00
251.6424E−013.7058E+002.0682E−012.1253E+002.2163E−011.8097E+002.3922E−011.5514E+00
261.5476E−013.8035E+001.9340E−012.1811E+002.0695E−011.8571E+002.2314E−011.5920E+00
271.4613E−013.8989E+001.8128E−012.2353E+001.9371E−011.9033E+002.0865E−011.6315E+00
281.3823E−013.9920E+001.7029E−012.2880E+001.8173E−011.9481E+001.9555E−011.6699E+00
291.3097E−014.0830E+001.6030E−012.3391E+001.7085E−011.9915E+001.8366E−011.7070E+00
301.2428E−014.1720E+001.5119E−012.3886E+001.6094E−012.0336E+001.7286E−011.7431E+00
311.1809E−014.2591E+001.4284E−012.4367E+001.5189E−012.0744E+001.6299E−011.7780E+00
321.1236E−014.3444E+001.3518E−012.4834E+001.4359E−012.1140E+001.5397E−011.8118E+00
331.0704E−014.4281E+001.2812E−012.5288E+001.3597E−012.1523E+001.4570E−011.8445E+00
341.0208E−014.5101E+001.2161E−012.5729E+001.2895E−012.1896E+001.3808E−011.8763E+00
359.7467E−024.5907E+001.1559E−012.6158E+001.2247E−012.2258E+001.3107E−011.9071E+00
369.3164E−024.6698E+001.1001E−012.6576E+001.1648E−012.2610E+001.2458E−011.9371E+00
378.9145E−024.7475E+001.0483E−012.6983E+001.1092E−012.2952E+001.1858E−011.9662E+00
388.5390E−024.8240E+001.0001E−012.7380E+001.0575E−012.3286E+001.1300E−011.9945E+00
398.1877E−024.8991E+009.5517E−022.7768E+001.0095E−012.3612E+001.0782E−012.0222E+00
407.8588E−024.9731E+009.1324E−022.8147E+009.6463E−022.3929E+001.0299E−012.0491E+00
417.5506E−025.0459E+008.7406E−022.8517E+009.2278E−022.4240E+009.8488E−022.0754E+00
427.2615E−025.1176E+008.3738E−022.8880E+008.8364E−022.4543E+009.4278E−022.1011E+00
436.9902E−025.1881E+008.0301E−022.9236E+008.4698E−022.4841E+009.0337E−022.1263E+00
446.7354E−025.2577E+007.7075E−022.9584E+008.1259E−022.5132E+008.6643E−022.1509E+00
456.4958E−025.3261E+007.4044E−022.9926E+007.8030E−022.5418E+008.3174E−022.1750E+00
466.2704E−025.3937E+007.1193E−023.0262E+007.4993E−022.5698E+007.9913E−022.1987E+00
476.0581E−025.4602E+006.8509E−023.0592E+007.2134E−022.5973E+007.6843E−022.2220E+00
485.8581E−025.5258E+006.5978E−023.0917E+006.9439E−022.6244E+007.3950E−022.2448E+00
495.6695E−025.5904E+006.3589E−023.1235E+006.6896E−022.6510E+007.1221E−022.2673E+00
505.4914E−025.6542E+006.1332E−023.1549E+006.4494E−022.6772E+006.8642E−022.2894E+00
515.3232E−025.7172E+005.9197E−023.1858E+006.2221E−022.7029E+006.6203E−022.3112E+00
525.1642E−025.7793E+005.7176E−023.2163E+006.0070E−022.7283E+006.3894E−022.3326E+00
535.0138E−025.8405E+005.5261E−023.2462E+005.8032E−022.7533E+006.1706E−022.3537E+00
544.8713E−025.9010E+005.3444E−023.2758E+005.6098E−022.7779E+005.9630E−022.3745E+00
554.7363E−025.9607E+005.1720E−023.3049E+005.4262E−022.8022E+005.7659E−022.3951E+00
564.6083E−026.0197E+005.0081E−023.3336E+005.2517E−022.8262E+005.5786E−022.4153E+00
574.4868E−026.0779E+004.8521E−023.3620E+005.0857E−022.8498E+005.4004E−022.4352E+00
584.3715E−026.1354E+004.7037E−023.3899E+004.9277E−022.8731E+005.2308E−022.4549E+00
594.2618E−026.1922E+004.5623E−023.4175E+004.7772E−022.8961E+005.0692E−022.4744E+00
604.1575E−026.2484E+004.4275E−023.4447E+004.6336E−022.9188E+004.9151E−022.4936E+00

Tc; [Z=43]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.5099E+003.0091E−011.0981E+011.9529E−011.1551E+011.7032E−011.2279E+011.4887E−01
17.8509E+003.5633E−019.1816E+002.2917E−019.6802E+001.9951E−011.0315E+011.7404E−01
25.3042E+004.9705E−016.3791E+003.1346E−016.7578E+002.7193E−017.2300E+002.3648E−01
33.6232E+006.7061E−014.4829E+004.1530E−014.7716E+003.5912E−015.1231E+003.1156E−01
42.6008E+008.5112E−013.2985E+005.1973E−013.5256E+004.4830E−013.7970E+003.8820E−01
51.9393E+001.0372E+002.5104E+006.2610E−012.6927E+005.3894E−012.9075E+004.6595E−01
61.4928E+001.2291E+001.9611E+007.3483E−012.1092E+006.3140E−012.2822E+005.4515E−01
71.1848E+001.4226E+001.5690E+008.4416E−011.6906E+007.2427E−011.8318E+006.2463E−01
89.6761E−011.6115E+001.2844E+009.5107E−011.3853E+008.1506E−011.5022E+007.0230E−01
98.0986E−011.7905E+001.0739E+001.0529E+001.1587E+009.0149E−011.2570E+007.7625E−01
106.9093E−011.9574E+009.1441E−011.1479E+009.8684E−019.8220E−011.0708E+008.4529E−01
115.9766E−012.1122E+007.9008E−011.2358E+008.5283E−011.0569E+009.2554E−019.0916E−01
125.2329E−012.2570E+006.9178E−011.3176E+007.4693E−011.1263E+008.1079E−019.6845E−01
134.6229E−012.3939E+006.1177E−011.3942E+006.6079E−011.1912E+007.1750E−011.0239E+00
144.1137E−012.5247E+005.4520E−011.4670E+005.8914E−011.2527E+006.3991E−011.0764E+00
153.6858E−012.6512E+004.8911E−011.5368E+005.2873E−011.3118E+005.7445E−011.1268E+00
163.3241E−012.7744E+004.4128E−011.6048E+004.7714E−011.3693E+005.1849E−011.1758E+00
173.0165E−012.8949E+004.0012E−011.6714E+004.3266E−011.4255E+004.7017E−011.2237E+00
182.7537E−013.0131E+003.6445E−011.7369E+003.9400E−011.4810E+004.2811E−011.2710E+00
192.5278E−013.1290E+003.3333E−011.8016E+003.6020E−011.5357E+003.9126E−011.3177E+00
202.3324E−013.2426E+003.0606E−011.8653E+003.3050E−011.5897E+003.5882E−011.3638E+00
212.1622E−013.3539E+002.8203E−011.9282E+003.0428E−011.6430E+003.3014E−011.4093E+00
222.0128E−013.4627E+002.6078E−011.9900E+002.8104E−011.6955E+003.0468E−011.4542E+00
231.8807E−013.5691E+002.4189E−012.0507E+002.6037E−011.7471E+002.8202E−011.4983E+00
241.7630E−013.6729E+002.2504E−012.1101E+002.4191E−011.7976E+002.6177E−011.5416E+00
251.6574E−013.7743E+002.0995E−012.1682E+002.2537E−011.8470E+002.4362E−011.5839E+00
261.5619E−013.8733E+001.9637E−012.2248E+002.1050E−011.8952E+002.2730E−011.6252E+00
271.4751E−013.9700E+001.8411E−012.2800E+001.9708E−011.9422E+002.1258E−011.6655E+00
281.3959E−014.0644E+001.7300E−012.3336E+001.8493E−011.9878E+001.9927E−011.7046E+00
291.3231E−014.1568E+001.6289E−012.3858E+001.7389E−012.0322E+001.8719E−011.7427E+00
301.2560E−014.2472E+001.5366E−012.4365E+001.6384E−012.0753E+001.7620E−011.7796E+00
311.1940E−014.3357E+001.4521E−012.4857E+001.5465E−012.1172E+001.6616E−011.8154E+00
321.1366E−014.4224E+001.3746E−012.5336E+001.4622E−012.1577E+001.5698E−011.8501E+00
331.0832E−014.5074E+001.3031E−012.5801E+001.3849E−012.1972E+001.4855E−011.8838E+00
341.0335E−014.5909E+001.2372E−012.6253E+001.3135E−012.2354E+001.4080E−011.9165E+00
359.8716E−024.6729E+001.1762E−012.6693E+001.2477E−012.2726E+001.3365E−011.9482E+00
369.4392E−024.7534E+001.1196E−012.7122E+001.1867E−012.3088E+001.2705E−011.9790E+00
379.0352E−024.8326E+001.0671E−012.7539E+001.1302E−012.3440E+001.2093E−012.0089E+00
388.6573E−024.9105E+001.0182E−012.7947E+001.0777E−012.3783E+001.1525E−012.0381E+00
398.3035E−024.9871E+009.7257E−022.8345E+001.0288E−012.4117E+001.0997E−012.0665E+00
407.9720E−025.0626E+009.3001E−022.8733E+009.8320E−022.4444E+001.0505E−012.0942E+00
417.6610E−025.1368E+008.9021E−022.9114E+009.4061E−022.4762E+001.0046E−012.1212E+00
427.3692E−025.2100E+008.5295E−022.9485E+009.0078E−022.5074E+009.6171E−022.1476E+00
437.0951E−025.2821E+008.1801E−022.9850E+008.6346E−022.5379E+009.2154E−022.1734E+00
446.8375E−025.3531E+007.8521E−023.0207E+008.2845E−022.5678E+008.8388E−022.1987E+00
456.5951E−025.4231E+007.5439E−023.0557E+007.9557E−022.5970E+008.4852E−022.2235E+00
466.3670E−025.4921E+007.2539E−023.0901E+007.6464E−022.6258E+008.1528E−022.2478E+00
476.1521E−025.5602E+006.9807E−023.1239E+007.3552E−022.6540E+007.8398E−022.2716E+00
485.9495E−025.6273E+006.7231E−023.1571E+007.0807E−022.6817E+007.5449E−022.2950E+00
495.7583E−025.6935E+006.4800E−023.1897E+006.8216E−022.7089E+007.2666E−022.3180E+00
505.5779E−025.7588E+006.2502E−023.2219E+006.5768E−022.7357E+007.0037E−022.3406E+00
515.4074E−025.8232E+006.0328E−023.2535E+006.3453E−022.7620E+006.7551E−022.3628E+00
525.2461E−025.8868E+005.8271E−023.2846E+006.1261E−022.7879E+006.5197E−022.3847E+00
535.0936E−025.9495E+005.6320E−023.3152E+005.9184E−022.8135E+006.2966E−022.4063E+00
544.9491E−026.0115E+005.4470E−023.3454E+005.7213E−022.8387E+006.0850E−022.4276E+00
554.8123E−026.0727E+005.2714E−023.3752E+005.5343E−022.8635E+005.8841E−022.4485E+00
564.6825E−026.1331E+005.1045E−023.4045E+005.3565E−022.8879E+005.6932E−022.4692E+00
574.5593E−026.1928E+004.9457E−023.4335E+005.1874E−022.9121E+005.5116E−022.4895E+00
584.4424E−026.2518E+004.7946E−023.4620E+005.0264E−022.9359E+005.3387E−022.5096E+00
594.3313E−026.3101E+004.6506E−023.4902E+004.8731E−022.9594E+005.1740E−022.5295E+00
604.2257E−026.3676E+004.5134E−023.5180E+004.7268E−022.9825E+005.0170E−022.5491E+00

Ru; [Z=44]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
08.2183E+003.2751E−019.5878E+002.1419E−011.0104E+011.8712E−011.0755E+011.6380E−01
16.9854E+003.7863E−018.2449E+002.4539E−018.7075E+002.1399E−019.2906E+001.8693E−01
25.0257E+005.0145E−016.0814E+003.1917E−016.4503E+002.7740E−016.9077E+002.4161E−01
33.5929E+006.5343E−014.4653E+004.0890E−014.7572E+003.5433E−015.1116E+003.0791E−01
42.6283E+008.2136E−013.3493E+005.0655E−013.5832E+004.3781E−013.8621E+003.7971E−01
51.9698E+001.0034E+002.5644E+006.1095E−012.7536E+005.2683E−012.9759E+004.5612E−01
61.5164E+001.1964E+002.0047E+007.2046E−012.1587E+006.2001E−012.3380E+005.3598E−01
71.2018E+001.3937E+001.6019E+008.3205E−011.7283E+007.1485E−011.8746E+006.1717E−01
89.8019E−011.5878E+001.3089E+009.4213E−011.4135E+008.0837E−011.5344E+006.9721E−01
98.1970E−011.7727E+001.0922E+001.0475E+001.1799E+008.9794E−011.2813E+007.7388E−01
106.9914E−011.9452E+009.2838E−011.1463E+001.0030E+009.8190E−011.0892E+008.4575E−01
116.0483E−012.1052E+008.0105E−011.2378E+008.6543E−011.0596E+009.3992E−019.1227E−01
125.2976E−012.2545E+007.0069E−011.3226E+007.5708E−011.1317E+008.2237E−019.7391E−01
134.6815E−012.3949E+006.1928E−011.4018E+006.6929E−011.1988E+007.2717E−011.0313E+00
144.1665E−012.5285E+005.5173E−011.4764E+005.9651E−011.2620E+006.4828E−011.0852E+00
153.7330E−012.6572E+004.9493E−011.5477E+005.3531E−011.3223E+005.8194E−011.1367E+00
163.3657E−012.7819E+004.4658E−011.6165E+004.8316E−011.3806E+005.2537E−011.1864E+00
173.0530E−012.9037E+004.0500E−011.6837E+004.3825E−011.4374E+004.7659E−011.2348E+00
182.7855E−013.0228E+003.6898E−011.7497E+003.9925E−011.4931E+004.3417E−011.2823E+00
192.5554E−013.1396E+003.3758E−011.8146E+003.6516E−011.5481E+003.9701E−011.3292E+00
202.3565E−013.2541E+003.1004E−011.8786E+003.3519E−011.6023E+003.6430E−011.3755E+00
212.1834E−013.3662E+002.8578E−011.9418E+003.0873E−011.6558E+003.3536E−011.4212E+00
222.0317E−013.4759E+002.6432E−012.0039E+002.8527E−011.7086E+003.0965E−011.4663E+00
231.8977E−013.5833E+002.4524E−012.0650E+002.6438E−011.7605E+002.8674E−011.5107E+00
241.7786E−013.6882E+002.2822E−012.1250E+002.4572E−011.8115E+002.6625E−011.5544E+00
251.6719E−013.7907E+002.1296E−012.1837E+002.2898E−011.8615E+002.4787E−011.5972E+00
261.5757E−013.8909E+001.9924E−012.2411E+002.1393E−011.9103E+002.3134E−011.6391E+00
271.4884E−013.9887E+001.8684E−012.2971E+002.0034E−011.9580E+002.1641E−011.6800E+00
281.4088E−014.0844E+001.7560E−012.3517E+001.8803E−012.0045E+002.0290E−011.7198E+00
291.3357E−014.1781E+001.6538E−012.4048E+001.7685E−012.0498E+001.9063E−011.7586E+00
301.2685E−014.2698E+001.5605E−012.4565E+001.6665E−012.0938E+001.7947E−011.7963E+00
311.2063E−014.3596E+001.4751E−012.5068E+001.5733E−012.1366E+001.6927E−011.8330E+00
321.1487E−014.4476E+001.3966E−012.5558E+001.4879E−012.1781E+001.5993E−011.8685E+00
331.0952E−014.5340E+001.3244E−012.6033E+001.4094E−012.2185E+001.5137E−011.9031E+00
341.0454E−014.6188E+001.2576E−012.6497E+001.3370E−012.2578E+001.4348E−011.9367E+00
359.9895E−024.7022E+001.1959E−012.6948E+001.2702E−012.2959E+001.3621E−011.9692E+00
369.5556E−024.7841E+001.1386E−012.7387E+001.2083E−012.3331E+001.2949E−012.0009E+00
379.1498E−024.8647E+001.0854E−012.7815E+001.1509E−012.3692E+001.2326E−012.0317E+00
388.7700E−024.9440E+001.0358E−012.8233E+001.0976E−012.4044E+001.1748E−012.0617E+00
398.4141E−025.0220E+009.8962E−022.8640E+001.0479E−012.4387E+001.1211E−012.0909E+00
408.0804E−025.0989E+009.4646E−022.9039E+001.0015E−012.4722E+001.0710E−012.1193E+00
417.7672E−025.1746E+009.0608E−022.9429E+009.5824E−022.5050E+001.0242E−012.1471E+00
427.4730E−025.2492E+008.6827E−022.9810E+009.1773E−022.5369E+009.8051E−022.1742E+00
437.1965E−025.3228E+008.3280E−023.0183E+008.7978E−022.5682E+009.3959E−022.2007E+00
446.9365E−025.3953E+007.9949E−023.0549E+008.4417E−022.5988E+009.0123E−022.2266E+00
456.6917E−025.4668E+007.6818E−023.0908E+008.1071E−022.6288E+008.6521E−022.2520E+00
466.4611E−025.5373E+007.3871E−023.1260E+007.7924E−022.6583E+008.3134E−022.2769E+00
476.2438E−025.6068E+007.1094E−023.1606E+007.4960E−022.6872E+007.9946E−022.3013E+00
486.0389E−025.6754E+006.8474E−023.1946E+007.2165E−022.7155E+007.6941E−022.3253E+00
495.8454E−025.7431E+006.6001E−023.2280E+006.9528E−022.7434E+007.4105E−022.3488E+00
505.6627E−025.8099E+006.3664E−023.2608E+006.7035E−022.7708E+007.1426E−022.3720E+00
515.4901E−025.8759E+006.1452E−023.2932E+006.4678E−022.7977E+006.8893E−022.3947E+00
525.3268E−025.9410E+005.9359E−023.3250E+006.2446E−022.8242E+006.6494E−022.4171E+00
535.1723E−026.0052E+005.7374E−023.3563E+006.0330E−022.8503E+006.4221E−022.4392E+00
545.0259E−026.0687E+005.5491E−023.3872E+005.8323E−022.8761E+006.2065E−022.4609E+00
554.8873E−026.1314E+005.3703E−023.4176E+005.6418E−022.9014E+006.0018E−022.4823E+00
564.7558E−026.1933E+005.2004E−023.4476E+005.4608E−022.9264E+005.8073E−022.5034E+00
574.6311E−026.2545E+005.0388E−023.4772E+005.2885E−022.9511E+005.6222E−022.5242E+00
584.5127E−026.3150E+004.8850E−023.5063E+005.1246E−022.9754E+005.4461E−022.5447E+00
594.4002E−026.3747E+004.7385E−023.5351E+004.9684E−022.9993E+005.2783E−022.5649E+00
604.2933E−026.4338E+004.5987E−023.5635E+004.8195E−023.0230E+005.1183E−022.5849E+00

Rh; [Z=45]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
07.8710E+003.3930E−019.2282E+002.2307E−019.7341E+001.9512E−011.0369E+011.7100E−01
16.7562E+003.8897E−018.0117E+002.5343E−018.4692E+002.2128E−019.0430E+001.9351E−01
24.9472E+005.0781E−016.0112E+003.2498E−016.3814E+002.8281E−016.8387E+002.4658E−01
33.5861E+006.5507E−014.4738E+004.1217E−014.7703E+003.5762E−015.1291E+003.1110E−01
42.6461E+008.1902E−013.3853E+005.0780E−013.6249E+004.3944E−013.9098E+003.8152E−01
51.9924E+009.9845E−012.6055E+006.1096E−012.8004E+005.2746E−013.0289E+004.5712E−01
61.5365E+001.1904E+002.0421E+007.2014E−012.2014E+006.2042E−012.3865E+005.3683E−01
71.2177E+001.3888E+001.6329E+008.3249E−011.7638E+007.1594E−011.9151E+006.1865E−01
89.9234E−011.5860E+001.3333E+009.4443E−011.4418E+008.1108E−011.5668E+007.0010E−01
98.2924E−011.7754E+001.1111E+001.0526E+001.2019E+009.0309E−011.3066E+007.7888E−01
107.0709E−011.9531E+009.4309E−011.1548E+001.0200E+009.8998E−011.1089E+008.5330E−01
116.1184E−012.1182E+008.1266E−011.2498E+008.7883E−011.0708E+009.5534E−019.2249E−01
125.3616E−012.2722E+007.1010E−011.3379E+007.6784E−011.1457E+008.3469E−019.8667E−01
134.7407E−012.4166E+006.2714E−011.4199E+006.7819E−011.2154E+007.3731E−011.0462E+00
144.2210E−012.5534E+005.5849E−011.4968E+006.0411E−011.2806E+006.5691E−011.1020E+00
153.7824E−012.6845E+005.0089E−011.5698E+005.4200E−011.3424E+005.8952E−011.1548E+00
163.4100E−012.8112E+004.5194E−011.6400E+004.8918E−011.4018E+005.3222E−011.2054E+00
173.0922E−012.9345E+004.0990E−011.7080E+004.4378E−011.4593E+004.8291E−011.2544E+00
182.8199E−013.0549E+003.7350E−011.7745E+004.0440E−011.5155E+004.4008E−011.3024E+00
192.5854E−013.1727E+003.4177E−011.8398E+003.6999E−011.5708E+004.0259E−011.3495E+00
202.3826E−013.2881E+003.1396E−011.9041E+003.3975E−011.6252E+003.6959E−011.3959E+00
212.2062E−013.4011E+002.8945E−011.9676E+003.1305E−011.6789E+003.4039E−011.4418E+00
222.0518E−013.5118E+002.6777E−012.0300E+002.8935E−011.7320E+003.1444E−011.4871E+00
231.9157E−013.6201E+002.4849E−012.0915E+002.6825E−011.7842E+002.9130E−011.5318E+00
241.7948E−013.7260E+002.3129E−012.1519E+002.4940E−011.8355E+002.7059E−011.5758E+00
251.6868E−013.8296E+002.1587E−012.2112E+002.3248E−011.8860E+002.5200E−011.6190E+00
261.5896E−013.9308E+002.0200E−012.2692E+002.1725E−011.9354E+002.3526E−011.6613E+00
271.5016E−014.0299E+001.8947E−012.3260E+002.0350E−011.9837E+002.2013E−011.7028E+00
281.4214E−014.1267E+001.7812E−012.3814E+001.9104E−012.0309E+002.0644E−011.7433E+00
291.3480E−014.2216E+001.6779E−012.4354E+001.7971E−012.0770E+001.9400E−011.7828E+00
301.2805E−014.3145E+001.5836E−012.4880E+001.6939E−012.1218E+001.8266E−011.8212E+00
311.2181E−014.4055E+001.4973E−012.5393E+001.5995E−012.1655E+001.7231E−011.8586E+00
321.1603E−014.4948E+001.4179E−012.5893E+001.5129E−012.2080E+001.6283E−011.8950E+00
331.1067E−014.5825E+001.3449E−012.6379E+001.4333E−012.2493E+001.5412E−011.9304E+00
341.0567E−014.6686E+001.2774E−012.6852E+001.3599E−012.2895E+001.4611E−011.9648E+00
351.0101E−014.7532E+001.2150E−012.7313E+001.2922E−012.3286E+001.3872E−011.9982E+00
369.6661E−024.8364E+001.1570E−012.7763E+001.2294E−012.3666E+001.3189E−012.0307E+00
379.2588E−024.9183E+001.1032E−012.8201E+001.1712E−012.4037E+001.2556E−012.0624E+00
388.8773E−024.9989E+001.0530E−012.8629E+001.1170E−012.4398E+001.1968E−012.0931E+00
398.5196E−025.0783E+001.0062E−012.9047E+001.0666E−012.4750E+001.1421E−012.1231E+00
408.1840E−025.1565E+009.6252E−022.9455E+001.0195E−012.5094E+001.0911E−012.1523E+00
417.8687E−025.2337E+009.2161E−022.9854E+009.7558E−022.5429E+001.0436E−012.1808E+00
427.5724E−025.3097E+008.8327E−023.0245E+009.3443E−022.5757E+009.9910E−022.2087E+00
437.2938E−025.3846E+008.4730E−023.0627E+008.9586E−022.6078E+009.5746E−022.2359E+00
447.0315E−025.4585E+008.1351E−023.1002E+008.5967E−022.6392E+009.1841E−022.2625E+00
456.7845E−025.5314E+007.8173E−023.1369E+008.2565E−022.6700E+008.8174E−022.2885E+00
466.5517E−025.6034E+007.5181E−023.1730E+007.9365E−022.7001E+008.4726E−022.3140E+00
476.3322E−025.6744E+007.2360E−023.2084E+007.6351E−022.7297E+008.1479E−022.3391E+00
486.1251E−025.7445E+006.9699E−023.2431E+007.3508E−022.7587E+007.8419E−022.3636E+00
495.9295E−025.8137E+006.7186E−023.2773E+007.0825E−022.7872E+007.5532E−022.3877E+00
505.7447E−025.8819E+006.4810E−023.3109E+006.8289E−022.8152E+007.2803E−022.4114E+00
515.5700E−025.9494E+006.2562E−023.3440E+006.5890E−022.8428E+007.0223E−022.4346E+00
525.4048E−026.0160E+006.0433E−023.3765E+006.3618E−022.8699E+006.7781E−022.4575E+00
535.2484E−026.0817E+005.8414E−023.4085E+006.1465E−022.8966E+006.5466E−022.4801E+00
545.1003E−026.1467E+005.6499E−023.4401E+005.9422E−022.9229E+006.3270E−022.5022E+00
554.9600E−026.2109E+005.4681E−023.4712E+005.7483E−022.9488E+006.1185E−022.5241E+00
564.8269E−026.2743E+005.2952E−023.5018E+005.5640E−022.9743E+005.9204E−022.5456E+00
574.7007E−026.3370E+005.1308E−023.5320E+005.3886E−022.9995E+005.7319E−022.5669E+00
584.5808E−026.3989E+004.9743E−023.5618E+005.2217E−023.0243E+005.5525E−022.5878E+00
594.4670E−026.4601E+004.8252E−023.5912E+005.0628E−023.0488E+005.3816E−022.6085E+00
604.3589E−026.5206E+004.6831E−023.6202E+004.9112E−023.0729E+005.2186E−022.6289E+00

Pd; [Z=46]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
06.2666E+003.9922E−017.4746E+002.6234E−017.9081E+002.2956E−018.4411E+002.0131E−01
15.7508E+004.2928E−016.9084E+002.8076E−017.3202E+002.4538E−017.8297E+002.1480E−01
24.6398E+005.1221E−015.6764E+003.3110E−016.0342E+002.8872E−016.4738E+002.5215E−01
33.5349E+006.3449E−014.4296E+004.0416E−014.7276E+003.5151E−015.0873E+003.0636E−01
42.6576E+007.8602E−013.4153E+004.9305E−013.6604E+004.2766E−013.9512E+003.7196E−01
52.0138E+009.6024E−012.6475E+005.9355E−012.8486E+005.1348E−013.0837E+004.4573E−01
61.5554E+001.1510E+002.0803E+007.0224E−012.2453E+006.0608E−012.4364E+005.2517E−01
71.2323E+001.3509E+001.6640E+008.1549E−011.7999E+007.0242E−011.9564E+006.0771E−01
81.0034E+001.5514E+001.3577E+009.2943E−011.4703E+007.9929E−011.5996E+006.9069E−01
98.3800E−011.7453E+001.1301E+001.0405E+001.2241E+008.9374E−011.3321E+007.7158E−01
107.1450E−011.9281E+009.5785E−011.1459E+001.0373E+009.8351E−011.1288E+008.4851E−01
116.1846E−012.0983E+008.2437E−011.2444E+008.9241E−011.0673E+009.7102E−019.2033E−01
125.4232E−012.2569E+007.1963E−011.3358E+007.7880E−011.1452E+008.4727E−019.8705E−01
134.7985E−012.4053E+006.3512E−011.4208E+006.8726E−011.2174E+007.4766E−011.0489E+00
144.2748E−012.5455E+005.6534E−011.5001E+006.1183E−011.2848E+006.6568E−011.1065E+00
153.8320E−012.6793E+005.0691E−011.5751E+005.4874E−011.3483E+005.9716E−011.1608E+00
163.4550E−012.8082E+004.5732E−011.6466E+004.9521E−011.4089E+005.3905E−011.2125E+00
173.1325E−012.9332E+004.1478E−011.7157E+004.4927E−011.4674E+004.8915E−011.2624E+00
182.8555E−013.0550E+003.7797E−011.7830E+004.0947E−011.5242E+004.4587E−011.3109E+00
192.6168E−013.1740E+003.4591E−011.8488E+003.7472E−011.5799E+004.0803E−011.3583E+00
202.4100E−013.2905E+003.1780E−011.9135E+003.4419E−011.6346E+003.7473E−011.4050E+00
212.2302E−013.4045E+002.9304E−011.9772E+003.1723E−011.6886E+003.4527E−011.4511E+00
222.0728E−013.5162E+002.7113E−012.0400E+002.9331E−011.7419E+003.1908E−011.4966E+00
231.9343E−013.6255E+002.5165E−012.1018E+002.7201E−011.7944E+002.9571E−011.5415E+00
241.8115E−013.7324E+002.3427E−012.1626E+002.5295E−011.8461E+002.7479E−011.5857E+00
251.7020E−013.8370E+002.1869E−012.2224E+002.3586E−011.8969E+002.5599E−011.6293E+00
261.6036E−013.9394E+002.0467E−012.2810E+002.2046E−011.9468E+002.3905E−011.6720E+00
271.5147E−014.0395E+001.9202E−012.3384E+002.0656E−011.9957E+002.2375E−011.7140E+00
281.4338E−014.1375E+001.8054E−012.3945E+001.9395E−012.0435E+002.0988E−011.7550E+00
291.3599E−014.2335E+001.7011E−012.4493E+001.8249E−012.0903E+001.9727E−011.7951E+00
301.2920E−014.3275E+001.6059E−012.5028E+001.7204E−012.1358E+001.8578E−011.8342E+00
311.2294E−014.4197E+001.5186E−012.5550E+001.6249E−012.1803E+001.7528E−011.8724E+00
321.1714E−014.5102E+001.4385E−012.6059E+001.5372E−012.2236E+001.6566E−011.9095E+00
331.1176E−014.5991E+001.3647E−012.6555E+001.4566E−012.2658E+001.5683E−011.9457E+00
341.0675E−014.6864E+001.2966E−012.7038E+001.3823E−012.3069E+001.4870E−011.9808E+00
351.0208E−014.7722E+001.2335E−012.7509E+001.3136E−012.3469E+001.4119E−012.0151E+00
369.7712E−024.8567E+001.1749E−012.7969E+001.2500E−012.3859E+001.3425E−012.0484E+00
379.3625E−024.9398E+001.1205E−012.8417E+001.1910E−012.4238E+001.2782E−012.0808E+00
388.9795E−025.0217E+001.0698E−012.8855E+001.1361E−012.4608E+001.2184E−012.1124E+00
398.6203E−025.1024E+001.0224E−012.9282E+001.0850E−012.4969E+001.1629E−012.1432E+00
408.2829E−025.1820E+009.7819E−022.9700E+001.0372E−012.5321E+001.1111E−012.1731E+00
417.9660E−025.2604E+009.3678E−023.0108E+009.9262E−022.5665E+001.0627E−012.2024E+00
427.6678E−025.3377E+008.9796E−023.0508E+009.5086E−022.6001E+001.0175E−012.2310E+00
437.3873E−025.4141E+008.6151E−023.0899E+009.1171E−022.6330E+009.7514E−022.2589E+00
447.1230E−025.4893E+008.2727E−023.1283E+008.7495E−022.6652E+009.3542E−022.2861E+00
456.8740E−025.5637E+007.9504E−023.1659E+008.4041E−022.6967E+008.9812E−022.3128E+00
466.6392E−025.6370E+007.6470E−023.2028E+008.0789E−022.7276E+008.6304E−022.3390E+00
476.4177E−025.7094E+007.3608E−023.2390E+007.7726E−022.7578E+008.3001E−022.3646E+00
486.2086E−025.7810E+007.0907E−023.2745E+007.4837E−022.7875E+007.9887E−022.3898E+00
496.0111E−025.8516E+006.8356E−023.3095E+007.2109E−022.8167E+007.6948E−022.4144E+00
505.8244E−025.9213E+006.5943E−023.3438E+006.9531E−022.8454E+007.4171E−022.4386E+00
515.6479E−025.9902E+006.3659E−023.3777E+006.7091E−022.8736E+007.1545E−022.4625E+00
525.4808E−026.0583E+006.1496E−023.4109E+006.4781E−022.9013E+006.9059E−022.4859E+00
535.3227E−026.1255E+005.9445E−023.4436E+006.2591E−022.9286E+006.6702E−022.5089E+00
545.1729E−026.1920E+005.7498E−023.4759E+006.0512E−022.9555E+006.4467E−022.5316E+00
555.0310E−026.2577E+005.5649E−023.5076E+005.8540E−022.9819E+006.2344E−022.5539E+00
564.8964E−026.3226E+005.3892E−023.5390E+005.6664E−023.0080E+006.0327E−022.5759E+00
574.7687E−026.3868E+005.2221E−023.5698E+005.4880E−023.0337E+005.8408E−022.5976E+00
584.6476E−026.4502E+005.0629E−023.6003E+005.3182E−023.0591E+005.6582E−022.6190E+00
594.5325E−026.5129E+004.9113E−023.6303E+005.1564E−023.0840E+005.4842E−022.6401E+00
604.4232E−026.5749E+004.7667E−023.6599E+005.0022E−023.1087E+005.3183E−022.6609E+00

Ag; [Z=47]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
07.2512E+003.6073E−018.5834E+002.3973E−019.0713E+002.1025E−019.6770E+001.8469E−01
16.3204E+004.0822E−017.5642E+002.6885E−018.0112E+002.3535E−018.5668E+002.0627E−01
24.7638E+005.2076E−015.8368E+003.3689E−016.2073E+002.9393E−016.6619E+002.5684E−01
33.5410E+006.5960E−014.4518E+004.1956E−014.7550E+003.6496E−015.1200E+003.1817E−01
42.6597E+008.1524E−013.4295E+005.1091E−013.6787E+004.4324E−013.9737E+003.8562E−01
52.0247E+009.8793E−012.6712E+006.1076E−012.8766E+005.2857E−013.1163E+004.5901E−01
61.5697E+001.1759E+002.1083E+007.1810E−012.2778E+006.2008E−012.4737E+005.3756E−01
71.2456E+001.3739E+001.6910E+008.3052E−011.8312E+007.1576E−011.9923E+006.1959E−01
81.0142E+001.5747E+001.3811E+009.4472E−011.4975E+008.1290E−011.6309E+007.0281E−01
98.4656E−011.7712E+001.1492E+001.0573E+001.2465E+009.0865E−011.3581E+007.8485E−01
107.2158E−011.9580E+009.7315E−011.1652E+001.0553E+001.0006E+001.1497E+008.6368E−01
116.2474E−012.1328E+008.3665E−011.2668E+009.0683E−011.0871E+009.8775E−019.3789E−01
125.4819E−012.2959E+007.2964E−011.3616E+007.9042E−011.1680E+008.6069E−011.0072E+00
134.8548E−012.4486E+006.4346E−011.4497E+006.9681E−011.2430E+007.5862E−011.0715E+00
144.3286E−012.5924E+005.7247E−011.5318E+006.1988E−011.3128E+006.7485E−011.1313E+00
153.8827E−012.7292E+005.1313E−011.6091E+005.5570E−011.3784E+006.0504E−011.1874E+00
163.5020E−012.8606E+004.6285E−011.6825E+005.0137E−011.4406E+005.4600E−011.2405E+00
173.1752E−012.9876E+004.1977E−011.7529E+004.5482E−011.5002E+004.9542E−011.2914E+00
182.8938E−013.1111E+003.8252E−011.8211E+004.1455E−011.5579E+004.5162E−011.3405E+00
192.6507E−013.2315E+003.5008E−011.8876E+003.7942E−011.6141E+004.1339E−011.3885E+00
202.4399E−013.3492E+003.2165E−011.9527E+003.4858E−011.6693E+003.7976E−011.4356E+00
212.2564E−013.4644E+002.9661E−012.0168E+003.2134E−011.7235E+003.5002E−011.4819E+00
222.0958E−013.5771E+002.7446E−012.0799E+002.9719E−011.7770E+003.2358E−011.5275E+00
231.9545E−013.6875E+002.5476E−012.1421E+002.7566E−011.8297E+002.9999E−011.5726E+00
241.8295E−013.7954E+002.3719E−012.2033E+002.5642E−011.8817E+002.7886E−011.6171E+00
251.7181E−013.9011E+002.2144E−012.2634E+002.3914E−011.9329E+002.5986E−011.6609E+00
261.6183E−014.0045E+002.0728E−012.3225E+002.2358E−011.9832E+002.4274E−011.7040E+00
271.5282E−014.1057E+001.9449E−012.3805E+002.0952E−012.0325E+002.2726E−011.7463E+00
281.4465E−014.2048E+001.8290E−012.4372E+001.9678E−012.0809E+002.1322E−011.7878E+00
291.3719E−014.3018E+001.7235E−012.4927E+001.8519E−012.1283E+002.0046E−011.8285E+00
301.3035E−014.3969E+001.6273E−012.5470E+001.7462E−012.1746E+001.8882E−011.8682E+00
311.2405E−014.4903E+001.5393E−012.6000E+001.6495E−012.2198E+001.7818E−011.9070E+00
321.1822E−014.5819E+001.4584E−012.6518E+001.5608E−012.2639E+001.6843E−011.9448E+00
331.1282E−014.6718E+001.3839E−012.7023E+001.4792E−012.3069E+001.5947E−011.9817E+00
341.0779E−014.7603E+001.3151E−012.7515E+001.4040E−012.3488E+001.5122E−012.0176E+00
351.0310E−014.8473E+001.2514E−012.7996E+001.3345E−012.3897E+001.4361E−012.0526E+00
369.8715E−024.9329E+001.1922E−012.8465E+001.2701E−012.4295E+001.3656E−012.0867E+00
379.4614E−025.0172E+001.1372E−012.8923E+001.2103E−012.4683E+001.3003E−012.1199E+00
389.0769E−025.1003E+001.0860E−012.9370E+001.1547E−012.5062E+001.2397E−012.1523E+00
398.7161E−025.1822E+001.0381E−012.9807E+001.1029E−012.5431E+001.1833E−012.1838E+00
408.3772E−025.2630E+009.9342E−023.0234E+001.0545E−012.5792E+001.1307E−012.2146E+00
418.0586E−025.3426E+009.5154E−023.0652E+001.0093E−012.6144E+001.0816E−012.2445E+00
427.7587E−025.4212E+009.1226E−023.1060E+009.6696E−022.6488E+001.0356E−012.2738E+00
437.4764E−025.4988E+008.7538E−023.1460E+009.2725E−022.6825E+009.9258E−022.3024E+00
447.2103E−025.5754E+008.4070E−023.1853E+008.8996E−022.7154E+009.5221E−022.3304E+00
456.9595E−025.6511E+008.0807E−023.2237E+008.5491E−022.7477E+009.1429E−022.3578E+00
466.7228E−025.7258E+007.7731E−023.2614E+008.2191E−022.7793E+008.7863E−022.3846E+00
476.4994E−025.7996E+007.4831E−023.2985E+007.9081E−022.8103E+008.4504E−022.4108E+00
486.2885E−025.8724E+007.2092E−023.3348E+007.6146E−022.8407E+008.1338E−022.4365E+00
496.0891E−025.9444E+006.9504E−023.3705E+007.3375E−022.8705E+007.8349E−022.4618E+00
505.9006E−026.0156E+006.7056E−023.4057E+007.0755E−022.8998E+007.5525E−022.4866E+00
515.7223E−026.0859E+006.4738E−023.4402E+006.8276E−022.9287E+007.2853E−022.5109E+00
525.5536E−026.1554E+006.2541E−023.4742E+006.5928E−022.9570E+007.0323E−022.5349E+00
535.3938E−026.2241E+006.0459E−023.5076E+006.3702E−022.9849E+006.7926E−022.5584E+00
545.2424E−026.2920E+005.8481E−023.5406E+006.1589E−023.0124E+006.5651E−022.5816E+00
555.0990E−026.3591E+005.6604E−023.5730E+005.9583E−023.0394E+006.3492E−022.6044E+00
564.9629E−026.4255E+005.4818E−023.6050E+005.7676E−023.0660E+006.1439E−022.6269E+00
574.8339E−026.4911E+005.3120E−023.6365E+005.5862E−023.0923E+005.9487E−022.6490E+00
584.7115E−026.5560E+005.1502E−023.6676E+005.4135E−023.1181E+005.7628E−022.6708E+00
594.5952E−026.6202E+004.9961E−023.6983E+005.2490E−023.1436E+005.5858E−022.6923E+00
604.4848E−026.6837E+004.8492E−023.7285E+005.0921E−023.1688E+005.4169E−022.7136E+00

Cd; [Z=48]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
07.7381E+003.5275E−019.1431E+002.3538E−019.6614E+002.0666E−011.0307E+011.8169E−01
16.7020E+004.0107E−018.0107E+002.6521E−018.4836E+002.3241E−019.0722E+002.0389E−01
24.9257E+005.2316E−016.0413E+003.3924E−016.4268E+002.9621E−016.8996E+002.5902E−01
33.5790E+006.7652E−014.5124E+004.3044E−014.8230E+003.7458E−015.1962E+003.2669E−01
42.6683E+008.4097E−013.4516E+005.2688E−013.7053E+004.5723E−014.0051E+003.9794E−01
52.0338E+001.0157E+002.6916E+006.2807E−012.9009E+005.4374E−013.1449E+004.7237E−01
61.5817E+001.2022E+002.1319E+007.3481E−012.3053E+006.3480E−012.5056E+005.5058E−01
71.2576E+001.3981E+001.7150E+008.4628E−011.8591E+007.2973E−012.0245E+006.3200E−01
81.0244E+001.5982E+001.4029E+009.6015E−011.5230E+008.2663E−011.6605E+007.1506E−01
98.5473E−011.7959E+001.1677E+001.0734E+001.2683E+009.2306E−011.3835E+007.9771E−01
107.2829E−011.9857E+009.8841E−011.1833E+001.0733E+001.0166E+001.1707E+008.7795E−01
116.3062E−012.1645E+008.4911E−011.2875E+009.2150E−011.1055E+001.0049E+009.5420E−01
125.5368E−012.3320E+007.3986E−011.3854E+008.0237E−011.1890E+008.7457E−011.0259E+00
134.9079E−012.4888E+006.5199E−011.4766E+007.0666E−011.2668E+007.6999E−011.0926E+00
144.3803E−012.6364E+005.7976E−011.5617E+006.2818E−011.3392E+006.8434E−011.1547E+00
153.9325E−012.7764E+005.1949E−011.6414E+005.6284E−011.4070E+006.1315E−011.2127E+00
163.5490E−012.9104E+004.6849E−011.7168E+005.0765E−011.4710E+005.5309E−011.2674E+00
173.2188E−013.0396E+004.2484E−011.7888E+004.6044E−011.5321E+005.0174E−011.3196E+00
182.9335E−013.1649E+003.8712E−011.8582E+004.1965E−011.5908E+004.5738E−011.3697E+00
192.6864E−013.2870E+003.5428E−011.9256E+003.8411E−011.6478E+004.1870E−011.4183E+00
202.4716E−013.4061E+003.2552E−011.9914E+003.5293E−011.7035E+003.8471E−011.4658E+00
212.2843E−013.5225E+003.0019E−012.0560E+003.2541E−011.7581E+003.5467E−011.5124E+00
222.1204E−013.6364E+002.7777E−012.1195E+003.0099E−011.8119E+003.2798E−011.5583E+00
231.9762E−013.7479E+002.5785E−012.1820E+002.7925E−011.8649E+003.0416E−011.6036E+00
241.8487E−013.8569E+002.4007E−012.2435E+002.5980E−011.9171E+002.8282E−011.6483E+00
251.7352E−013.9637E+002.2415E−012.3040E+002.4234E−011.9686E+002.6363E−011.6923E+00
261.6337E−014.0681E+002.0983E−012.3635E+002.2662E−012.0192E+002.4633E−011.7357E+00
271.5423E−014.1704E+001.9690E−012.4220E+002.1241E−012.0690E+002.3068E−011.7783E+00
281.4595E−014.2705E+001.8519E−012.4793E+001.9952E−012.1178E+002.1648E−011.8203E+00
291.3840E−014.3686E+001.7454E−012.5355E+001.8781E−012.1657E+002.0356E−011.8614E+00
301.3150E−014.4648E+001.6482E−012.5904E+001.7712E−012.2126E+001.9178E−011.9016E+00
311.2515E−014.5592E+001.5593E−012.6442E+001.6734E−012.2585E+001.8101E−011.9410E+00
321.1928E−014.6519E+001.4776E−012.6967E+001.5837E−012.3033E+001.7113E−011.9795E+00
331.1385E−014.7429E+001.4024E−012.7480E+001.5012E−012.3471E+001.6205E−012.0170E+00
341.0879E−014.8325E+001.3329E−012.7982E+001.4251E−012.3898E+001.5369E−012.0537E+00
351.0408E−014.9205E+001.2686E−012.8471E+001.3548E−012.4314E+001.4597E−012.0894E+00
369.9683E−025.0073E+001.2090E−012.8949E+001.2897E−012.4721E+001.3883E−012.1242E+00
379.5565E−025.0927E+001.1534E−012.9416E+001.2292E−012.5117E+001.3221E−012.1582E+00
389.1705E−025.1769E+001.1017E−012.9873E+001.1729E−012.5504E+001.2606E−012.1913E+00
398.8082E−025.2600E+001.0534E−013.0319E+001.1204E−012.5882E+001.2033E−012.2236E+00
408.4677E−025.3419E+001.0082E−013.0755E+001.0714E−012.6251E+001.1500E−012.2550E+00
418.1475E−025.4227E+009.6590E−023.1181E+001.0257E−012.6611E+001.1001E−012.2858E+00
427.8460E−025.5025E+009.2619E−023.1599E+009.8275E−022.6963E+001.0535E−012.3158E+00
437.5620E−025.5813E+008.8890E−023.2008E+009.4251E−022.7308E+001.0098E−012.3451E+00
447.2942E−025.6592E+008.5383E−023.2409E+009.0471E−022.7645E+009.6878E−022.3737E+00
457.0417E−025.7361E+008.2080E−023.2802E+008.6916E−022.7975E+009.3026E−022.4018E+00
466.8033E−025.8121E+007.8967E−023.3187E+008.3569E−022.8298E+008.9404E−022.4292E+00
476.5781E−025.8872E+007.6030E−023.3566E+008.0414E−022.8616E+008.5991E−022.4561E+00
486.3654E−025.9614E+007.3255E−023.3937E+007.7437E−022.8927E+008.2773E−022.4824E+00
496.1643E−026.0347E+007.0632E−023.4302E+007.4624E−022.9232E+007.9736E−022.5082E+00
505.9741E−026.1072E+006.8150E−023.4661E+007.1965E−022.9532E+007.6865E−022.5336E+00
515.7942E−026.1789E+006.5800E−023.5014E+006.9447E−022.9826E+007.4149E−022.5585E+00
525.6238E−026.2498E+006.3572E−023.5361E+006.7062E−023.0116E+007.1577E−022.5830E+00
535.4625E−026.3199E+006.1458E−023.5703E+006.4801E−023.0401E+006.9139E−022.6071E+00
545.3096E−026.3893E+005.9452E−023.6039E+006.2654E−023.0682E+006.6826E−022.6307E+00
555.1647E−026.4578E+005.7545E−023.6371E+006.0616E−023.0958E+006.4630E−022.6540E+00
565.0273E−026.5256E+005.5733E−023.6697E+005.8678E−023.1230E+006.2542E−022.6770E+00
574.8970E−026.5927E+005.4008E−023.7019E+005.6834E−023.1497E+006.0557E−022.6996E+00
584.7733E−026.6591E+005.2365E−023.7336E+005.5079E−023.1762E+005.8666E−022.7219E+00
594.6559E−026.7247E+005.0800E−023.7649E+005.3406E−023.2022E+005.6865E−022.7438E+00
604.5444E−026.7896E+004.9307E−023.7958E+005.1811E−023.2279E+005.5148E−022.7655E+00

In; [Z=49]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
08.8299E+003.2999E−011.0367E+012.2127E−011.0945E+011.9451E−011.1670E+011.7117E−01
17.3855E+003.8743E−018.7935E+002.5697E−019.3076E+002.2539E−019.9503E+001.9789E−01
25.1550E+005.2904E−016.3239E+003.4300E−016.7286E+002.9960E−017.2249E+002.6209E−01
33.6353E+007.0107E−014.5945E+004.4515E−014.9136E+003.8737E−015.2966E+003.3790E−01
42.6811E+008.7715E−013.4778E+005.4827E−013.7362E+004.7576E−014.0411E+004.1410E−01
52.0422E+001.0560E+002.7099E+006.5193E−012.9228E+005.6441E−013.1708E+004.9040E−01
61.5921E+001.2419E+002.1522E+007.5861E−012.3293E+006.5547E−012.5335E+005.6865E−01
71.2685E+001.4358E+001.7366E+008.6913E−011.8844E+007.4966E−012.0537E+006.4948E−01
81.0341E+001.6345E+001.4234E+009.8234E−011.5471E+008.4605E−011.6883E+007.3213E−01
98.6262E−011.8326E+001.1857E+001.0959E+001.2895E+009.4271E−011.4081E+008.1501E−01
107.3473E−012.0246E+001.0035E+001.2070E+001.0912E+001.0374E+001.1916E+008.9626E−01
116.3621E−012.2067E+008.6159E−011.3135E+009.3632E−011.1283E+001.0222E+009.7420E−01
125.5886E−012.3782E+007.5019E−011.4141E+008.1454E−011.2142E+008.8877E−011.0480E+00
134.9582E−012.5390E+006.6066E−011.5084E+007.1675E−011.2947E+007.8168E−011.1171E+00
144.4298E−012.6902E+005.8718E−011.5963E+006.3668E−011.3697E+006.9412E−011.1815E+00
153.9809E−012.8335E+005.2597E−011.6787E+005.7015E−011.4398E+006.2148E−011.2416E+00
163.5955E−012.9703E+004.7424E−011.7563E+005.1405E−011.5058E+005.6032E−011.2981E+00
173.2626E−013.1019E+004.2999E−011.8302E+004.6614E−011.5684E+005.0816E−011.3516E+00
182.9740E−013.2292E+003.9179E−011.9010E+004.2480E−011.6284E+004.6317E−011.4029E+00
192.7232E−013.3530E+003.5854E−011.9694E+003.8882E−011.6864E+004.2400E−011.4523E+00
202.5047E−013.4736E+003.2942E−012.0360E+003.5727E−011.7427E+003.8963E−011.5004E+00
212.3139E−013.5914E+003.0378E−012.1012E+003.2944E−011.7979E+003.5927E−011.5474E+00
222.1466E−013.7066E+002.8109E−012.1651E+003.0476E−011.8520E+003.3230E−011.5936E+00
231.9994E−013.8193E+002.6093E−012.2280E+002.8278E−011.9053E+003.0824E−011.6391E+00
241.8692E−013.9295E+002.4294E−012.2899E+002.6313E−011.9578E+002.8668E−011.6840E+00
251.7535E−014.0374E+002.2683E−012.3508E+002.4548E−012.0095E+002.6730E−011.7282E+00
261.6501E−014.1429E+002.1234E−012.4107E+002.2959E−012.0605E+002.4982E−011.7719E+00
271.5571E−014.2463E+001.9927E−012.4696E+002.1522E−012.1106E+002.3400E−011.8148E+00
281.4730E−014.3475E+001.8743E−012.5274E+002.0220E−012.1599E+002.1964E−011.8571E+00
291.3966E−014.4467E+001.7666E−012.5841E+001.9036E−012.2083E+002.0658E−011.8986E+00
301.3267E−014.5439E+001.6685E−012.6397E+001.7955E−012.2557E+001.9466E−011.9393E+00
311.2626E−014.6394E+001.5787E−012.6942E+001.6967E−012.3021E+001.8376E−011.9792E+00
321.2034E−014.7331E+001.4962E−012.7475E+001.6060E−012.3476E+001.7376E−012.0183E+00
331.1487E−014.8252E+001.4203E−012.7995E+001.5226E−012.3920E+001.6457E−012.0564E+00
341.0978E−014.9157E+001.3502E−012.8505E+001.4457E−012.4355E+001.5611E−012.0937E+00
351.0505E−015.0048E+001.2854E−012.9003E+001.3746E−012.4779E+001.4829E−012.1301E+00
361.0063E−015.0926E+001.2251E−012.9489E+001.3087E−012.5193E+001.4105E−012.1656E+00
379.6487E−025.1791E+001.1691E−012.9965E+001.2475E−012.5598E+001.3434E−012.2003E+00
389.2609E−025.2644E+001.1169E−013.0430E+001.1906E−012.5993E+001.2811E−012.2341E+00
398.8969E−025.3485E+001.0682E−013.0885E+001.1375E−012.6378E+001.2230E−012.2671E+00
408.5548E−025.4315E+001.0226E−013.1330E+001.0880E−012.6755E+001.1689E−012.2993E+00
418.2329E−025.5135E+009.7984E−023.1765E+001.0416E−012.7123E+001.1184E−012.3308E+00
427.9298E−025.5944E+009.3974E−023.2191E+009.9820E−022.7483E+001.0710E−012.3615E+00
437.6442E−025.6744E+009.0207E−023.2609E+009.5745E−022.7836E+001.0267E−012.3915E+00
447.3748E−025.7534E+008.6662E−023.3018E+009.1917E−022.8180E+009.8511E−022.4208E+00
457.1206E−025.8315E+008.3323E−023.3419E+008.8316E−022.8518E+009.4602E−022.4495E+00
466.8805E−025.9087E+008.0174E−023.3813E+008.4924E−022.8849E+009.0924E−022.4776E+00
476.6537E−025.9850E+007.7203E−023.4199E+008.1726E−022.9173E+008.7460E−022.5051E+00
486.4393E−026.0605E+007.4394E−023.4579E+007.8707E−022.9491E+008.4192E−022.5321E+00
496.2366E−026.1352E+007.1739E−023.4952E+007.5855E−022.9803E+008.1107E−022.5585E+00
506.0448E−026.2090E+006.9225E−023.5318E+007.3157E−023.0110E+007.8191E−022.5845E+00
515.8633E−026.2820E+006.6843E−023.5679E+007.0602E−023.0411E+007.5431E−022.6099E+00
525.6913E−026.3543E+006.4585E−023.6033E+006.8182E−023.0707E+007.2818E−022.6349E+00
535.5285E−026.4257E+006.2442E−023.6382E+006.5886E−023.0998E+007.0341E−022.6595E+00
545.3742E−026.4965E+006.0408E−023.6725E+006.3707E−023.1284E+006.7990E−022.6837E+00
555.2279E−026.5664E+005.8474E−023.7064E+006.1637E−023.1566E+006.5758E−022.7076E+00
565.0892E−026.6356E+005.6635E−023.7397E+005.9669E−023.1844E+006.3636E−022.7310E+00
574.9576E−026.7042E+005.4884E−023.7726E+005.7796E−023.2118E+006.1617E−022.7541E+00
584.8328E−026.7719E+005.3217E−023.8050E+005.6012E−023.2387E+005.9695E−022.7768E+00
594.7143E−026.8390E+005.1628E−023.8369E+005.4313E−023.2653E+005.7864E−022.7992E+00
604.6018E−026.9054E+005.0113E−023.8684E+005.2692E−023.2915E+005.6118E−022.8213E+00

Sn; [Z=50]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.1786E+003.3340E−011.0780E+012.2360E−011.1382E+011.9664E−011.2139E+011.7311E−01
17.7393E+003.8759E−019.2128E+002.5743E−019.7520E+002.2594E−011.0427E+011.9848E−01
25.3724E+005.2997E−016.5939E+003.4428E−017.0175E+003.0092E−017.5367E+002.6341E−01
33.7159E+007.1361E−014.7069E+004.5338E−015.0366E+003.9471E−015.4318E+003.4446E−01
42.7051E+009.0281E−013.5185E+005.6406E−013.7826E+004.8957E−014.0938E+004.2625E−01
52.0528E+001.0891E+002.7304E+006.7207E−012.9471E+005.8197E−013.1993E+005.0580E−01
61.6019E+001.2768E+002.1705E+007.7998E−012.3508E+006.7413E−012.5587E+005.8503E−01
71.2786E+001.4695E+001.7557E+008.9007E−011.9067E+007.6799E−012.0796E+006.6562E−01
81.0433E+001.6666E+001.4421E+001.0025E+001.5690E+008.6377E−011.7138E+007.4778E−01
98.7022E−011.8643E+001.2027E+001.1158E+001.3096E+009.6027E−011.4316E+008.3055E−01
107.4090E−012.0575E+001.0181E+001.2277E+001.1086E+001.0556E+001.2120E+009.1237E−01
116.4147E−012.2422E+008.7398E−011.3358E+009.5107E−011.1479E+001.0395E+009.9159E−01
125.6366E−012.4172E+007.6054E−011.4388E+008.2683E−011.2359E+009.0317E−011.0672E+00
135.0046E−012.5817E+006.6939E−011.5358E+007.2701E−011.3188E+007.9365E−011.1385E+00
144.4761E−012.7365E+005.9468E−011.6266E+006.4536E−011.3964E+007.0416E−011.2051E+00
154.0268E−012.8830E+005.3252E−011.7117E+005.7761E−011.4689E+006.3002E−011.2673E+00
163.6405E−013.0227E+004.8006E−011.7917E+005.2057E−011.5371E+005.6772E−011.3257E+00
173.3058E−013.1567E+004.3522E−011.8675E+004.7194E−011.6015E+005.1469E−011.3809E+00
183.0147E−013.2862E+003.9653E−011.9399E+004.3002E−011.6629E+004.6903E−011.4334E+00
192.7609E−013.4118E+003.6286E−012.0096E+003.9357E−011.7220E+004.2933E−011.4838E+00
202.5390E−013.5341E+003.3338E−012.0772E+003.6163E−011.7792E+003.9453E−011.5326E+00
212.3448E−013.6534E+003.0742E−012.1431E+003.3348E−011.8349E+003.6383E−011.5802E+00
222.1743E−013.7700E+002.8444E−012.2076E+003.0852E−011.8896E+003.3657E−011.6268E+00
232.0240E−013.8840E+002.6403E−012.2710E+002.8629E−011.9432E+003.1226E−011.6726E+00
241.8911E−013.9955E+002.4581E−012.3333E+002.6641E−011.9960E+002.9048E−011.7177E+00
251.7730E−014.1045E+002.2950E−012.3946E+002.4857E−012.0480E+002.7090E−011.7622E+00
261.6676E−014.2113E+002.1484E−012.4548E+002.3250E−012.0993E+002.5323E−011.8060E+00
271.5728E−014.3157E+002.0161E−012.5142E+002.1798E−012.1497E+002.3725E−011.8493E+00
281.4873E−014.4181E+001.8963E−012.5724E+002.0482E−012.1994E+002.2273E−011.8918E+00
291.4097E−014.5183E+001.7875E−012.6297E+001.9284E−012.2482E+002.0953E−011.9337E+00
301.3389E−014.6167E+001.6883E−012.6858E+001.8192E−012.2961E+001.9748E−011.9748E+00
311.2740E−014.7131E+001.5976E−012.7409E+001.7193E−012.3431E+001.8645E−012.0152E+00
321.2142E−014.8078E+001.5144E−012.7948E+001.6277E−012.3891E+001.7633E−012.0547E+00
331.1590E−014.9009E+001.4377E−012.8476E+001.5434E−012.4342E+001.6703E−012.0934E+00
341.1077E−014.9925E+001.3670E−012.8993E+001.4657E−012.4783E+001.5847E−012.1313E+00
351.0600E−015.0826E+001.3015E−012.9499E+001.3938E−012.5214E+001.5055E−012.1683E+00
361.0155E−015.1714E+001.2408E−012.9993E+001.3272E−012.5635E+001.4322E−012.2045E+00
379.7390E−025.2589E+001.1843E−013.0477E+001.2654E−012.6047E+001.3643E−012.2399E+00
389.3491E−025.3452E+001.1317E−013.0951E+001.2078E−012.6450E+001.3011E−012.2744E+00
398.9832E−025.4303E+001.0825E−013.1414E+001.1542E−012.6843E+001.2423E−012.3080E+00
408.6393E−025.5144E+001.0365E−013.1867E+001.1041E−012.7228E+001.1875E−012.3410E+00
418.3157E−025.5974E+009.9337E−023.2311E+001.0572E−012.7604E+001.1363E−012.3731E+00
428.0110E−025.6795E+009.5291E−023.2745E+001.0133E−012.7972E+001.0883E−012.4045E+00
437.7237E−025.7605E+009.1487E−023.3171E+009.7207E−022.8331E+001.0434E−012.4352E+00
447.4526E−025.8407E+008.7908E−023.3589E+009.3333E−022.8684E+001.0012E−012.4652E+00
457.1967E−025.9199E+008.4535E−023.3998E+008.9688E−022.9029E+009.6154E−022.4945E+00
466.9551E−025.9983E+008.1353E−023.4400E+008.6253E−022.9367E+009.2424E−022.5233E+00
476.7267E−026.0758E+007.8349E−023.4794E+008.3014E−022.9698E+008.8909E−022.5514E+00
486.5107E−026.1525E+007.5509E−023.5182E+007.9956E−023.0023E+008.5593E−022.5790E+00
496.3063E−026.2284E+007.2823E−023.5562E+007.7065E−023.0342E+008.2461E−022.6061E+00
506.1130E−026.3035E+007.0279E−023.5936E+007.4330E−023.0655E+007.9501E−022.6326E+00
515.9299E−026.3778E+006.7868E−023.6304E+007.1741E−023.0963E+007.6700E−022.6586E+00
525.7565E−026.4514E+006.5581E−023.6666E+006.9286E−023.1265E+007.4046E−022.6842E+00
535.5922E−026.5242E+006.3410E−023.7022E+006.6957E−023.1562E+007.1530E−022.7094E+00
545.4365E−026.5962E+006.1348E−023.7373E+006.4746E−023.1855E+006.9143E−022.7341E+00
555.2889E−026.6676E+005.9388E−023.7718E+006.2646E−023.2143E+006.6875E−022.7584E+00
565.1489E−026.7382E+005.7524E−023.8058E+006.0648E−023.2426E+006.4719E−022.7823E+00
575.0162E−026.8081E+005.5749E−023.8394E+005.8747E−023.2706E+006.2668E−022.8059E+00
584.8902E−026.8773E+005.4058E−023.8724E+005.6936E−023.2981E+006.0715E−022.8291E+00
594.7706E−026.9458E+005.2446E−023.9050E+005.5211E−023.3252E+005.8855E−022.8519E+00
604.6571E−027.0136E+005.0908E−023.9372E+005.3565E−023.3519E+005.7080E−022.8745E+00

Sb; [Z=51]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.2392E+003.4422E−011.0879E+012.3076E−011.1493E+012.0299E−011.2263E+011.7877E−01
17.9140E+003.9358E−019.4351E+002.6168E−019.9910E+002.2979E−011.0686E+012.0197E−01
25.5606E+005.3038E−016.8317E+003.4546E−017.2727E+003.0219E−017.8130E+002.6472E−01
33.8093E+007.1939E−014.8361E+004.5798E−015.1775E+003.9897E−015.5863E+003.4839E−01
42.7389E+009.2084E−013.5723E+005.7575E−013.8431E+004.9992E−014.1618E+004.3545E−01
52.0668E+001.1169E+002.7552E+006.8939E−012.9759E+005.9716E−013.2326E+005.1918E−01
61.6121E+001.3087E+002.1883E+007.9986E−012.3717E+006.9153E−012.5831E+006.0035E−01
71.2883E+001.5015E+001.7729E+009.1023E−011.9269E+007.8570E−012.1031E+006.8123E−01
81.0521E+001.6972E+001.4592E+001.0220E+001.5890E+008.8098E−011.7371E+007.6301E−01
98.7762E−011.8939E+001.2186E+001.1348E+001.3284E+009.7709E−011.4536E+008.4547E−01
107.4689E−012.0876E+001.0323E+001.2469E+001.1254E+001.0726E+001.2318E+009.2750E−01
116.4648E−012.2743E+008.8612E−011.3562E+009.6556E−011.1659E+001.0566E+001.0076E+00
125.6814E−012.4521E+007.7083E−011.4612E+008.3910E−011.2557E+009.1763E−011.0847E+00
135.0474E−012.6200E+006.7813E−011.5606E+007.3737E−011.3407E+008.0580E−011.1579E+00
144.5189E−012.7782E+006.0222E−011.6541E+006.5416E−011.4207E+007.1440E−011.2266E+00
154.0700E−012.9279E+005.3913E−011.7418E+005.8519E−011.4956E+006.3876E−011.2910E+00
163.6835E−013.0704E+004.8593E−011.8242E+005.2720E−011.5660E+005.7529E−011.3514E+00
173.3479E−013.2070E+004.4051E−011.9022E+004.7782E−011.6323E+005.2134E−011.4082E+00
183.0550E−013.3387E+004.0132E−011.9764E+004.3531E−011.6954E+004.7496E−011.4622E+00
192.7987E−013.4663E+003.6724E−012.0476E+003.9837E−011.7557E+004.3470E−011.5138E+00
202.5740E−013.5903E+003.3739E−012.1163E+003.6603E−011.8139E+003.9945E−011.5635E+00
212.3767E−013.7112E+003.1109E−012.1831E+003.3753E−011.8705E+003.6837E−011.6117E+00
222.2031E−013.8293E+002.8783E−012.2483E+003.1227E−011.9257E+003.4081E−011.6588E+00
232.0499E−013.9447E+002.6715E−012.3122E+002.8978E−011.9798E+003.1623E−011.7050E+00
241.9143E−014.0575E+002.4870E−012.3750E+002.6968E−012.0329E+002.9422E−011.7504E+00
251.7937E−014.1678E+002.3218E−012.4367E+002.5164E−012.0853E+002.7443E−011.7951E+00
261.6861E−014.2758E+002.1733E−012.4974E+002.3539E−012.1368E+002.5658E−011.8392E+00
271.5895E−014.3815E+002.0394E−012.5571E+002.2070E−012.1876E+002.4042E−011.8827E+00
281.5025E−014.4849E+001.9182E−012.6158E+002.0739E−012.2376E+002.2576E−011.9255E+00
291.4235E−014.5863E+001.8081E−012.6735E+001.9528E−012.2868E+002.1241E−011.9677E+00
301.3516E−014.6857E+001.7079E−012.7302E+001.8424E−012.3351E+002.0022E−012.0092E+00
311.2858E−014.7832E+001.6162E−012.7858E+001.7415E−012.3826E+001.8907E−012.0499E+00
321.2253E−014.8790E+001.5321E−012.8404E+001.6488E−012.4291E+001.7884E−012.0899E+00
331.1695E−014.9731E+001.4547E−012.8938E+001.5637E−012.4748E+001.6944E−012.1291E+00
341.1177E−015.0657E+001.3833E−012.9462E+001.4851E−012.5195E+001.6077E−012.1676E+00
351.0696E−015.1568E+001.3173E−012.9975E+001.4125E−012.5632E+001.5276E−012.2052E+00
361.0247E−015.2465E+001.2560E−013.0477E+001.3452E−012.6061E+001.4535E−012.2420E+00
379.8285E−025.3350E+001.1990E−013.0968E+001.2828E−012.6479E+001.3847E−012.2779E+00
389.4360E−025.4223E+001.1460E−013.1450E+001.2246E−012.6889E+001.3208E−012.3131E+00
399.0678E−025.5084E+001.0964E−013.1921E+001.1704E−012.7290E+001.2612E−012.3474E+00
408.7219E−025.5935E+001.0500E−013.2382E+001.1198E−012.7682E+001.2057E−012.3810E+00
418.3964E−025.6775E+001.0065E−013.2834E+001.0724E−012.8065E+001.1538E−012.4138E+00
428.0898E−025.7605E+009.6569E−023.3277E+001.0280E−012.8440E+001.1053E−012.4459E+00
437.8008E−025.8426E+009.2732E−023.3711E+009.8635E−022.8808E+001.0597E−012.4772E+00
447.5281E−025.9239E+008.9119E−023.4137E+009.4718E−022.9167E+001.0170E−012.5079E+00
457.2705E−026.0042E+008.5715E−023.4554E+009.1031E−022.9519E+009.7682E−022.5379E+00
467.0272E−026.0837E+008.2502E−023.4964E+008.7556E−022.9864E+009.3900E−022.5673E+00
476.7971E−026.1623E+007.9468E−023.5366E+008.4278E−023.0203E+009.0336E−022.5961E+00
486.5796E−026.2402E+007.6598E−023.5761E+008.1182E−023.0535E+008.6974E−022.6243E+00
496.3737E−026.3173E+007.3883E−023.6149E+007.8255E−023.0861E+008.3798E−022.6519E+00
506.1788E−026.3936E+007.1310E−023.6531E+007.5485E−023.1180E+008.0795E−022.6790E+00
515.9942E−026.4692E+006.8872E−023.6906E+007.2861E−023.1495E+007.7953E−022.7057E+00
525.8193E−026.5440E+006.6558E−023.7275E+007.0374E−023.1803E+007.5260E−022.7318E+00
535.6536E−026.6181E+006.4361E−023.7638E+006.8013E−023.2107E+007.2707E−022.7575E+00
545.4966E−026.6914E+006.2273E−023.7996E+006.5772E−023.2406E+007.0283E−022.7827E+00
555.3477E−026.7641E+006.0288E−023.8349E+006.3641E−023.2700E+006.7981E−022.8076E+00
565.2064E−026.8361E+005.8399E−023.8695E+006.1615E−023.2989E+006.5792E−022.8320E+00
575.0725E−026.9073E+005.6600E−023.9038E+005.9686E−023.3274E+006.3709E−022.8561E+00
584.9454E−026.9779E+005.4886E−023.9375E+005.7849E−023.3555E+006.1726E−022.8797E+00
594.8248E−027.0479E+005.3252E−023.9707E+005.6098E−023.3831E+005.9836E−022.9031E+00
604.7103E−027.1171E+005.1693E−024.0035E+005.4428E−023.4104E+005.8033E−022.9261E+00

Te; [Z=52]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.1728E+003.5733E−011.0839E+012.3954E−011.1459E+012.1079E−011.2233E+011.8571E−01
17.9735E+004.0253E−019.5306E+002.6793E−011.0098E+012.3540E−011.0805E+012.0702E−01
25.7059E+005.3203E−017.0211E+003.4755E−017.4772E+003.0427E−018.0354E+002.6674E−01
33.9052E+007.2120E−014.9692E+004.6048E−015.3228E+004.0147E−015.7457E+003.5083E−01
42.7806E+009.3204E−013.6376E+005.8376E−013.9160E+005.0718E−014.2433E+004.4202E−01
52.0847E+001.1388E+002.7858E+007.0358E−013.0111E+006.0971E−013.2729E+005.3032E−01
61.6234E+001.3370E+002.2071E+008.1787E−012.3937E+007.0738E−012.6086E+006.1435E−01
71.2981E+001.5316E+001.7891E+009.2953E−011.9458E+008.0269E−012.1252E+006.9626E−01
81.0609E+001.7266E+001.4749E+001.0411E+001.6074E+008.9786E−011.7585E+007.7798E−01
98.8498E−011.9223E+001.2335E+001.1534E+001.3460E+009.9353E−011.4741E+008.6009E−01
107.5280E−012.1158E+001.0457E+001.2653E+001.1415E+001.0890E+001.2506E+009.4206E−01
116.5134E−012.3037E+008.9789E−011.3753E+009.7970E−011.1829E+001.0732E+001.0227E+00
125.7234E−012.4839E+007.8094E−011.4817E+008.5125E−011.2739E+009.3198E−011.1009E+00
135.0869E−012.6546E+006.8681E−011.5832E+007.4772E−011.3608E+008.1801E−011.1757E+00
144.5581E−012.8160E+006.0973E−011.6791E+006.6303E−011.4429E+007.2479E−011.2464E+00
154.1099E−012.9687E+005.4573E−011.7694E+005.9285E−011.5201E+006.4765E−011.3128E+00
163.7239E−013.1141E+004.9182E−011.8543E+005.3391E−011.5927E+005.8298E−011.3752E+00
173.3881E−013.2532E+004.4582E−011.9345E+004.8377E−011.6611E+005.2810E−011.4339E+00
183.0942E−013.3872E+004.0616E−012.0106E+004.4065E−011.7259E+004.8098E−011.4894E+00
192.8361E−013.5168E+003.7166E−012.0834E+004.0322E−011.7877E+004.4012E−011.5423E+00
202.6092E−013.6427E+003.4144E−012.1535E+003.7046E−011.8471E+004.0440E−011.5930E+00
212.4092E−013.7653E+003.1482E−012.2213E+003.4160E−011.9046E+003.7293E−011.6421E+00
222.2328E−013.8849E+002.9126E−012.2874E+003.1604E−011.9605E+003.4504E−011.6898E+00
232.0768E−014.0018E+002.7031E−012.3520E+002.9328E−012.0151E+003.2018E−011.7364E+00
241.9385E−014.1160E+002.5162E−012.4153E+002.7294E−012.0687E+002.9792E−011.7822E+00
251.8156E−014.2277E+002.3488E−012.4774E+002.5469E−012.1214E+002.7792E−011.8272E+00
261.7057E−014.3369E+002.1984E−012.5386E+002.3824E−012.1733E+002.5988E−011.8715E+00
271.6072E−014.4439E+002.0628E−012.5987E+002.2339E−012.2244E+002.4355E−011.9153E+00
281.5185E−014.5486E+001.9400E−012.6579E+002.0993E−012.2747E+002.2872E−011.9583E+00
291.4381E−014.6511E+001.8286E−012.7160E+001.9769E−012.3242E+002.1523E−012.0008E+00
301.3650E−014.7516E+001.7272E−012.7732E+001.8652E−012.3730E+002.0291E−012.0426E+00
311.2982E−014.8502E+001.6345E−012.8293E+001.7631E−012.4209E+001.9164E−012.0837E+00
321.2368E−014.9471E+001.5495E−012.8844E+001.6695E−012.4679E+001.8130E−012.1241E+00
331.1802E−015.0422E+001.4713E−012.9385E+001.5835E−012.5141E+001.7178E−012.1638E+00
341.1279E−015.1357E+001.3993E−012.9915E+001.5041E−012.5593E+001.6302E−012.2027E+00
351.0793E−015.2278E+001.3326E−013.0434E+001.4308E−012.6037E+001.5492E−012.2408E+00
361.0340E−015.3185E+001.2708E−013.0943E+001.3628E−012.6471E+001.4742E−012.2782E+00
379.9179E−025.4079E+001.2134E−013.1442E+001.2997E−012.6897E+001.4047E−012.3147E+00
389.5224E−025.4962E+001.1598E−013.1931E+001.2410E−012.7313E+001.3400E−012.3505E+00
399.1516E−025.5832E+001.1098E−013.2410E+001.1863E−012.7721E+001.2797E−012.3854E+00
408.8033E−025.6692E+001.0631E−013.2878E+001.1351E−012.8120E+001.2236E−012.4197E+00
418.4756E−025.7542E+001.0192E−013.3338E+001.0873E−012.8510E+001.1710E−012.4531E+00
428.1670E−025.8383E+009.7809E−023.3789E+001.0424E−012.8893E+001.1219E−012.4858E+00
437.8761E−025.9214E+009.3940E−023.4231E+001.0003E−012.9267E+001.0758E−012.5178E+00
447.6016E−026.0036E+009.0297E−023.4664E+009.6070E−022.9634E+001.0325E−012.5492E+00
457.3423E−026.0850E+008.6862E−023.5089E+009.2343E−022.9993E+009.9183E−022.5798E+00
467.0972E−026.1655E+008.3621E−023.5507E+008.8831E−023.0345E+009.5352E−022.6098E+00
476.8655E−026.2453E+008.0558E−023.5917E+008.5515E−023.0691E+009.1742E−022.6392E+00
486.6463E−026.3242E+007.7661E−023.6319E+008.2384E−023.1029E+008.8335E−022.6681E+00
496.4388E−026.4024E+007.4918E−023.6715E+007.9422E−023.1362E+008.5116E−022.6963E+00
506.2424E−026.4799E+007.2319E−023.7104E+007.6619E−023.1688E+008.2072E−022.7240E+00
516.0563E−026.5567E+006.9854E−023.7487E+007.3963E−023.2009E+007.9190E−022.7512E+00
525.8800E−026.6327E+006.7515E−023.7863E+007.1444E−023.2324E+007.6459E−022.7779E+00
535.7129E−026.7080E+006.5293E−023.8233E+006.9053E−023.2634E+007.3869E−022.8041E+00
545.5545E−026.7827E+006.3181E−023.8598E+006.6782E−023.2939E+007.1410E−022.8299E+00
555.4042E−026.8566E+006.1172E−023.8958E+006.4623E−023.3239E+006.9074E−022.8553E+00
565.2618E−026.9299E+005.9260E−023.9311E+006.2569E−023.3534E+006.6853E−022.8802E+00
575.1266E−027.0025E+005.7438E−023.9660E+006.0614E−023.3825E+006.4740E−022.9048E+00
584.9984E−027.0745E+005.5702E−024.0004E+005.8751E−023.4111E+006.2726E−022.9290E+00
594.8768E−027.1458E+005.4046E−024.0343E+005.6975E−023.4393E+006.0808E−022.9528E+00
604.7614E−027.2165E+005.2466E−024.0677E+005.5280E−023.4672E+005.8978E−022.9762E+00

I; [Z=53]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.0369E+003.7139E−011.0721E+012.4909E−011.1343E+012.1928E−011.2118E+011.9328E−01
17.9578E+004.1306E−019.5424E+002.7532E−011.0117E+012.4203E−011.0832E+012.1296E−01
25.8096E+005.3506E−017.1635E+003.5060E−017.6325E+003.0719E−018.2057E+002.6950E−01
33.9965E+007.2104E−015.0976E+004.6199E−015.4633E+004.0314E−015.9001E+003.5257E−01
42.8274E+009.3788E−013.7108E+005.8889E−013.9976E+005.1199E−014.3344E+004.4651E−01
52.1062E+001.1550E+002.8223E+007.1468E−013.0529E+006.1965E−013.3205E+005.3924E−01
61.6360E+001.3612E+002.2280E+008.3374E−012.4179E+007.2142E−012.6367E+006.2682E−01
71.3083E+001.5594E+001.8051E+009.4775E−011.9644E+008.1879E−012.1468E+007.1053E−01
81.0698E+001.7548E+001.4895E+001.0598E+001.6245E+009.1439E−011.7784E+007.9267E−01
98.9245E−011.9497E+001.2474E+001.1717E+001.3623E+001.0098E+001.4931E+008.7456E−01
107.5879E−012.1428E+001.0585E+001.2833E+001.1566E+001.1050E+001.2684E+009.5633E−01
116.5614E−012.3314E+009.0926E−011.3935E+009.9331E−011.1991E+001.0893E+001.0372E+00
125.7636E−012.5132E+007.9084E−011.5009E+008.6315E−011.2910E+009.4609E−011.1162E+00
135.1234E−012.6864E+006.9537E−011.6041E+007.5801E−011.3793E+008.3019E−011.1922E+00
144.5940E−012.8506E+006.1719E−011.7021E+006.7190E−011.4634E+007.3525E−011.2646E+00
154.1465E−013.0062E+005.5231E−011.7948E+006.0056E−011.5428E+006.5666E−011.3329E+00
163.7615E−013.1544E+004.9770E−011.8821E+005.4067E−011.6175E+005.9080E−011.3973E+00
173.4261E−013.2960E+004.5114E−011.9646E+004.8978E−011.6880E+005.3496E−011.4578E+00
183.1319E−013.4323E+004.1101E−012.0427E+004.4605E−011.7546E+004.8707E−011.5150E+00
192.8727E−013.5640E+003.7611E−012.1173E+004.0811E−011.8180E+004.4561E−011.5693E+00
202.6440E−013.6917E+003.4554E−012.1888E+003.7493E−011.8787E+004.0939E−011.6213E+00
212.4419E−013.8161E+003.1859E−012.2579E+003.4571E−011.9373E+003.7751E−011.6713E+00
222.2630E−013.9373E+002.9474E−012.3249E+003.1983E−011.9940E+003.4927E−011.7197E+00
232.1045E−014.0557E+002.7352E−012.3903E+002.9680E−012.0494E+003.2412E−011.7670E+00
241.9638E−014.1714E+002.5458E−012.4542E+002.7621E−012.1035E+003.0161E−011.8132E+00
251.8384E−014.2845E+002.3762E−012.5169E+002.5773E−012.1567E+002.8138E−011.8585E+00
261.7264E−014.3951E+002.2237E−012.5786E+002.4110E−012.2089E+002.6314E−011.9032E+00
271.6259E−014.5033E+002.0863E−012.6391E+002.2606E−012.2603E+002.4663E−011.9471E+00
281.5354E−014.6093E+001.9619E−012.6987E+002.1244E−012.3110E+002.3164E−011.9905E+00
291.4535E−014.7130E+001.8491E−012.7573E+002.0006E−012.3608E+002.1800E−012.0332E+00
301.3791E−014.8147E+001.7464E−012.8149E+001.8877E−012.4099E+002.0555E−012.0753E+00
311.3111E−014.9145E+001.6526E−012.8716E+001.7845E−012.4582E+001.9415E−012.1167E+00
321.2488E−015.0124E+001.5667E−012.9272E+001.6899E−012.5057E+001.8370E−012.1575E+00
331.1915E−015.1085E+001.4877E−012.9818E+001.6029E−012.5523E+001.7408E−012.1976E+00
341.1384E−015.2031E+001.4149E−013.0354E+001.5227E−012.5981E+001.6522E−012.2369E+00
351.0893E−015.2962E+001.3476E−013.0880E+001.4486E−012.6430E+001.5703E−012.2755E+00
361.0435E−015.3878E+001.2852E−013.1395E+001.3800E−012.6870E+001.4945E−012.3134E+00
371.0008E−015.4782E+001.2273E−013.1901E+001.3162E−012.7301E+001.4241E−012.3505E+00
389.6094E−025.5673E+001.1733E−013.2396E+001.2569E−012.7724E+001.3588E−012.3868E+00
399.2354E−025.6553E+001.1229E−013.2882E+001.2017E−012.8138E+001.2979E−012.4223E+00
408.8843E−025.7423E+001.0758E−013.3359E+001.1500E−012.8544E+001.2410E−012.4572E+00
418.5541E−025.8282E+001.0316E−013.3826E+001.1017E−012.8941E+001.1879E−012.4912E+00
428.2432E−025.9131E+009.9012E−023.4284E+001.0564E−012.9330E+001.1382E−012.5246E+00
437.9502E−025.9972E+009.5113E−023.4733E+001.0139E−012.9712E+001.0915E−012.5572E+00
447.6736E−026.0804E+009.1440E−023.5174E+009.7390E−023.0085E+001.0477E−012.5892E+00
457.4124E−026.1627E+008.7978E−023.5607E+009.3626E−023.0452E+001.0066E−012.6205E+00
467.1656E−026.2443E+008.4709E−023.6032E+009.0076E−023.0811E+009.6779E−022.6511E+00
476.9321E−026.3251E+008.1619E−023.6449E+008.6726E−023.1163E+009.3123E−022.6811E+00
486.7112E−026.4051E+007.8696E−023.6859E+008.3560E−023.1508E+008.9673E−022.7105E+00
496.5021E−026.4844E+007.5928E−023.7262E+008.0566E−023.1848E+008.6413E−022.7394E+00
506.3041E−026.5630E+007.3304E−023.7659E+007.7731E−023.2181E+008.3329E−022.7677E+00
516.1164E−026.6409E+007.0815E−023.8049E+007.5044E−023.2508E+008.0409E−022.7954E+00
525.9386E−026.7181E+006.8452E−023.8432E+007.2495E−023.2829E+007.7642E−022.8227E+00
535.7701E−026.7946E+006.6206E−023.8810E+007.0075E−023.3145E+007.5016E−022.8495E+00
545.6103E−026.8705E+006.4071E−023.9181E+006.7776E−023.3456E+007.2524E−022.8758E+00
555.4587E−026.9457E+006.2039E−023.9548E+006.5590E−023.3762E+007.0155E−022.9017E+00
565.3150E−027.0202E+006.0105E−023.9908E+006.3510E−023.4063E+006.7903E−022.9272E+00
575.1787E−027.0942E+005.8262E−024.0264E+006.1528E−023.4360E+006.5759E−022.9522E+00
585.0494E−027.1674E+005.6504E−024.0614E+005.9641E−023.4652E+006.3716E−022.9769E+00
594.9267E−027.2401E+005.4828E−024.0960E+005.7840E−023.4940E+006.1770E−023.0012E+00
604.8104E−027.3122E+005.3228E−024.1301E+005.6123E−023.5224E+005.9913E−023.0251E+00

Xe; [Z=54]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
08.8612E+003.8581E−011.0559E+012.5901E−011.1181E+012.2811E−011.1952E+012.0116E−01
17.8913E+004.2448E−019.4973E+002.8340E−011.0077E+012.4927E−011.0795E+012.1946E−01
25.8763E+005.3932E−017.2637E+003.5450E−017.7435E+003.1086E−018.3291E+002.7293E−01
34.0788E+007.2011E−015.2157E+004.6316E−015.5931E+004.0455E−016.0431E+003.5410E−01
42.8766E+009.3973E−013.7883E+005.9189E−014.0841E+005.1501E−014.4309E+004.4947E−01
52.1306E+001.1658E+002.8642E+007.2290E−013.1006E+006.2716E−013.3746E+005.4609E−01
61.6501E+001.3809E+002.2515E+008.4724E−012.4451E+007.3347E−012.6680E+006.3760E−01
71.3190E+001.5843E+001.8215E+009.6456E−011.9834E+008.3371E−012.1688E+007.2381E−01
81.0790E+001.7815E+001.5036E+001.0779E+001.6409E+009.3043E−011.7974E+008.0695E−01
99.0018E−011.9761E+001.2605E+001.1897E+001.3776E+001.0259E+001.5110E+008.8891E−01
107.6498E−012.1688E+001.0706E+001.3010E+001.1710E+001.1208E+001.2852E+009.7046E−01
116.6103E−012.3576E+009.2015E−011.4112E+001.0063E+001.2150E+001.1047E+001.0514E+00
125.8032E−012.5406E+008.0044E−011.5192E+008.7473E−011.3073E+009.5984E−011.1308E+00
135.1580E−012.7158E+007.0376E−011.6236E+007.6814E−011.3967E+008.4223E−011.2078E+00
144.6270E−012.8825E+006.2454E−011.7235E+006.8072E−011.4824E+007.4570E−011.2816E+00
154.1799E−013.0409E+005.5882E−011.8183E+006.0826E−011.5637E+006.6571E−011.3517E+00
163.7959E−013.1916E+005.0353E−011.9079E+005.4746E−011.6406E+005.9869E−011.4179E+00
173.4614E−013.3358E+004.5644E−011.9926E+004.9582E−011.7131E+005.4190E−011.4803E+00
183.1675E−013.4743E+004.1586E−012.0728E+004.5148E−011.7816E+004.9325E−011.5392E+00
192.9079E−013.6080E+003.8057E−012.1492E+004.1304E−011.8467E+004.5115E−011.5950E+00
202.6781E−013.7376E+003.4966E−012.2224E+003.7943E−011.9089E+004.1442E−011.6483E+00
212.4743E−013.8637E+003.2240E−012.2928E+003.4985E−011.9686E+003.8211E−011.6994E+00
222.2934E−013.9866E+002.9825E−012.3609E+003.2365E−012.0264E+003.5352E−011.7487E+00
232.1327E−014.1066E+002.7677E−012.4272E+003.0033E−012.0825E+003.2806E−011.7966E+00
241.9896E−014.2238E+002.5758E−012.4919E+002.7949E−012.1373E+003.0528E−011.8434E+00
251.8620E−014.3383E+002.4039E−012.5552E+002.6079E−012.1909E+002.8482E−011.8892E+00
261.7479E−014.4504E+002.2494E−012.6174E+002.4395E−012.2436E+002.6637E−011.9341E+00
271.6455E−014.5600E+002.1100E−012.6785E+002.2873E−012.2954E+002.4968E−011.9784E+00
281.5532E−014.6672E+001.9840E−012.7385E+002.1495E−012.3464E+002.3453E−012.0220E+00
291.4697E−014.7723E+001.8697E−012.7975E+002.0242E−012.3966E+002.2074E−012.0650E+00
301.3939E−014.8752E+001.7657E−012.8556E+001.9100E−012.4460E+002.0814E−012.1074E+00
311.3248E−014.9761E+001.6707E−012.9127E+001.8056E−012.4947E+001.9662E−012.1491E+00
321.2614E−015.0752E+001.5838E−012.9688E+001.7099E−012.5425E+001.8606E−012.1902E+00
331.2032E−015.1724E+001.5039E−013.0240E+001.6219E−012.5896E+001.7633E−012.2306E+00
341.1494E−015.2680E+001.4303E−013.0781E+001.5409E−012.6358E+001.6737E−012.2703E+00
351.0996E−015.3621E+001.3623E−013.1313E+001.4660E−012.6812E+001.5910E−012.3094E+00
361.0532E−015.4547E+001.2994E−013.1834E+001.3967E−012.7258E+001.5143E−012.3477E+00
371.0101E−015.5460E+001.2409E−013.2346E+001.3323E−012.7695E+001.4432E−012.3853E+00
389.6976E−025.6361E+001.1864E−013.2848E+001.2725E−012.8124E+001.3771E−012.4221E+00
399.3200E−025.7250E+001.1356E−013.3341E+001.2167E−012.8544E+001.3156E−012.4583E+00
408.9656E−025.8128E+001.0881E−013.3824E+001.1646E−012.8956E+001.2581E−012.4936E+00
418.6326E−025.8996E+001.0436E−013.4299E+001.1158E−012.9360E+001.2044E−012.5283E+00
428.3191E−025.9855E+001.0018E−013.4764E+001.0701E−012.9756E+001.1541E−012.5622E+00
438.0236E−026.0704E+009.6251E−023.5220E+001.0272E−013.0143E+001.1069E−012.5955E+00
447.7448E−026.1546E+009.2551E−023.5669E+009.8678E−023.0524E+001.0627E−012.6280E+00
457.4816E−026.2378E+008.9061E−023.6109E+009.4877E−023.0897E+001.0210E−012.6599E+00
467.2327E−026.3204E+008.5767E−023.6541E+009.1293E−023.1262E+009.8178E−022.6912E+00
476.9974E−026.4021E+008.2652E−023.6966E+008.7909E−023.1621E+009.4480E−022.7218E+00
486.7747E−026.4831E+007.9704E−023.7383E+008.4711E−023.1973E+009.0988E−022.7518E+00
496.5638E−026.5635E+007.6912E−023.7793E+008.1686E−023.2319E+008.7688E−022.7813E+00
506.3641E−026.6431E+007.4265E−023.8197E+007.8820E−023.2659E+008.4566E−022.8101E+00
516.1749E−026.7221E+007.1753E−023.8594E+007.6104E−023.2992E+008.1610E−022.8385E+00
525.9955E−026.8004E+006.9367E−023.8984E+007.3527E−023.3320E+007.8807E−022.8663E+00
535.8255E−026.8781E+006.7099E−023.9369E+007.1079E−023.3642E+007.6148E−022.8937E+00
545.6643E−026.9551E+006.4942E−023.9747E+006.8753E−023.3959E+007.3622E−022.9205E+00
555.5114E−027.0315E+006.2889E−024.0120E+006.6541E−023.4271E+007.1222E−022.9469E+00
565.3663E−027.1073E+006.0934E−024.0488E+006.4435E−023.4578E+006.8939E−022.9729E+00
575.2288E−027.1825E+005.9070E−024.0850E+006.2429E−023.4881E+006.6766E−022.9985E+00
585.0984E−027.2571E+005.7293E−024.1207E+006.0517E−023.5179E+006.4695E−023.0236E+00
594.9746E−027.3311E+005.5597E−024.1559E+005.8694E−023.5472E+006.2721E−023.0484E+00
604.8573E−027.4045E+005.3977E−024.1907E+005.6954E−023.5761E+006.0838E−023.0728E+00

Cs; [Z=55]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.4193E+012.7595E−011.6416E+011.8841E−011.7294E+011.6648E−011.8423E+011.4715E−01
19.7690E+003.8976E−011.1616E+012.6003E−011.2299E+012.2878E−011.3156E+012.0146E−01
26.0528E+005.8607E−017.4903E+003.7997E−017.9876E+003.3251E−018.5940E+002.9152E−01
34.1291E+007.8092E−015.2915E+004.9684E−015.6776E+004.3325E−016.1375E+003.7880E−01
42.9194E+009.9977E−013.8546E+006.2538E−014.1582E+005.4362E−014.5138E+004.7413E−01
52.1575E+001.2297E+002.9089E+007.5881E−013.1512E+006.5788E−013.4320E+005.7261E−01
61.6666E+001.4523E+002.2786E+008.8763E−012.4762E+007.6806E−012.7036E+006.6747E−01
71.3311E+001.6619E+001.8397E+001.0088E+002.0043E+008.7162E−012.1929E+007.5659E−01
81.0890E+001.8620E+001.5182E+001.1241E+001.6576E+009.7013E−011.8168E+008.4129E−01
99.0852E−012.0574E+001.2734E+001.2365E+001.3926E+001.0661E+001.5284E+009.2375E−01
107.7178E−012.2501E+001.0823E+001.3479E+001.1847E+001.1611E+001.3012E+001.0054E+00
116.6628E−012.4389E+009.3080E−011.4579E+001.0190E+001.2551E+001.1196E+001.0862E+00
125.8456E−012.6229E+008.0986E−011.5663E+008.8602E−011.3478E+009.7320E−011.1660E+00
135.1937E−012.7998E+007.1203E−011.6717E+007.7810E−011.4381E+008.5407E−011.2437E+00
144.6594E−012.9686E+006.3182E−011.7730E+006.8947E−011.5250E+007.5609E−011.3186E+00
154.2116E−013.1293E+005.6527E−011.8696E+006.1594E−011.6080E+006.7480E−011.3901E+00
163.8282E−013.2826E+005.0933E−011.9613E+005.5425E−011.6867E+006.0665E−011.4580E+00
173.4946E−013.4290E+004.6170E−012.0482E+005.0188E−011.7612E+005.4892E−011.5222E+00
183.2013E−013.5698E+004.2069E−012.1305E+004.5694E−011.8316E+004.9949E−011.5828E+00
192.9417E−013.7055E+003.8504E−012.2088E+004.1800E−011.8985E+004.5676E−011.6403E+00
202.7112E−013.8370E+003.5379E−012.2836E+003.8397E−011.9622E+004.1950E−011.6949E+00
212.5062E−013.9649E+003.2624E−012.3554E+003.5402E−012.0233E+003.8676E−011.7472E+00
222.3237E−014.0894E+003.0181E−012.4248E+003.2750E−012.0821E+003.5779E−011.7975E+00
232.1611E−014.2109E+002.8006E−012.4921E+003.0390E−012.1392E+003.3202E−011.8463E+00
242.0160E−014.3297E+002.6063E−012.5577E+002.8280E−012.1947E+003.0897E−011.8936E+00
251.8863E−014.4457E+002.4321E−012.6217E+002.6387E−012.2489E+002.8826E−011.9399E+00
261.7702E−014.5592E+002.2754E−012.6845E+002.4682E−012.3021E+002.6960E−011.9853E+00
271.6658E−014.6702E+002.1342E−012.7461E+002.3141E−012.3543E+002.5271E−012.0299E+00
281.5718E−014.7788E+002.0064E−012.8066E+002.1746E−012.4057E+002.3739E−012.0738E+00
291.4868E−014.8852E+001.8905E−012.8662E+002.0477E−012.4562E+002.2344E−012.1171E+00
301.4095E−014.9894E+001.7851E−012.9247E+001.9321E−012.5060E+002.1071E−012.1598E+00
311.3391E−015.0915E+001.6889E−012.9823E+001.8265E−012.5550E+001.9906E−012.2018E+00
321.2746E−015.1917E+001.6008E−013.0389E+001.7297E−012.6033E+001.8837E−012.2432E+00
331.2154E−015.2901E+001.5200E−013.0945E+001.6407E−012.6507E+001.7855E−012.2839E+00
341.1608E−015.3868E+001.4456E−013.1492E+001.5588E−012.6974E+001.6949E−012.3240E+00
351.1102E−015.4818E+001.3769E−013.2029E+001.4832E−012.7433E+001.6112E−012.3635E+00
361.0633E−015.5754E+001.3133E−013.2556E+001.4131E−012.7883E+001.5338E−012.4022E+00
371.0196E−015.6677E+001.2542E−013.3074E+001.3481E−012.8326E+001.4619E−012.4402E+00
389.7878E−025.7587E+001.1993E−013.3582E+001.2877E−012.8760E+001.3951E−012.4776E+00
399.4060E−025.8485E+001.1481E−013.4081E+001.2313E−012.9186E+001.3329E−012.5142E+00
409.0479E−025.9372E+001.1001E−013.4571E+001.1787E−012.9604E+001.2748E−012.5501E+00
418.7115E−026.0249E+001.0553E−013.5052E+001.1295E−013.0014E+001.2205E−012.5853E+00
428.3949E−026.1116E+001.0132E−013.5524E+001.0834E−013.0415E+001.1697E−012.6198E+00
438.0967E−026.1974E+009.7357E−023.5987E+001.0401E−013.0810E+001.1220E−012.6536E+00
447.8154E−026.2824E+009.3629E−023.6442E+009.9933E−023.1196E+001.0773E−012.6868E+00
457.5498E−026.3666E+009.0113E−023.6890E+009.6096E−023.1576E+001.0352E−012.7192E+00
467.2988E−026.4500E+008.6793E−023.7329E+009.2479E−023.1948E+009.9550E−022.7511E+00
477.0614E−026.5327E+008.3654E−023.7761E+008.9063E−023.2313E+009.5809E−022.7823E+00
486.8367E−026.6147E+008.0684E−023.8185E+008.5835E−023.2672E+009.2278E−022.8129E+00
496.6239E−026.6960E+007.7869E−023.8602E+008.2780E−023.3024E+008.8941E−022.8429E+00
506.4224E−026.7766E+007.5200E−023.9013E+007.9886E−023.3370E+008.5782E−022.8724E+00
516.2315E−026.8566E+007.2666E−023.9416E+007.7141E−023.3710E+008.2790E−022.9013E+00
526.0505E−026.9360E+007.0258E−023.9814E+007.4537E−023.4044E+007.9953E−022.9297E+00
535.8789E−027.0148E+006.7970E−024.0205E+007.2063E−023.4372E+007.7261E−022.9576E+00
545.7162E−027.0929E+006.5792E−024.0591E+006.9711E−023.4695E+007.4704E−022.9850E+00
555.5618E−027.1705E+006.3719E−024.0971E+006.7474E−023.5013E+007.2274E−023.0119E+00
565.4155E−027.2475E+006.1744E−024.1345E+006.5344E−023.5326E+006.9962E−023.0384E+00
575.2767E−027.3239E+005.9861E−024.1714E+006.3314E−023.5634E+006.7759E−023.0645E+00
585.1450E−027.3997E+005.8064E−024.2077E+006.1380E−023.5938E+006.5662E−023.0902E+00
595.0202E−027.4749E+005.6350E−024.2436E+005.9534E−023.6237E+006.3661E−023.1154E+00
604.9019E−027.5496E+005.4712E−024.2790E+005.7771E−023.6532E+006.1751E−023.1403E+00

Ba; [Z=56]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.5858E+012.7398E−011.8280E+011.8580E−011.9247E+011.6404E−012.0496E+011.4490E−01
11.1064E+013.7833E−011.3088E+012.5185E−011.3845E+012.2156E−011.4802E+011.9511E−01
26.3513E+006.0578E−017.8595E+003.9070E−018.3821E+003.4167E−019.0196E+002.9944E−01
34.1858E+008.2674E−015.3728E+005.2269E−015.7677E+004.5539E−016.2377E+003.9794E−01
42.9561E+001.0484E+003.9108E+006.5308E−014.2213E+005.6739E−014.5847E+004.9472E−01
52.1843E+001.2793E+002.9529E+007.8723E−013.2012E+006.8232E−013.4886E+005.9382E−01
61.6841E+001.5068E+002.3084E+009.1908E−012.5104E+007.9513E−012.7428E+006.9097E−01
71.3437E+001.7226E+001.8597E+001.0441E+002.0274E+009.0205E−012.2195E+007.8301E−01
81.0994E+001.9272E+001.5331E+001.1624E+001.6748E+001.0032E+001.8366E+008.7000E−01
99.1745E−012.1246E+001.2860E+001.2764E+001.4071E+001.1005E+001.5451E+009.5366E−01
107.7912E−012.3179E+001.0937E+001.3881E+001.1978E+001.1959E+001.3165E+001.0357E+00
116.7215E−012.5071E+009.4098E−011.4982E+001.0309E+001.2899E+001.1335E+001.1165E+00
125.8911E−012.6915E+008.1899E−011.6066E+008.9688E−011.3827E+009.8601E−011.1963E+00
135.2303E−012.8695E+007.2013E−011.7124E+007.8783E−011.4733E+008.6562E−011.2744E+00
144.6913E−013.0401E+006.3898E−011.8148E+006.9808E−011.5612E+007.6634E−011.3501E+00
154.2417E−013.2030E+005.7163E−011.9130E+006.2356E−011.6456E+006.8383E−011.4229E+00
163.8583E−013.3585E+005.1505E−012.0066E+005.6101E−011.7260E+006.1462E−011.4923E+00
173.5254E−013.5072E+004.6691E−012.0955E+005.0793E−011.8023E+005.5597E−011.5582E+00
183.2329E−013.6501E+004.2548E−012.1798E+004.6240E−011.8746E+005.0578E−011.6205E+00
192.9737E−013.7878E+003.8947E−012.2600E+004.2297E−011.9432E+004.6242E−011.6795E+00
202.7430E−013.9212E+003.5792E−012.3365E+003.8853E−012.0086E+004.2463E−011.7357E+00
212.5373E−014.0508E+003.3008E−012.4099E+003.5822E−012.0710E+003.9144E−011.7892E+00
222.3536E−014.1770E+003.0538E−012.4806E+003.3138E−012.1311E+003.6209E−011.8407E+00
232.1894E−014.3001E+002.8339E−012.5490E+003.0749E−012.1892E+003.3599E−011.8903E+00
242.0426E−014.4203E+002.6372E−012.6156E+002.8614E−012.2455E+003.1266E−011.9384E+00
251.9110E−014.5379E+002.4607E−012.6804E+002.6697E−012.3005E+002.9171E−011.9853E+00
261.7930E−014.6528E+002.3020E−012.7439E+002.4971E−012.3542E+002.7282E−012.0312E+00
271.6869E−014.7653E+002.1587E−012.8061E+002.3411E−012.4069E+002.5574E−012.0762E+00
281.5912E−014.8753E+002.0292E−012.8672E+002.1997E−012.4587E+002.4024E−012.1205E+00
291.5045E−014.9830E+001.9117E−012.9272E+002.0713E−012.5097E+002.2613E−012.1640E+00
301.4258E−015.0885E+001.8048E−012.9862E+001.9543E−012.5598E+002.1325E−012.2069E+00
311.3541E−015.1919E+001.7072E−013.0443E+001.8474E−012.6092E+002.0147E−012.2492E+00
321.2885E−015.2933E+001.6180E−013.1014E+001.7494E−012.6578E+001.9067E−012.2909E+00
331.2283E−015.3928E+001.5362E−013.1575E+001.6594E−012.7056E+001.8073E−012.3320E+00
341.1727E−015.4906E+001.4609E−013.2127E+001.5766E−012.7527E+001.7157E−012.3724E+00
351.1214E−015.5868E+001.3914E−013.2669E+001.5001E−012.7990E+001.6312E−012.4122E+00
361.0738E−015.6814E+001.3271E−013.3202E+001.4293E−012.8445E+001.5529E−012.4513E+00
371.0294E−015.7746E+001.2674E−013.3725E+001.3636E−012.8893E+001.4802E−012.4898E+00
389.8810E−025.8665E+001.2120E−013.4239E+001.3026E−012.9332E+001.4127E−012.5276E+00
399.4944E−025.9572E+001.1602E−013.4744E+001.2457E−012.9763E+001.3498E−012.5647E+00
409.1321E−026.0468E+001.1119E−013.5240E+001.1926E−013.0187E+001.2912E−012.6011E+00
418.7919E−026.1354E+001.0667E−013.5728E+001.1429E−013.0602E+001.2363E−012.6368E+00
428.4720E−026.2230E+001.0243E−013.6206E+001.0964E−013.1010E+001.1850E−012.6718E+00
438.1706E−026.3096E+009.8435E−023.6676E+001.0527E−013.1410E+001.1368E−012.7062E+00
447.8865E−026.3955E+009.4678E−023.7138E+001.0116E−013.1803E+001.0916E−012.7399E+00
457.6182E−026.4805E+009.1136E−023.7592E+009.7286E−023.2188E+001.0490E−012.7729E+00
467.3648E−026.5648E+008.7792E−023.8038E+009.3637E−023.2567E+001.0089E−012.8053E+00
477.1251E−026.6484E+008.4630E−023.8476E+009.0190E−023.2938E+009.7114E−022.8371E+00
486.8982E−026.7312E+008.1637E−023.8907E+008.6932E−023.3303E+009.3544E−022.8683E+00
496.6834E−026.8135E+007.8801E−023.9331E+008.3849E−023.3661E+009.0170E−022.8989E+00
506.4800E−026.8951E+007.6110E−023.9748E+008.0927E−023.4014E+008.6976E−022.9289E+00
516.2872E−026.9760E+007.3556E−024.0159E+007.8156E−023.4360E+008.3950E−022.9584E+00
526.1044E−027.0564E+007.1128E−024.0563E+007.5526E−023.4700E+008.1081E−022.9873E+00
535.9311E−027.1362E+006.8820E−024.0961E+007.3027E−023.5034E+007.8357E−023.0157E+00
545.7668E−027.2154E+006.6623E−024.1354E+007.0651E−023.5363E+007.5770E−023.0437E+00
555.6109E−027.2941E+006.4531E−024.1740E+006.8390E−023.5687E+007.3310E−023.0712E+00
565.4631E−027.3722E+006.2537E−024.2121E+006.6237E−023.6006E+007.0969E−023.0982E+00
575.3230E−027.4498E+006.0635E−024.2496E+006.4185E−023.6320E+006.8740E−023.1248E+00
585.1901E−027.5268E+005.8821E−024.2866E+006.2228E−023.6629E+006.6615E−023.1509E+00
595.0641E−027.6033E+005.7089E−024.3231E+006.0361E−023.6934E+006.4589E−023.1767E+00
604.9446E−027.6792E+005.5433E−024.3591E+005.8577E−023.7234E+006.2655E−023.2021E+00

La; [Z=57]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.5321E+012.9216E−011.7751E+011.9782E−011.8708E+011.7466E−011.9937E+011.5431E−01
11.1194E+013.8584E−011.3274E+012.5709E−011.4049E+012.2628E−011.5026E+011.9938E−01
26.5722E+006.0440E−018.1428E+003.9079E−018.6868E+003.4202E−019.3500E+002.9995E−01
34.2776E+008.3544E−015.5016E+005.2875E−015.9089E+004.6091E−016.3933E+004.0296E−01
43.0013E+001.0653E+003.9788E+006.6396E−014.2974E+005.7709E−014.6699E+005.0339E−01
52.2117E+001.3012E+002.9961E+008.0123E−013.2503E+006.9474E−013.5443E+006.0486E−01
61.7023E+001.5342E+002.3368E+009.3642E−012.5431E+008.1045E−012.7803E+007.0456E−01
71.3573E+001.7554E+001.8791E+001.0650E+002.0499E+009.2042E−012.2455E+007.9926E−01
81.1107E+001.9639E+001.5478E+001.1861E+001.6918E+001.0240E+001.8563E+008.8841E−01
99.2702E−012.1634E+001.2982E+001.3017E+001.4212E+001.1228E+001.5616E+009.7338E−01
107.8706E−012.3572E+001.1045E+001.4139E+001.2105E+001.2187E+001.3313E+001.0559E+00
116.7891E−012.5466E+009.5105E−011.5242E+001.0428E+001.3130E+001.1475E+001.1369E+00
125.9430E−012.7314E+008.2784E−011.6328E+009.0753E−011.4059E+009.9868E−011.2168E+00
135.2700E−012.9103E+007.2781E−011.7392E+007.9721E−011.4970E+008.7690E−011.2953E+00
144.7236E−013.0823E+006.4573E−011.8425E+007.0641E−011.5857E+007.7640E−011.3718E+00
154.2697E−013.2470E+005.7760E−011.9421E+006.3095E−011.6712E+006.9276E−011.4456E+00
163.8842E−013.4045E+005.2039E−012.0374E+005.6758E−011.7532E+006.2253E−011.5164E+00
173.5508E−013.5553E+004.7176E−012.1282E+005.1382E−011.8313E+005.6300E−011.5838E+00
183.2581E−013.7002E+004.2995E−012.2146E+004.6774E−011.9055E+005.1207E−011.6478E+00
192.9986E−013.8400E+003.9362E−012.2968E+004.2784E−011.9759E+004.6809E−011.7085E+00
202.7673E−013.9753E+003.6178E−012.3752E+003.9300E−012.0429E+004.2978E−011.7662E+00
212.5606E−014.1068E+003.3369E−012.4502E+003.6234E−012.1070E+003.9615E−011.8211E+00
222.3756E−014.2349E+003.0876E−012.5225E+003.3520E−012.1684E+003.6643E−011.8737E+00
232.2099E−014.3599E+002.8655E−012.5923E+003.1105E−012.2276E+003.4002E−011.9244E+00
242.0615E−014.4820E+002.6668E−012.6600E+002.8947E−012.2851E+003.1641E−011.9735E+00
251.9282E−014.6015E+002.4885E−012.7259E+002.7009E−012.3409E+002.9522E−012.0212E+00
261.8086E−014.7184E+002.3279E−012.7903E+002.5262E−012.3954E+002.7612E−012.0677E+00
271.7009E−014.8329E+002.1828E−012.8533E+002.3684E−012.4487E+002.5884E−012.1131E+00
281.6037E−014.9449E+002.0516E−012.9151E+002.2254E−012.5010E+002.4316E−012.1578E+00
291.5159E−015.0546E+001.9327E−012.9758E+002.0955E−012.5525E+002.2889E−012.2018E+00
301.4362E−015.1621E+001.8246E−013.0355E+001.9772E−012.6031E+002.1588E−012.2451E+00
311.3636E−015.2674E+001.7260E−013.0941E+001.8691E−012.6529E+002.0398E−012.2877E+00
321.2973E−015.3707E+001.6357E−013.1518E+001.7701E−012.7020E+001.9306E−012.3297E+00
331.2366E−015.4721E+001.5530E−013.2085E+001.6791E−012.7503E+001.8302E−012.3711E+00
341.1808E−015.5717E+001.4769E−013.2643E+001.5954E−012.7978E+001.7376E−012.4119E+00
351.1292E−015.6695E+001.4067E−013.3191E+001.5182E−012.8445E+001.6522E−012.4520E+00
361.0815E−015.7657E+001.3419E−013.3730E+001.4468E−012.8905E+001.5732E−012.4915E+00
371.0371E−015.8604E+001.2819E−013.4259E+001.3806E−012.9357E+001.4999E−012.5304E+00
389.9585E−025.9538E+001.2261E−013.4780E+001.3191E−012.9802E+001.4317E−012.5686E+00
399.5737E−026.0459E+001.1740E−013.5291E+001.2617E−013.0238E+001.3682E−012.6062E+00
409.2139E−026.1368E+001.1254E−013.5794E+001.2082E−013.0667E+001.3090E−012.6430E+00
418.8765E−026.2265E+001.0799E−013.6287E+001.1581E−013.1088E+001.2537E−012.6792E+00
428.5593E−023.2019E−021.0373E−013.6772E+001.1112E−013.1502E+001.2018E−012.7148E+00
438.2607E−021.1973E−019.9723E−023.7248E+001.0673E−013.1907E+001.1533E−012.7497E+00
447.9795E−022.0651E−019.5953E−023.7716E+001.0259E−013.2306E+001.1077E−012.7839E+00
457.7145E−022.9241E−019.2398E−023.8176E+009.8693E−023.2697E+001.0647E−012.8174E+00
467.4643E−023.7747E−018.9039E−023.8629E+009.5016E−023.3081E+001.0243E−012.8503E+00
477.2278E−024.6173E−018.5864E−023.9073E+009.1544E−023.3458E+009.8608E−022.8826E+00
487.0037E−025.4525E−018.2860E−023.9511E+008.8264E−023.3829E+009.5005E−022.9143E+00
496.7912E−026.2806E−018.0015E−023.9940E+008.5162E−023.4193E+009.1601E−022.9454E+00
506.5899E−027.1017E−017.7315E−024.0363E+008.2221E−023.4550E+008.8379E−022.9760E+00
516.3991E−027.9159E−017.4749E−024.0780E+007.9430E−023.4901E+008.5324E−023.0059E+00
526.2180E−028.7234E−017.2310E−024.1189E+007.6778E−023.5247E+008.2424E−023.0354E+00
536.0461E−029.5245E−016.9989E−024.1593E+007.4258E−023.5587E+007.9671E−023.0643E+00
545.8828E−021.0319E+006.7780E−024.1991E+007.1861E−023.5921E+007.7055E−023.0927E+00
555.7274E−021.1109E+006.5677E−024.2382E+006.9582E−023.6250E+007.4570E−023.1207E+00
565.5797E−021.1892E+006.3671E−024.2768E+006.7412E−023.6573E+007.2207E−023.1481E+00
575.4393E−021.2670E+006.1757E−024.3148E+006.5342E−023.6892E+006.9953E−023.1751E+00
585.3059E−021.3441E+005.9929E−024.3522E+006.3365E−023.7205E+006.7803E−023.2017E+00
595.1789E−021.4207E+005.8183E−024.3892E+006.1478E−023.7515E+006.5751E−023.2279E+00
605.0582E−021.4968E+005.6514E−024.4257E+005.9676E−023.7819E+006.3794E−023.2537E+00

Ce; [Z=58]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.4874E+012.9574E−011.7273E+012.0146E−011.8215E+011.7813E−011.9420E+011.5758E−01
11.0952E+013.8819E−011.3017E+012.6018E−011.3785E+012.2932E−011.4750E+012.0229E−01
26.4941E+006.0425E−018.0664E+003.9278E−018.6108E+003.4419E−019.2733E+003.0218E−01
34.2539E+008.3296E−015.4869E+005.2972E−015.8972E+004.6227E−016.3846E+004.0455E−01
42.9989E+001.0601E+003.9892E+006.6363E−014.3121E+005.7740E−014.6891E+005.0412E−01
52.2156E+001.2941E+003.0143E+007.9999E−013.2730E+006.9433E−013.5719E+006.0502E−01
61.7069E+001.5271E+002.3549E+009.3532E−012.5654E+008.1020E−012.8071E+007.0490E−01
71.3618E+001.7499E+001.8949E+001.0649E+002.0692E+009.2114E−012.2688E+008.0045E−01
81.1152E+001.9606E+001.5613E+001.1875E+001.7083E+001.0260E+001.8761E+008.9073E−01
99.3151E−012.1618E+001.3101E+001.3044E+001.4357E+001.1259E+001.5788E+009.7674E−01
107.9124E−012.3569E+001.1151E+001.4176E+001.2233E+001.2227E+001.3467E+001.0600E+00
116.8260E−012.5474E+009.6054E−011.5287E+001.0543E+001.3177E+001.1613E+001.1417E+00
125.9746E−012.7333E+008.3631E−011.6380E+009.1786E−011.4112E+001.0111E+001.2222E+00
135.2973E−012.9137E+007.3536E−011.7452E+008.0645E−011.5030E+008.8800E−011.3013E+00
144.7483E−013.0874E+006.5245E−011.8496E+007.1464E−011.5927E+007.8631E−011.3786E+00
154.2933E−013.2540E+005.8363E−011.9505E+006.3828E−011.6794E+007.0158E−011.4535E+00
163.9080E−013.4136E+005.2584E−012.0473E+005.7415E−011.7628E+006.3038E−011.5255E+00
173.5754E−013.5664E+004.7674E−012.1399E+005.1975E−011.8424E+005.7002E−011.5943E+00
183.2837E−013.7133E+004.3454E−012.2280E+004.7312E−011.9183E+005.1837E−011.6599E+00
193.0251E−013.8549E+003.9790E−012.3120E+004.3276E−011.9904E+004.7379E−011.7220E+00
202.7943E−013.9920E+003.6579E−012.3921E+003.9753E−012.0590E+004.3497E−011.7811E+00
212.5876E−014.1252E+003.3744E−012.4687E+003.6653E−012.1244E+004.0090E−011.8374E+00
222.4022E−014.2549E+003.1228E−012.5424E+003.3909E−012.1872E+003.7080E−011.8913E+00
232.2358E−014.3815E+002.8985E−012.6135E+003.1467E−012.2477E+003.4406E−011.9431E+00
242.0863E−014.5051E+002.6977E−012.6823E+002.9283E−012.3061E+003.2016E−011.9930E+00
251.9518E−014.6260E+002.5173E−012.7493E+002.7322E−012.3629E+002.9871E−012.0415E+00
261.8308E−014.7444E+002.3548E−012.8146E+002.5555E−012.4181E+002.7938E−012.0887E+00
271.7217E−014.8604E+002.2079E−012.8784E+002.3958E−012.4722E+002.6189E−012.1348E+00
281.6232E−014.9739E+002.0750E−012.9409E+002.2510E−012.5251E+002.4602E−012.1800E+00
291.5339E−015.0850E+001.9544E−013.0023E+002.1194E−012.5771E+002.3159E−012.2243E+00
301.4529E−015.1939E+001.8447E−013.0626E+001.9996E−012.6282E+002.1842E−012.2680E+00
311.3791E−015.3006E+001.7448E−013.1218E+001.8902E−012.6785E+002.0638E−012.3110E+00
321.3117E−015.4052E+001.6533E−013.1800E+001.7899E−012.7279E+001.9533E−012.3534E+00
331.2500E−015.5079E+001.5694E−013.2373E+001.6978E−012.7766E+001.8518E−012.3951E+00
341.1932E−015.6088E+001.4923E−013.2936E+001.6131E−012.8246E+001.7581E−012.4362E+00
351.1408E−015.7079E+001.4213E−013.3489E+001.5349E−012.8718E+001.6717E−012.4767E+00
361.0923E−015.8053E+001.3557E−013.4034E+001.4627E−012.9182E+001.5918E−012.5166E+00
371.0473E−015.9012E+001.2950E−013.4569E+001.3958E−012.9639E+001.5177E−012.5559E+00
381.0054E−015.9956E+001.2385E−013.5095E+001.3336E−013.0088E+001.4489E−012.5945E+00
399.6640E−026.0887E+001.1859E−013.5612E+001.2757E−013.0530E+001.3847E−012.6325E+00
409.2993E−026.1807E+001.1368E−013.6121E+001.2216E−013.0963E+001.3249E−012.6698E+00
418.9575E−026.2714E+001.0909E−013.6620E+001.1710E−013.1390E+001.2689E−012.7064E+00
428.6364E−027.7888E−021.0479E−013.7111E+001.1237E−013.1809E+001.2166E−012.7425E+00
438.3343E−021.6656E−011.0076E−013.7594E+001.0794E−013.2220E+001.1675E−012.7778E+00
448.0499E−022.5429E−019.6957E−023.8068E+001.0376E−013.2624E+001.1215E−012.8126E+00
457.7819E−023.4114E−019.3374E−023.8535E+009.9834E−023.3021E+001.0781E−012.8466E+00
467.5291E−024.2713E−018.9991E−023.8993E+009.6126E−023.3411E+001.0372E−012.8801E+00
477.2901E−025.1234E−018.6793E−023.9445E+009.2624E−023.3794E+009.9866E−022.9129E+00
487.0638E−025.9680E−018.3767E−023.9889E+008.9316E−023.4171E+009.6227E−022.9451E+00
496.8493E−026.8057E−018.0901E−024.0325E+008.6187E−023.4541E+009.2789E−022.9768E+00
506.6460E−027.6366E−017.8181E−024.0754E+008.3221E−023.4904E+008.9534E−023.0079E+00
516.4534E−028.4607E−017.5598E−024.1177E+008.0405E−023.5261E+008.6447E−023.0384E+00
526.2706E−029.2783E−017.3141E−024.1594E+007.7730E−023.5613E+008.3517E−023.0684E+00
536.0972E−021.0090E+007.0803E−024.2004E+007.5187E−023.5958E+008.0735E−023.0978E+00
545.9324E−021.0895E+006.8577E−024.2408E+007.2769E−023.6299E+007.8091E−023.1267E+00
555.7756E−021.1695E+006.6456E−024.2806E+007.0468E−023.6633E+007.5580E−023.1552E+00
565.6267E−021.2490E+006.4435E−024.3198E+006.8277E−023.6962E+007.3189E−023.1832E+00
575.4851E−021.3278E+006.2505E−024.3584E+006.6187E−023.7287E+007.0910E−023.2107E+00
585.3505E−021.4062E+006.0661E−024.3966E+006.4190E−023.7606E+006.8736E−023.2378E+00
595.2226E−021.4840E+005.8900E−024.4342E+006.2284E−023.7921E+006.6661E−023.2645E+00
605.1009E−021.5612E+005.7216E−024.4713E+006.0464E−023.8231E+006.4681E−023.2908E+00

Pr; [Z=59]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.4512E+012.8608E−011.6848E+011.9741E−011.7769E+011.7504E−011.8948E+011.5520E−01
11.0419E+013.8583E−011.2410E+012.6125E−011.3151E+012.3077E−011.4080E+012.0395E−01
26.1589E+006.0624E−017.6787E+003.9703E−018.2049E+003.4850E−018.8434E+003.0641E−01
34.1269E+008.2224E−015.3415E+005.2700E−015.7461E+004.6069E−016.2256E+004.0375E−01
42.9543E+001.0364E+003.9465E+006.5387E−014.2698E+005.6988E−014.6468E+004.9826E−01
52.1988E+001.2621E+003.0085E+007.8570E−013.2703E+006.8300E−013.5721E+005.9594E−01
61.6997E+001.4905E+002.3617E+009.1849E−012.5761E+007.9675E−012.8218E+006.9402E−01
71.3584E+001.7116E+001.9055E+001.0471E+002.0838E+009.0681E−012.2874E+007.8886E−01
81.1138E+001.9222E+001.5725E+001.1696E+001.7231E+001.0117E+001.8947E+008.7921E−01
99.3138E−012.1243E+001.3207E+001.2872E+001.4495E+001.1123E+001.5960E+009.6578E−01
107.9190E−012.3206E+001.1248E+001.4015E+001.2359E+001.2100E+001.3621E+001.0498E+00
116.8371E−012.5126E+009.6933E−011.5136E+001.0656E+001.3059E+001.1751E+001.1324E+00
125.9879E−012.7001E+008.4423E−011.6241E+009.2788E−011.4005E+001.0234E+001.2138E+00
135.3117E−012.8822E+007.4246E−011.7325E+008.1538E−011.4934E+008.9893E−011.2939E+00
144.7635E−013.0578E+006.5883E−011.8382E+007.2262E−011.5842E+007.9603E−011.3722E+00
154.3096E−013.2264E+005.8939E−011.9405E+006.4543E−011.6722E+007.1025E−011.4483E+00
163.9258E−013.3880E+005.3109E−012.0389E+005.8058E−011.7569E+006.3813E−011.5215E+00
173.5949E−013.5428E+004.8156E−012.1331E+005.2557E−011.8381E+005.7698E−011.5917E+00
183.3047E−013.6916E+004.3902E−012.2229E+004.7843E−011.9155E+005.2465E−011.6586E+00
193.0474E−013.8350E+004.0208E−012.3086E+004.3763E−011.9891E+004.7949E−011.7222E+00
202.8175E−013.9739E+003.6971E−012.3903E+004.0203E−012.0593E+004.4017E−011.7827E+00
212.6113E−014.1087E+003.4113E−012.4685E+003.7070E−012.1262E+004.0567E−011.8403E+00
222.4260E−014.2401E+003.1576E−012.5436E+003.4297E−012.1903E+003.7520E−011.8954E+00
232.2594E−014.3681E+002.9312E−012.6160E+003.1829E−012.2519E+003.4813E−011.9483E+00
242.1093E−014.4933E+002.7285E−012.6861E+002.9621E−012.3115E+003.2395E−011.9993E+00
251.9740E−014.6157E+002.5462E−012.7541E+002.7639E−012.3693E+003.0224E−012.0486E+00
261.8520E−014.7356E+002.3818E−012.8204E+002.5851E−012.4254E+002.8268E−012.0966E+00
271.7418E−014.8530E+002.2332E−012.8851E+002.4234E−012.4802E+002.6498E−012.1433E+00
281.6421E−014.9680E+002.0986E−012.9484E+002.2768E−012.5338E+002.4892E−012.1891E+00
291.5518E−015.0806E+001.9764E−013.0105E+002.1436E−012.5864E+002.3431E−012.2340E+00
301.4697E−015.1909E+001.8653E−013.0715E+002.0223E−012.6381E+002.2099E−012.2782E+00
311.3948E−015.2990E+001.7640E−013.1313E+001.9115E−012.6889E+002.0880E−012.3216E+00
321.3264E−015.4050E+001.6713E−013.1902E+001.8100E−012.7388E+001.9762E−012.3644E+00
331.2637E−015.5091E+001.5863E−013.2480E+001.7168E−012.7880E+001.8734E−012.4065E+00
341.2061E−015.6113E+001.5081E−013.3049E+001.6310E−012.8364E+001.7787E−012.4480E+00
351.1529E−015.7116E+001.4362E−013.3609E+001.5519E−012.8841E+001.6913E−012.4888E+00
361.1037E−015.8103E+001.3698E−013.4159E+001.4788E−012.9310E+001.6105E−012.5291E+00
371.0580E−015.9074E+001.3083E−013.4700E+001.4111E−012.9771E+001.5356E−012.5688E+00
381.0155E−016.0030E+001.2512E−013.5232E+001.3483E−013.0225E+001.4660E−012.6078E+00
399.7589E−026.0973E+001.1981E−013.5755E+001.2897E−013.0672E+001.4011E−012.6462E+00
409.3893E−026.1903E+001.1484E−013.6269E+001.2350E−013.1111E+001.3406E−012.6839E+00
419.0430E−026.2821E+001.1021E−013.6775E+001.1840E−013.1542E+001.2841E−012.7210E+00
428.7177E−028.9579E−021.0587E−013.7272E+001.1362E−013.1966E+001.2312E−012.7575E+00
438.4116E−021.7926E−011.0179E−013.7761E+001.0914E−013.2383E+001.1817E−012.7934E+00
448.1236E−022.6799E−019.7961E−023.8241E+001.0493E−013.2793E+001.1351E−012.8286E+00
457.8525E−023.5581E−019.4348E−023.8714E+001.0097E−013.3195E+001.0913E−012.8631E+00
467.5968E−024.4278E−019.0937E−023.9179E+009.7224E−023.3591E+001.0500E−012.8971E+00
477.3551E−025.2894E−018.7714E−023.9637E+009.3691E−023.3980E+001.0111E−012.9304E+00
487.1263E−026.1437E−018.4665E−024.0087E+009.0354E−023.4362E+009.7433E−022.9632E+00
496.9094E−026.9912E−018.1778E−024.0530E+008.7198E−023.4738E+009.3961E−022.9954E+00
506.7039E−027.8320E−017.9039E−024.0965E+008.4207E−023.5107E+009.0674E−023.0270E+00
516.5092E−028.6661E−017.6436E−024.1395E+008.1368E−023.5470E+008.7556E−023.0580E+00
526.3246E−029.4937E−017.3960E−024.1818E+007.8669E−023.5827E+008.4596E−023.0885E+00
536.1494E−021.0315E+007.1604E−024.2235E+007.6102E−023.6179E+008.1784E−023.1185E+00
545.9829E−021.1131E+006.9361E−024.2645E+007.3662E−023.6525E+007.9113E−023.1479E+00
555.8246E−021.1942E+006.7225E−024.3050E+007.1341E−023.6865E+007.6575E−023.1769E+00
565.6741E−021.2748E+006.5187E−024.3448E+006.9130E−023.7200E+007.4160E−023.2054E+00
575.5312E−021.3548E+006.3242E−024.3840E+006.7020E−023.7530E+007.1856E−023.2334E+00
585.3954E−021.4342E+006.1383E−024.4228E+006.5005E−023.7855E+006.9658E−023.2610E+00
595.2662E−021.5132E+005.9607E−024.4611E+006.3079E−023.8175E+006.7559E−023.2882E+00
605.1435E−021.5917E+005.7908E−024.4988E+006.1241E−023.8491E+006.5556E−023.3150E+00

Nd; [Z=60]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.4119E+012.8873E−011.6423E+012.0045E−011.7330E+011.7798E−011.8487E+011.5802E−01
11.0206E+013.8730E−011.2180E+012.6378E−011.2914E+012.3333E−011.3832E+012.0647E−01
26.0770E+006.0589E−017.5938E+003.9891E−018.1191E+003.5059E−018.7556E+003.0858E−01
34.0922E+008.2028E−015.3104E+005.2825E−015.7165E+004.6231E−016.1973E+004.0556E−01
42.9430E+001.0317E+003.9433E+006.5384E−014.2696E+005.7046E−014.6496E+004.9923E−01
52.1968E+001.2549E+003.0173E+007.8447E−013.2827E+006.8261E−013.5884E+005.9612E−01
61.7004E+001.4824E+002.3737E+009.1683E−012.5919E+007.9603E−012.8414E+006.9396E−01
71.3600E+001.7040E+001.9174E+001.0458E+002.0991E+009.0649E−012.3062E+007.8917E−01
81.1160E+001.9158E+001.5834E+001.1693E+001.7370E+001.0122E+001.9117E+008.8024E−01
99.3389E−012.1191E+001.3307E+001.2878E+001.4620E+001.1136E+001.6113E+009.6756E−01
107.9448E−012.3165E+001.1340E+001.4028E+001.2473E+001.2120E+001.3761E+001.0523E+00
116.8613E−012.5094E+009.7772E−011.5156E+001.0760E+001.3085E+001.1878E+001.1354E+00
126.0093E−012.6978E+008.5185E−011.6267E+009.3737E−011.4036E+001.0349E+001.2173E+00
135.3305E−012.8810E+007.4934E−011.7358E+008.2397E−011.4972E+009.0940E−011.2979E+00
144.7806E−013.0581E+006.6503E−011.8424E+007.3036E−011.5887E+008.0546E−011.3769E+00
154.3262E−013.2284E+005.9499E−011.9458E+006.5239E−011.6777E+007.1872E−011.4538E+00
163.9429E−013.3918E+005.3618E−012.0456E+005.8686E−011.7637E+006.4574E−011.5282E+00
173.6131E−013.5485E+004.8624E−012.1413E+005.3126E−011.8462E+005.8382E−011.5996E+00
183.3244E−013.6990E+004.4336E−012.2327E+004.8362E−011.9251E+005.3083E−011.6679E+00
193.0684E−013.8442E+004.0614E−012.3200E+004.4241E−012.0003E+004.8510E−011.7329E+00
202.8396E−013.9848E+003.7353E−012.4034E+004.0644E−012.0719E+004.4530E−011.7948E+00
212.6342E−014.1212E+003.4475E−012.4831E+003.7480E−012.1403E+004.1038E−011.8537E+00
222.4492E−014.2540E+003.1918E−012.5597E+003.4679E−012.2058E+003.7955E−011.9100E+00
232.2824E−014.3836E+002.9636E−012.6334E+003.2186E−012.2687E+003.5216E−011.9641E+00
242.1319E−014.5101E+002.7590E−012.7047E+002.9956E−012.3294E+003.2769E−012.0161E+00
251.9959E−014.6340E+002.5749E−012.7739E+002.7952E−012.3882E+003.0573E−012.0664E+00
261.8731E−014.7553E+002.4088E−012.8412E+002.6144E−012.4452E+002.8594E−012.1152E+00
271.7619E−014.8741E+002.2584E−012.9068E+002.4508E−012.5008E+002.6803E−012.1627E+00
281.6612E−014.9906E+002.1222E−012.9709E+002.3025E−012.5551E+002.5178E−012.2090E+00
291.5697E−015.1046E+001.9985E−013.0338E+002.1677E−012.6084E+002.3700E−012.2545E+00
301.4865E−015.2163E+001.8859E−013.0954E+002.0449E−012.6606E+002.2352E−012.2991E+00
311.4106E−015.3258E+001.7832E−013.1559E+001.9327E−012.7119E+002.1119E−012.3430E+00
321.3412E−015.4332E+001.6892E−013.2154E+001.8299E−012.7624E+001.9988E−012.3861E+00
331.2776E−015.5387E+001.6031E−013.2738E+001.7355E−012.8120E+001.8948E−012.4286E+00
341.2191E−015.6421E+001.5239E−013.3313E+001.6486E−012.8609E+001.7990E−012.4704E+00
351.1651E−015.7438E+001.4510E−013.3878E+001.5686E−012.9090E+001.7106E−012.5117E+00
361.1151E−015.8437E+001.3837E−013.4434E+001.4946E−012.9563E+001.6288E−012.5523E+00
371.0687E−015.9420E+001.3215E−013.4980E+001.4262E−013.0029E+001.5531E−012.5924E+00
381.0256E−016.0387E+001.2637E−013.5517E+001.3626E−013.0488E+001.4827E−012.6318E+00
399.8547E−026.1341E+001.2099E−013.6046E+001.3034E−013.0939E+001.4172E−012.6705E+00
409.4797E−026.2282E+001.1598E−013.6566E+001.2481E−013.1383E+001.3560E−012.7087E+00
419.1286E−023.7860E−021.1129E−013.7078E+001.1966E−013.1819E+001.2989E−012.7462E+00
428.7989E−021.2957E−011.0691E−013.7581E+001.1483E−013.2248E+001.2455E−012.7831E+00
438.4888E−022.2024E−011.0280E−013.8075E+001.1031E−013.2670E+001.1954E−012.8194E+00
448.1972E−023.0993E−019.8933E−023.8562E+001.0606E−013.3085E+001.1484E−012.8551E+00
457.9227E−023.9870E−019.5290E−023.9041E+001.0206E−013.3493E+001.1042E−012.8902E+00
467.6637E−024.8660E−019.1852E−023.9512E+009.8288E−023.3894E+001.0625E−012.9246E+00
477.4192E−025.7369E−018.8603E−023.9976E+009.4726E−023.4289E+001.0232E−012.9584E+00
487.1876E−026.6005E−018.5532E−024.0432E+009.1361E−023.4676E+009.8609E−022.9917E+00
496.9682E−027.4573E−018.2624E−024.0881E+008.8179E−023.5057E+009.5104E−023.0243E+00
506.7604E−028.3073E−017.9865E−024.1323E+008.5163E−023.5432E+009.1785E−023.0564E+00
516.5635E−029.1508E−017.7243E−024.1758E+008.2299E−023.5801E+008.8637E−023.0880E+00
526.3769E−029.9881E−017.4750E−024.2188E+007.9579E−023.6164E+008.5648E−023.1190E+00
536.1997E−021.0819E+007.2378E−024.2611E+007.6991E−023.6521E+008.2809E−023.1495E+00
546.0314E−021.1645E+007.0119E−024.3028E+007.4530E−023.6873E+008.0112E−023.1795E+00
555.8714E−021.2466E+006.7967E−024.3438E+007.2190E−023.7219E+007.7548E−023.2090E+00
565.7194E−021.3282E+006.5914E−024.3843E+006.9959E−023.7559E+007.5108E−023.2380E+00
575.5751E−021.4093E+006.3954E−024.4242E+006.7830E−023.7895E+007.2781E−023.2665E+00
585.4378E−021.4899E+006.2081E−024.4636E+006.5797E−023.8225E+007.0560E−023.2946E+00
595.3074E−021.5700E+006.0291E−024.5024E+006.3854E−023.8551E+006.8439E−023.3222E+00
605.1835E−021.6496E+005.8579E−024.5408E+006.1998E−023.8872E+006.6415E−023.3495E+00

Pm; [Z=61]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.3747E+012.9104E−011.6020E+012.0326E−011.6912E+011.8074E−011.8049E+011.6067E−01
19.9991E+003.8845E−011.1955E+012.6611E−011.2682E+012.3572E−011.3590E+012.0884E−01
25.9933E+006.0533E−017.5052E+004.0065E−018.0292E+003.5255E−018.6632E+003.1065E−01
34.0542E+008.1824E−015.2740E+005.2945E−015.6811E+004.6388E−016.1626E+004.0735E−01
42.9286E+001.0271E+003.9353E+006.5381E−014.2640E+005.7105E−014.6465E+005.0021E−01
52.1926E+001.2476E+003.0226E+007.8317E−013.2912E+006.8216E−013.6002E+005.9626E−01
61.6997E+001.4737E+002.3834E+009.1492E−012.6049E+007.9511E−012.8580E+006.9372E−01
71.3605E+001.6955E+001.9276E+001.0441E+002.1125E+009.0576E−012.3231E+007.8913E−01
81.1172E+001.9083E+001.5932E+001.1682E+001.7496E+001.0121E+001.9274E+008.8076E−01
99.3559E−012.1126E+001.3398E+001.2875E+001.4737E+001.1142E+001.6257E+009.6874E−01
107.9641E−012.3109E+001.1425E+001.4033E+001.2580E+001.2133E+001.3893E+001.0541E+00
116.8802E−012.5045E+009.8556E−011.5167E+001.0859E+001.3103E+001.1999E+001.1377E+00
126.0264E−012.6938E+008.5904E−011.6283E+009.4643E−011.4059E+001.0460E+001.2200E+00
135.3456E−012.8781E+007.5588E−011.7380E+008.3222E−011.5000E+009.1951E−011.3011E+00
144.7944E−013.0565E+006.7095E−011.8454E+007.3782E−011.5923E+008.1463E−011.3808E+00
154.3397E−013.2283E+006.0036E−011.9499E+006.5913E−011.6822E+007.2699E−011.4585E+00
163.9570E−013.3934E+005.4107E−012.0509E+005.9296E−011.7693E+006.5319E−011.5338E+00
173.6283E−013.5519E+004.9075E−012.1479E+005.3681E−011.8531E+005.9055E−011.6064E+00
183.3412E−013.7042E+004.4755E−012.2409E+004.8870E−011.9333E+005.3693E−011.6759E+00
193.0867E−013.8511E+004.1007E−012.3298E+004.4708E−012.0100E+004.9065E−011.7423E+00
202.8593E−013.9932E+003.7725E−012.4147E+004.1077E−012.0831E+004.5037E−011.8055E+00
212.6548E−014.1312E+003.4827E−012.4960E+003.7884E−012.1529E+004.1505E−011.8658E+00
222.4704E−014.2655E+003.2253E−012.5740E+003.5057E−012.2198E+003.8387E−011.9234E+00
232.3039E−014.3964E+002.9954E−012.6492E+003.2540E−012.2840E+003.5616E−011.9786E+00
242.1532E−014.5244E+002.7891E−012.7217E+003.0288E−012.3459E+003.3142E−012.0317E+00
252.0168E−014.6497E+002.6034E−012.7920E+002.8263E−012.4057E+003.0921E−012.0830E+00
261.8933E−014.7723E+002.4356E−012.8603E+002.6436E−012.4637E+002.8919E−012.1326E+00
271.7814E−014.8926E+002.2837E−012.9269E+002.4783E−012.5201E+002.7108E−012.1809E+00
281.6798E−015.0104E+002.1459E−012.9919E+002.3282E−012.5752E+002.5464E−012.2279E+00
291.5874E−015.1258E+002.0207E−013.0555E+002.1918E−012.6291E+002.3969E−012.2739E+00
301.5033E−015.2389E+001.9067E−013.1179E+002.0675E−012.6819E+002.2605E−012.3191E+00
311.4264E−015.3498E+001.8026E−013.1790E+001.9539E−012.7338E+002.1358E−012.3634E+00
321.3561E−015.4586E+001.7074E−013.2392E+001.8499E−012.7848E+002.0213E−012.4070E+00
331.2916E−015.5654E+001.6200E−013.2982E+001.7543E−012.8349E+001.9161E−012.4499E+00
341.2323E−015.6702E+001.5398E−013.3563E+001.6663E−012.8842E+001.8192E−012.4921E+00
351.1775E−015.7731E+001.4659E−013.4134E+001.5853E−012.9328E+001.7297E−012.5337E+00
361.1268E−015.8743E+001.3977E−013.4695E+001.5105E−012.9806E+001.6471E−012.5747E+00
371.0798E−015.9738E+001.3347E−013.5247E+001.4412E−013.0276E+001.5705E−012.6151E+00
381.0360E−016.0718E+001.2762E−013.5790E+001.3769E−013.0740E+001.4993E−012.6548E+00
399.9530E−026.1683E+001.2218E−013.6324E+001.3170E−013.1195E+001.4330E−012.6940E+00
409.5728E−026.2635E+001.1711E−013.6850E+001.2612E−013.1644E+001.3712E−012.7325E+00
419.2167E−027.4180E−021.1237E−013.7367E+001.2091E−013.2085E+001.3135E−012.7705E+00
428.8824E−021.6693E−011.0795E−013.7876E+001.1603E−013.2519E+001.2595E−012.8078E+00
438.5682E−022.5860E−011.0380E−013.8376E+001.1147E−013.2946E+001.2090E−012.8445E+00
448.2727E−023.4927E−019.9893E−023.8869E+001.0718E−013.3366E+001.1615E−012.8807E+00
457.9945E−024.3899E−019.6218E−023.9353E+001.0314E−013.3779E+001.1169E−012.9162E+00
467.7323E−025.2783E−019.2752E−023.9830E+009.9334E−023.4186E+001.0748E−012.9511E+00
477.4845E−026.1585E−018.9478E−024.0300E+009.5740E−023.4585E+001.0351E−012.9854E+00
487.2500E−027.0313E−018.6383E−024.0762E+009.2347E−023.4978E+009.9763E−023.0191E+00
497.0279E−027.8972E−018.3452E−024.1217E+008.9139E−023.5365E+009.6224E−023.0523E+00
506.8176E−028.7564E−018.0673E−024.1666E+008.6098E−023.5745E+009.2874E−023.0849E+00
516.6184E−029.6091E−017.8033E−024.2107E+008.3211E−023.6119E+008.9696E−023.1169E+00
526.4295E−021.0456E+007.5522E−024.2543E+008.0468E−023.6488E+008.6680E−023.1484E+00
536.2502E−021.1296E+007.3133E−024.2972E+007.7860E−023.6851E+008.3815E−023.1794E+00
546.0799E−021.2132E+007.0858E−024.3395E+007.5380E−023.7208E+008.1091E−023.2099E+00
555.9181E−021.2963E+006.8691E−024.3811E+007.3019E−023.7559E+007.8503E−023.2399E+00
565.7644E−021.3789E+006.6624E−024.4222E+007.0770E−023.7905E+007.6040E−023.2694E+00
575.6184E−021.4610E+006.4649E−024.4627E+006.8623E−023.8246E+007.3689E−023.2984E+00
585.4796E−021.5426E+006.2762E−024.5027E+006.6572E−023.8582E+007.1446E−023.3270E+00
595.3478E−021.6238E+006.0959E−024.5422E+006.4613E−023.8914E+006.9304E−023.3551E+00
605.2225E−021.7046E+005.9234E−024.5811E+006.2740E−023.9240E+006.7259E−023.3828E+00

Sm; [Z=62]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.3395E+012.9309E−011.5635E+012.0589E−011.6514E+011.8334E−011.7631E+011.6319E−01
19.7992E+003.8936E−011.1735E+012.6827E−011.2455E+012.3797E−011.3352E+012.1109E−01
25.9092E+006.0457E−017.4147E+004.0225E−017.9369E+003.5441E−018.5680E+003.1262E−01
34.0140E+008.1613E−015.2337E+005.3059E−015.6414E+004.6541E−016.1230E+004.0909E−01
42.9118E+001.0224E+003.9232E+006.5380E−014.2540E+005.7164E−014.6385E+005.0120E−01
52.1866E+001.2402E+003.0246E+007.8186E−013.2961E+006.8171E−013.6082E+005.9639E−01
61.6976E+001.4648E+002.3907E+009.1286E−012.6154E+007.9406E−012.8719E+006.9338E−01
71.3600E+001.6864E+001.9363E+001.0420E+002.1243E+009.0473E−012.3381E+007.8883E−01
81.1175E+001.8998E+001.6019E+001.1667E+001.7611E+001.0115E+001.9418E+008.8088E−01
99.3658E−012.1051E+001.3481E+001.2866E+001.4844E+001.1142E+001.6392E+009.6943E−01
107.9774E−012.3041E+001.1503E+001.4030E+001.2681E+001.2139E+001.4017E+001.0553E+00
116.8943E−012.4984E+009.9286E−011.5170E+001.0952E+001.3115E+001.2115E+001.1394E+00
126.0396E−012.6884E+008.6579E−011.6291E+009.5504E−011.4075E+001.0566E+001.2221E+00
135.3574E−012.8737E+007.6206E−011.7394E+008.4010E−011.5022E+009.2925E−011.3037E+00
144.8052E−013.0533E+006.7658E−011.8475E+007.4500E−011.5950E+008.2350E−011.3839E+00
154.3502E−013.2265E+006.0549E−011.9529E+006.6565E−011.6858E+007.3503E−011.4624E+00
163.9681E−013.3932E+005.4576E−012.0550E+005.9889E−011.7738E+006.6047E−011.5386E+00
173.6407E−013.5533E+004.9508E−012.1534E+005.4221E−011.8588E+005.9714E−011.6122E+00
183.3551E−013.7073E+004.5158E−012.2478E+004.9365E−011.9404E+005.4292E−011.6829E+00
193.1024E−013.8558E+004.1387E−012.3382E+004.5165E−012.0184E+004.9612E−011.7506E+00
202.8764E−013.9995E+003.8085E−012.4246E+004.1502E−012.0930E+004.5539E−011.8151E+00
212.6732E−014.1389E+003.5169E−012.5074E+003.8281E−012.1642E+004.1968E−011.8767E+00
222.4897E−014.2746E+003.2579E−012.5868E+003.5429E−012.2324E+003.8815E−011.9356E+00
232.3236E−014.4070E+003.0265E−012.6633E+003.2890E−012.2979E+003.6014E−011.9920E+00
242.1731E−014.5363E+002.8188E−012.7371E+003.0617E−012.3610E+003.3513E−012.0462E+00
252.0365E−014.6629E+002.6316E−012.8086E+002.8573E−012.4219E+003.1268E−012.0984E+00
261.9126E−014.7870E+002.4623E−012.8779E+002.6727E−012.4808E+002.9244E−012.1490E+00
271.8001E−014.9085E+002.3089E−012.9455E+002.5057E−012.5382E+002.7413E−012.1980E+00
281.6978E−015.0277E+002.1696E−013.0114E+002.3540E−012.5940E+002.5750E−012.2457E+00
291.6047E−015.1445E+002.0430E−013.0758E+002.2161E−012.6487E+002.4238E−012.2924E+00
301.5197E−015.2590E+001.9276E−013.1390E+002.0903E−012.7022E+002.2858E−012.3381E+00
311.4421E−015.3712E+001.8222E−013.2009E+001.9753E−012.7547E+002.1596E−012.3830E+00
321.3709E−015.4814E+001.7257E−013.2616E+001.8699E−012.8062E+002.0438E−012.4270E+00
331.3057E−015.5895E+001.6372E−013.3213E+001.7732E−012.8568E+001.9374E−012.4703E+00
341.2456E−015.6957E+001.5558E−013.3800E+001.6841E−012.9066E+001.8393E−012.5129E+00
351.1901E−015.7999E+001.4810E−013.4377E+001.6021E−012.9556E+001.7488E−012.5549E+00
361.1387E−015.9023E+001.4119E−013.4944E+001.5263E−013.0039E+001.6652E−012.5962E+00
371.0910E−016.0031E+001.3480E−013.5501E+001.4562E−013.0514E+001.5877E−012.6370E+00
381.0467E−016.1023E+001.2888E−013.6050E+001.3911E−013.0982E+001.5157E−012.6772E+00
391.0054E−016.1999E+001.2337E−013.6590E+001.3305E−013.1442E+001.4487E−012.7167E+00
409.6681E−021.3042E−021.1824E−013.7122E+001.2741E−013.1895E+001.3863E−012.7556E+00
419.3071E−021.0804E−011.1345E−013.7644E+001.2214E−013.2341E+001.3280E−012.7939E+00
428.9682E−022.0184E−011.0898E−013.8159E+001.1722E−013.2780E+001.2734E−012.8317E+00
438.6498E−022.9453E−011.0479E−013.8665E+001.1261E−013.3212E+001.2224E−012.8688E+00
448.3503E−023.8619E−011.0085E−013.9163E+001.0828E−013.3637E+001.1744E−012.9054E+00
458.0683E−024.7688E−019.7137E−023.9653E+001.0420E−013.4055E+001.1293E−012.9413E+00
467.8025E−025.6666E−019.3640E−024.0136E+001.0036E−013.4466E+001.0868E−012.9767E+00
477.5515E−026.5561E−019.0339E−024.0612E+009.6738E−023.4871E+001.0468E−013.0114E+00
487.3139E−027.4381E−018.7219E−024.1080E+009.3315E−023.5269E+001.0089E−013.0456E+00
497.0889E−028.3131E−018.4266E−024.1540E+009.0080E−023.5661E+009.7324E−023.0793E+00
506.8759E−029.1814E−018.1465E−024.1995E+008.7014E−023.6047E+009.3942E−023.1123E+00
516.6741E−021.0043E+007.8805E−024.2442E+008.4104E−023.6426E+009.0736E−023.1449E+00
526.4827E−021.0899E+007.6277E−024.2883E+008.1339E−023.6800E+008.7692E−023.1769E+00
536.3011E−021.1749E+007.3871E−024.3319E+007.8710E−023.7168E+008.4800E−023.2083E+00
546.1287E−021.2594E+007.1581E−024.3747E+007.6210E−023.7531E+008.2052E−023.2393E+00
555.9648E−021.3434E+006.9398E−024.4170E+007.3831E−023.7887E+007.9440E−023.2698E+00
565.8092E−021.4270E+006.7316E−024.4587E+007.1563E−023.8239E+007.6953E−023.2997E+00
575.6614E−021.5101E+006.5328E−024.4998E+006.9399E−023.8585E+007.4580E−023.3292E+00
585.5209E−021.5928E+006.3428E−024.5404E+006.7331E−023.8927E+007.2316E−023.3583E+00
595.3875E−021.6751E+006.1611E−024.5805E+006.5355E−023.9263E+007.0153E−023.3869E+00
605.2607E−021.7569E+005.9873E−024.6200E+006.3467E−023.9595E+006.8088E−023.4151E+00

Eu; [Z=63]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.3056E+012.9531E−011.5264E+012.0862E−011.6130E+011.8604E−011.7227E+011.6580E−01
19.6092E+003.9035E−011.1526E+012.7045E−011.2239E+012.4023E−011.3126E+012.1335E−01
25.8309E+006.0373E−017.3302E+004.0376E−017.8508E+003.5618E−018.4793E+003.1453E−01
33.9757E+008.1406E−015.1952E+005.3170E−015.6035E+004.6691E−016.0853E+004.1082E−01
42.8951E+001.0181E+003.9107E+006.5391E−014.2434E+005.7234E−014.6298E+005.0228E−01
52.1802E+001.2334E+003.0255E+007.8079E−013.2998E+006.8145E−013.6147E+005.9669E−01
61.6952E+001.4565E+002.3970E+009.1106E−012.6247E+007.9323E−012.8844E+006.9323E−01
71.3591E+001.6778E+001.9441E+001.0402E+002.1350E+009.0389E−012.3519E+007.8871E−01
81.1175E+001.8918E+001.6097E+001.1653E+001.7716E+001.0111E+001.9552E+008.8114E−01
99.3720E−012.0978E+001.3557E+001.2859E+001.4945E+001.1144E+001.6518E+009.7023E−01
107.9876E−012.2976E+001.1575E+001.4029E+001.2775E+001.2146E+001.4135E+001.0566E+00
116.9058E−012.4925E+009.9970E−011.5174E+001.1040E+001.3127E+001.2224E+001.1411E+00
126.0506E−012.6832E+008.7216E−011.6300E+009.6323E−011.4092E+001.0668E+001.2243E+00
135.3672E−012.8693E+007.6794E−011.7408E+008.4765E−011.5043E+009.3862E−011.3063E+00
144.8140E−013.0500E+006.8196E−011.8495E+007.5191E−011.5977E+008.3208E−011.3870E+00
154.3588E−013.2246E+006.1040E−011.9557E+006.7195E−011.6892E+007.4285E−011.4661E+00
163.9771E−013.3927E+005.5028E−012.0588E+006.0463E−011.7781E+006.6758E−011.5431E+00
173.6509E−013.5544E+004.9924E−012.1584E+005.4746E−011.8642E+006.0360E−011.6177E+00
183.3668E−013.7099E+004.5547E−012.2541E+004.9847E−011.9469E+005.4881E−011.6895E+00
193.1157E−013.8600E+004.1753E−012.3459E+004.5612E−012.0263E+005.0150E−011.7583E+00
202.8914E−014.0052E+003.8432E−012.4338E+004.1918E−012.1022E+004.6034E−011.8241E+00
212.6895E−014.1461E+003.5502E−012.5181E+003.8670E−012.1748E+004.2424E−011.8870E+00
222.5070E−014.2832E+003.2897E−012.5989E+003.5794E−012.2444E+003.9239E−011.9471E+00
232.3417E−014.4169E+003.0569E−012.6767E+003.3234E−012.3112E+003.6409E−012.0047E+00
242.1915E−014.5475E+002.8479E−012.7518E+003.0942E−012.3754E+003.3881E−012.0600E+00
252.0550E−014.6754E+002.6593E−012.8244E+002.8879E−012.4374E+003.1613E−012.1133E+00
261.9309E−014.8007E+002.4887E−012.8949E+002.7017E−012.4974E+002.9567E−012.1648E+00
271.8181E−014.9236E+002.3339E−012.9634E+002.5329E−012.5556E+002.7716E−012.2146E+00
281.7153E−015.0441E+002.1933E−013.0303E+002.3797E−012.6124E+002.6036E−012.2631E+00
291.6215E−015.1622E+002.0653E−013.0956E+002.2402E−012.6677E+002.4507E−012.3105E+00
301.5359E−015.2780E+001.9485E−013.1595E+002.1130E−012.7219E+002.3111E−012.3568E+00
311.4575E−015.3916E+001.8419E−013.2221E+001.9967E−012.7750E+002.1834E−012.4021E+00
321.3857E−015.5031E+001.7442E−013.2836E+001.8901E−012.8271E+002.0663E−012.4467E+00
331.3197E−015.6126E+001.6545E−013.3439E+001.7921E−012.8783E+001.9586E−012.4904E+00
341.2589E−015.7201E+001.5721E−013.4032E+001.7020E−012.9286E+001.8594E−012.5334E+00
351.2027E−015.8256E+001.4962E−013.4615E+001.6189E−012.9781E+001.7679E−012.5758E+00
361.1507E−015.9293E+001.4262E−013.5188E+001.5422E−013.0268E+001.6833E−012.6176E+00
371.1024E−016.0313E+001.3615E−013.5752E+001.4712E−013.0748E+001.6049E−012.6587E+00
381.0575E−016.1317E+001.3015E−013.6306E+001.4053E−013.1220E+001.5321E−012.6992E+00
391.0156E−016.2306E+001.2457E−013.6851E+001.3441E−013.1685E+001.4643E−012.7391E+00
409.7655E−024.4808E−021.1938E−013.7388E+001.2870E−013.2143E+001.4012E−012.7784E+00
419.3996E−021.4091E−011.1454E−013.7917E+001.2338E−013.2593E+001.3422E−012.8172E+00
429.0562E−022.3577E−011.1001E−013.8437E+001.1840E−013.3037E+001.2872E−012.8553E+00
438.7334E−023.2950E−011.0577E−013.8948E+001.1374E−013.3473E+001.2356E−012.8928E+00
448.4299E−024.2216E−011.0179E−013.9452E+001.0937E−013.3903E+001.1871E−012.9298E+00
458.1441E−025.1383E−019.8049E−023.9948E+001.0525E−013.4326E+001.1416E−012.9661E+00
467.8746E−026.0456E−019.4520E−024.0437E+001.0137E−013.4742E+001.0987E−013.0019E+00
477.6201E−026.9445E−019.1189E−024.0918E+009.7719E−023.5152E+001.0582E−013.0371E+00
487.3793E−027.8356E−018.8043E−024.1392E+009.4267E−023.5556E+001.0201E−013.0718E+00
497.1513E−028.7197E−018.5066E−024.1858E+009.1003E−023.5952E+009.8404E−023.1059E+00
506.9354E−029.5970E−018.2243E−024.2318E+008.7912E−023.6343E+009.4991E−023.1394E+00
516.7308E−021.0468E+007.9563E−024.2771E+008.4978E−023.6728E+009.1756E−023.1724E+00
526.5369E−021.1333E+007.7017E−024.3218E+008.2192E−023.7107E+008.8685E−023.2048E+00
536.3528E−021.2192E+007.4594E−024.3659E+007.9542E−023.7480E+008.5767E−023.2368E+00
546.1780E−021.3046E+007.2287E−024.4094E+007.7022E−023.7848E+008.2994E−023.2682E+00
556.0120E−021.3896E+007.0089E−024.4522E+007.4624E−023.8210E+008.0358E−023.2992E+00
565.8542E−021.4741E+006.7992E−024.4945E+007.2339E−023.8567E+007.7849E−023.3296E+00
575.7044E−021.5582E+006.5990E−024.5362E+007.0157E−023.8918E+007.5455E−023.3596E+00
585.5620E−021.6419E+006.4077E−024.5774E+006.8073E−023.9265E+007.3169E−023.3891E+00
595.4268E−021.7251E+006.2247E−024.6180E+006.6081E−023.9607E+007.0987E−023.4182E+00
605.2984E−021.8081E+006.0497E−024.6582E+006.4178E−023.9944E+006.8902E−023.4469E+00

Gd; [Z=64]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.2712E+013.0927E−011.4919E+012.1809E−011.5776E+011.9448E−011.6860E+011.7334E−01
19.6906E+003.9480E−011.1638E+012.7378E−011.2361E+012.4330E−011.3261E+012.1618E−01
25.9880E+005.9894E−017.5269E+004.0180E−018.0624E+003.5475E−018.7090E+003.1350E−01
34.0295E+008.1801E−015.2714E+005.3518E−015.6878E+004.7022E−016.1791E+004.1395E−01
42.9114E+001.0307E+003.9386E+006.6254E−014.2760E+005.8011E−014.6676E+005.0930E−01
52.1882E+001.2497E+003.0418E+007.9175E−013.3195E+006.9127E−013.6383E+006.0551E−01
61.7007E+001.4745E+002.4096E+009.2329E−012.6402E+008.0417E−012.9032E+007.0305E−01
71.3633E+001.6977E+001.9543E+001.0537E+002.1477E+009.1595E−012.3674E+007.9953E−01
81.1212E+001.9136E+001.6183E+001.1801E+001.7823E+001.0243E+001.9684E+008.9303E−01
99.4073E−012.1212E+001.3633E+001.3019E+001.5039E+001.1287E+001.6633E+009.8305E−01
108.0207E−012.3219E+001.1646E+001.4197E+001.2862E+001.2296E+001.4241E+001.0701E+00
116.9349E−012.5173E+001.0064E+001.5346E+001.1122E+001.3281E+001.2324E+001.1549E+00
126.0745E−012.7083E+008.7838E−011.6473E+009.7095E−011.4247E+001.0762E+001.2383E+00
135.3859E−012.8948E+007.7369E−011.7582E+008.5486E−011.5199E+009.4746E−011.3204E+00
144.8285E−013.0761E+006.8723E−011.8672E+007.5857E−011.6136E+008.4029E−011.4013E+00
154.3705E−013.2517E+006.1520E−011.9739E+006.7806E−011.7054E+007.5041E−011.4807E+00
163.9876E−013.4211E+005.5466E−012.0777E+006.1021E−011.7950E+006.7449E−011.5583E+00
173.6612E−013.5842E+005.0327E−012.1782E+005.5256E−011.8819E+006.0991E−011.6336E+00
183.3779E−013.7413E+004.5922E−012.2751E+005.0316E−011.9657E+005.5457E−011.7064E+00
193.1281E−013.8928E+004.2105E−012.3682E+004.6045E−012.0463E+005.0677E−011.7763E+00
202.9053E−014.0394E+003.8767E−012.4575E+004.2322E−012.1235E+004.6519E−011.8433E+00
212.7048E−014.1816E+003.5823E−012.5432E+003.9049E−012.1975E+004.2873E−011.9074E+00
222.5235E−014.3200E+003.3206E−012.6254E+003.6152E−012.2684E+003.9655E−011.9688E+00
232.3589E−014.4549E+003.0866E−012.7046E+003.3572E−012.3364E+003.6797E−012.0276E+00
242.2092E−014.5868E+002.8764E−012.7809E+003.1261E−012.4019E+003.4245E−012.0841E+00
252.0729E−014.7159E+002.6866E−012.8547E+002.9182E−012.4650E+003.1953E−012.1384E+00
261.9488E−014.8425E+002.5148E−012.9263E+002.7303E−012.5261E+002.9887E−012.1908E+00
271.8356E−014.9665E+002.3588E−012.9959E+002.5600E−012.5853E+002.8017E−012.2416E+00
281.7324E−015.0883E+002.2169E−013.0636E+002.4053E−012.6428E+002.6319E−012.2909E+00
291.6381E−015.2076E+002.0876E−013.1298E+002.2644E−012.6990E+002.4774E−012.3389E+00
301.5518E−015.3248E+001.9696E−013.1945E+002.1358E−012.7539E+002.3363E−012.3858E+00
311.4728E−015.4397E+001.8616E−013.2579E+002.0181E−012.8076E+002.2071E−012.4318E+00
321.4003E−015.5525E+001.7627E−013.3200E+001.9102E−012.8603E+002.0886E−012.4768E+00
331.3336E−015.6633E+001.6719E−013.3810E+001.8110E−012.9120E+001.9797E−012.5210E+00
341.2722E−015.7721E+001.5884E−013.4409E+001.7198E−012.9629E+001.8794E−012.5644E+00
351.2154E−015.8789E+001.5115E−013.4998E+001.6357E−013.0128E+001.7868E−012.6072E+00
361.1627E−015.9839E+001.4406E−013.5577E+001.5580E−013.0620E+001.7012E−012.6493E+00
371.1138E−016.0871E+001.3750E−013.6147E+001.4861E−013.1105E+001.6219E−012.6908E+00
381.0684E−016.1887E+001.3142E−013.6707E+001.4195E−013.1581E+001.5482E−012.7317E+00
391.0260E−015.5211E−031.2577E−013.7258E+001.3575E−013.2050E+001.4797E−012.7720E+00
409.8639E−021.0408E−011.2051E−013.7800E+001.2998E−013.2512E+001.4159E−012.8116E+00
419.4930E−022.0128E−011.1561E−013.8334E+001.2459E−013.2967E+001.3563E−012.8507E+00
429.1450E−022.9720E−011.1103E−013.8859E+001.1956E−013.3415E+001.3006E−012.8892E+00
438.8180E−023.9195E−011.0675E−013.9376E+001.1485E−013.3856E+001.2485E−012.9271E+00
448.5104E−024.8560E−011.0272E−013.9885E+001.1043E−013.4291E+001.1996E−012.9645E+00
458.2207E−025.7823E−019.8942E−024.0387E+001.0628E−013.4718E+001.1536E−013.0012E+00
467.9474E−026.6990E−019.5380E−024.0881E+001.0237E−013.5139E+001.1103E−013.0374E+00
477.6892E−027.6071E−019.2020E−024.1367E+009.8676E−023.5554E+001.0695E−013.0731E+00
487.4451E−028.5072E−018.8846E−024.1847E+009.5194E−023.5962E+001.0310E−013.1081E+00
497.2139E−029.3999E−018.5844E−024.2319E+009.1902E−023.6364E+009.9457E−023.1426E+00
506.9950E−021.0286E+008.2998E−024.2784E+008.8784E−023.6760E+009.6013E−023.1766E+00
516.7876E−021.1165E+008.0298E−024.3243E+008.5827E−023.7150E+009.2748E−023.2101E+00
526.5908E−021.2039E+007.7733E−024.3696E+008.3019E−023.7534E+008.9651E−023.2430E+00
536.4041E−021.2907E+007.5293E−024.4142E+008.0350E−023.7912E+008.6710E−023.2754E+00
546.2268E−021.3770E+007.2970E−024.4583E+007.7811E−023.8285E+008.3913E−023.3073E+00
556.0584E−021.4628E+007.0757E−024.5017E+007.5394E−023.8652E+008.1254E−023.3387E+00
565.8984E−021.5482E+006.8646E−024.5445E+007.3091E−023.9014E+007.8721E−023.3696E+00
575.7464E−021.6332E+006.6630E−024.5868E+007.0892E−023.9371E+007.6306E−023.4000E+00
585.6020E−021.7178E+006.4704E−024.6285E+006.8793E−023.9722E+007.4001E−023.4300E+00
595.4649E−021.8021E+006.2862E−024.6697E+006.6786E−024.0069E+007.1800E−023.4596E+00
605.3347E−021.8860E+006.1100E−024.7104E+006.4868E−024.0412E+006.9698E−023.4887E+00

Tb; [Z=65]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.2423E+012.9911E−011.4568E+012.1364E−011.5408E+011.9105E−011.6468E+011.7068E−01
19.2443E+003.9180E−011.1121E+012.7443E−011.1819E+012.4443E−011.2687E+012.1759E−01
25.6735E+006.0164E−017.1565E+004.0647E−017.6731E+003.5946E−018.2954E+003.1811E−01
33.8950E+008.0964E−015.1101E+005.3371E−015.5185E+004.6972E−015.9996E+004.1410E−01
42.8568E+001.0095E+003.8769E+006.5403E−014.2124E+005.7366E−014.6015E+005.0437E−01
52.1635E+001.2197E+003.0200E+007.7852E−013.2988E+006.8084E−013.6184E+005.9721E−01
61.6874E+001.4391E+002.4041E+009.0710E−012.6371E+007.9125E−012.9024E+006.9265E−01
71.3549E+001.6591E+001.9556E+001.0357E+002.1520E+009.0155E−012.3746E+007.8787E−01
81.1155E+001.8736E+001.6225E+001.1613E+001.7895E+001.0092E+001.9785E+008.8078E−01
99.3672E−012.0808E+001.3686E+001.2829E+001.5120E+001.1135E+001.6743E+009.7069E−01
107.9930E−012.2818E+001.1701E+001.4010E+001.2943E+001.2146E+001.4349E+001.0580E+00
116.9163E−012.4778E+001.0118E+001.5164E+001.1200E+001.3136E+001.2426E+001.1433E+00
126.0623E−012.6696E+008.8363E−011.6298E+009.7826E−011.4108E+001.0857E+001.2272E+00
135.3781E−012.8571E+007.7864E−011.7415E+008.6164E−011.5067E+009.5619E−011.3099E+00
144.8238E−013.0396E+006.9186E−011.8513E+007.6483E−011.6011E+008.4830E−011.3915E+00
154.3683E−013.2164E+006.1951E−011.9589E+006.8382E−011.6938E+007.5774E−011.4716E+00
163.9877E−013.3872E+005.5867E−012.0637E+006.1551E−011.7843E+006.8119E−011.5500E+00
173.6637E−013.5518E+005.0703E−012.1654E+005.5745E−011.8722E+006.1604E−011.6263E+00
183.3827E−013.7103E+004.6275E−012.2635E+005.0769E−011.9571E+005.6019E−011.7000E+00
193.1351E−013.8633E+004.2441E−012.3579E+004.6467E−012.0389E+005.1195E−011.7710E+00
202.9142E−014.0113E+003.9088E−012.4485E+004.2716E−012.1173E+004.6997E−011.8392E+00
212.7155E−014.1549E+003.6130E−012.5354E+003.9420E−012.1925E+004.3317E−011.9045E+00
222.5357E−014.2946E+003.3502E−012.6190E+003.6502E−012.2647E+004.0068E−011.9670E+00
232.3723E−014.4308E+003.1152E−012.6994E+003.3903E−012.3339E+003.7183E−012.0269E+00
242.2234E−014.5640E+002.9039E−012.7770E+003.1575E−012.4006E+003.4607E−012.0845E+00
252.0877E−014.6943E+002.7131E−012.8520E+002.9480E−012.4648E+003.2294E−012.1398E+00
261.9639E−014.8221E+002.5403E−012.9246E+002.7586E−012.5269E+003.0207E−012.1932E+00
271.8508E−014.9474E+002.3831E−012.9952E+002.5869E−012.5870E+002.8319E−012.2449E+00
281.7475E−015.0704E+002.2401E−013.0640E+002.4307E−012.6455E+002.6604E−012.2950E+00
291.6530E−015.1910E+002.1097E−013.1310E+002.2885E−012.7025E+002.5042E−012.3438E+00
301.5665E−015.3094E+001.9905E−013.1966E+002.1585E−012.7582E+002.3616E−012.3914E+00
311.4871E−015.4256E+001.8814E−013.2608E+002.0396E−012.8126E+002.2311E−012.4379E+00
321.4141E−015.5398E+001.7814E−013.3237E+001.9305E−012.8659E+002.1113E−012.4835E+00
331.3470E−015.6518E+001.6895E−013.3854E+001.8302E−012.9183E+002.0011E−012.5282E+00
341.2851E−015.7619E+001.6050E−013.4460E+001.7379E−012.9697E+001.8996E−012.5722E+00
351.2278E−015.8700E+001.5272E−013.5055E+001.6528E−013.0202E+001.8059E−012.6154E+00
361.1747E−015.9763E+001.4553E−013.5641E+001.5742E−013.0699E+001.7193E−012.6580E+00
371.1253E−016.0808E+001.3889E−013.6216E+001.5014E−013.1188E+001.6391E−012.6999E+00
381.0794E−016.1836E+001.3273E−013.6782E+001.4340E−013.1670E+001.5646E−012.7411E+00
391.0365E−011.6799E−031.2701E−013.7339E+001.3712E−013.2144E+001.4954E−012.7818E+00
409.9648E−021.0143E−011.2169E−013.7887E+001.3128E−013.2611E+001.4308E−012.8219E+00
419.5898E−021.9978E−011.1672E−013.8427E+001.2584E−013.3070E+001.3706E−012.8613E+00
429.2376E−022.9682E−011.1209E−013.8958E+001.2075E−013.3523E+001.3143E−012.9002E+00
438.9065E−023.9266E−011.0775E−013.9481E+001.1599E−013.3969E+001.2616E−012.9385E+00
448.5950E−024.8737E−011.0369E−013.9995E+001.1152E−013.4408E+001.2121E−012.9763E+00
458.3015E−025.8103E−019.9865E−024.0503E+001.0732E−013.4840E+001.1657E−013.0134E+00
468.0247E−026.7370E−019.6265E−024.1002E+001.0337E−013.5266E+001.1219E−013.0500E+00
477.7631E−027.6548E−019.2872E−024.1494E+009.9645E−023.5685E+001.0807E−013.0861E+00
487.5156E−028.5644E−018.9668E−024.1979E+009.6130E−023.6098E+001.0418E−013.1216E+00
497.2812E−029.4666E−018.6638E−024.2457E+009.2809E−023.6505E+001.0051E−013.1565E+00
507.0592E−021.0362E+008.3768E−024.2928E+008.9664E−023.6906E+009.7036E−023.1909E+00
516.8487E−021.1250E+008.1046E−024.3393E+008.6681E−023.7301E+009.3742E−023.2248E+00
526.6491E−021.2133E+007.8459E−024.3851E+008.3850E−023.7690E+009.0617E−023.2582E+00
536.4596E−021.3010E+007.6000E−024.4303E+008.1158E−023.8073E+008.7648E−023.2910E+00
546.2796E−021.3882E+007.3659E−024.4749E+007.8598E−023.8451E+008.4826E−023.3234E+00
556.1086E−021.4750E+007.1429E−024.5188E+007.6163E−023.8823E+008.2144E−023.3552E+00
565.9461E−021.5613E+006.9302E−024.5622E+007.3841E−023.9190E+007.9590E−023.3866E+00
575.7918E−021.6473E+006.7272E−024.6051E+007.1626E−023.9552E+007.7153E−023.4175E+00
585.6451E−021.7329E+006.5332E−024.6474E+006.9509E−023.9908E+007.4827E−023.4479E+00
595.5058E−021.8181E+006.3477E−024.6892E+006.7487E−024.0261E+007.2607E−023.4779E+00
605.3734E−021.9031E+006.1702E−024.7304E+006.5554E−024.0608E+007.0485E−023.5075E+00

Dy; [Z=66]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.2127E+013.0077E−011.4241E+012.1597E−011.5068E+011.9340E−011.6111E+011.7300E−01
19.0699E+003.9231E−011.0926E+012.7626E−011.1617E+012.4639E−011.2474E+012.1960E−01
25.5957E+006.0041E−017.0691E+004.0768E−017.5833E+003.6098E−018.2021E+003.1980E−01
33.8535E+008.0732E−015.0649E+005.3461E−015.4728E+004.7104E−015.9531E+004.1567E−01
42.8359E+001.0051E+003.8565E+006.5406E−014.1931E+005.7429E−014.5830E+005.0539E−01
52.1536E+001.2128E+003.0141E+007.7738E−013.2947E+006.8052E−013.6163E+005.9745E−01
61.6823E+001.4303E+002.4052E+009.0502E−012.6406E+007.9018E−012.9083E+006.9228E−01
71.3520E+001.6494E+001.9596E+001.0332E+002.1584E+009.0016E−012.3837E+007.8727E−01
81.1137E+001.8638E+001.6275E+001.1589E+001.7969E+001.0079E+001.9885E+008.8027E−01
99.3574E−012.0714E+001.3739E+001.2808E+001.5196E+001.1125E+001.6842E+009.7049E−01
107.9892E−012.2728E+001.1755E+001.3993E+001.3017E+001.2141E+001.4445E+001.0581E+00
116.9160E−012.4693E+001.0171E+001.5151E+001.1272E+001.3134E+001.2518E+001.1438E+00
126.0635E−012.6615E+008.8873E−011.6289E+009.8510E−011.4110E+001.0944E+001.2280E+00
135.3796E−012.8496E+007.8347E−011.7410E+008.6809E−011.5072E+009.6439E−011.3111E+00
144.8252E−013.0328E+006.9636E−011.8513E+007.7084E−011.6020E+008.5593E−011.3930E+00
154.3697E−013.2107E+006.2369E−011.9595E+006.8938E−011.6952E+007.6479E−011.4736E+00
163.9897E−013.3826E+005.6255E−012.0650E+006.2064E−011.7864E+006.8769E−011.5526E+00
173.6667E−013.5484E+005.1064E−012.1676E+005.6218E−011.8751E+006.2200E−011.6296E+00
183.3872E−013.7083E+004.6614E−012.2667E+005.1207E−011.9609E+005.6567E−011.7042E+00
193.1413E−013.8627E+004.2762E−012.3623E+004.6875E−012.0438E+005.1700E−011.7762E+00
202.9223E−014.0121E+003.9395E−012.4541E+004.3098E−012.1234E+004.7464E−011.8454E+00
212.7253E−014.1570E+003.6425E−012.5424E+003.9779E−012.1998E+004.3750E−011.9118E+00
222.5469E−014.2979E+003.3787E−012.6272E+003.6842E−012.2731E+004.0473E−011.9755E+00
232.3848E−014.4353E+003.1428E−012.7089E+003.4226E−012.3436E+003.7562E−012.0365E+00
242.2369E−014.5696E+002.9307E−012.7877E+003.1883E−012.4114E+003.4962E−012.0952E+00
252.1018E−014.7011E+002.7390E−012.8639E+002.9773E−012.4768E+003.2628E−012.1516E+00
261.9784E−014.8300E+002.5652E−012.9376E+002.7865E−012.5399E+003.0523E−012.2060E+00
271.8655E−014.9565E+002.4071E−013.0092E+002.6134E−012.6011E+002.8617E−012.2585E+00
281.7622E−015.0807E+002.2631E−013.0789E+002.4560E−012.6605E+002.6885E−012.3095E+00
291.6676E−015.2025E+002.1316E−013.1469E+002.3124E−012.7183E+002.5308E−012.3591E+00
301.5808E−015.3222E+002.0114E−013.2133E+002.1812E−012.7747E+002.3867E−012.4074E+00
311.5010E−015.4396E+001.9012E−013.2783E+002.0610E−012.8299E+002.2548E−012.4546E+00
321.4277E−015.5550E+001.8001E−013.3419E+001.9508E−012.8839E+002.1337E−012.5007E+00
331.3602E−015.6684E+001.7072E−013.4044E+001.8494E−012.9368E+002.0223E−012.5460E+00
341.2978E−015.7797E+001.6217E−013.4657E+001.7560E−012.9888E+001.9197E−012.5904E+00
351.2401E−015.8891E+001.5428E−013.5259E+001.6699E−013.0399E+001.8250E−012.6341E+00
361.1865E−015.9966E+001.4701E−013.5850E+001.5903E−013.0901E+001.7374E−012.6771E+00
371.1367E−016.1023E+001.4028E−013.6432E+001.5167E−013.1395E+001.6562E−012.7194E+00
381.0903E−016.2064E+001.3404E−013.7004E+001.4484E−013.1881E+001.5809E−012.7610E+00
391.0470E−012.5636E−021.2825E−013.7567E+001.3849E−013.2360E+001.5108E−012.8021E+00
401.0066E−011.2655E−011.2285E−013.8121E+001.3258E−013.2832E+001.4455E−012.8425E+00
419.6865E−022.2604E−011.1783E−013.8666E+001.2707E−013.3296E+001.3846E−012.8824E+00
429.3303E−023.2419E−011.1314E−013.9202E+001.2192E−013.3753E+001.3277E−012.9216E+00
438.9953E−024.2111E−011.0875E−013.9731E+001.1710E−013.4203E+001.2745E−012.9603E+00
448.6800E−025.1686E−011.0464E−014.0251E+001.1259E−013.4647E+001.2245E−012.9985E+00
458.3829E−026.1152E−011.0077E−014.0764E+001.0835E−013.5084E+001.1776E−013.0360E+00
468.1024E−027.0518E−019.7137E−024.1269E+001.0436E−013.5514E+001.1334E−013.0730E+00
477.8374E−027.9791E−019.3709E−024.1766E+001.0059E−013.5938E+001.0917E−013.1095E+00
487.5865E−028.8981E−019.0474E−024.2257E+009.7047E−023.6356E+001.0525E−013.1453E+00
497.3489E−029.8094E−018.7416E−024.2740E+009.3695E−023.6768E+001.0154E−013.1807E+00
507.1237E−021.0713E+008.4520E−024.3216E+009.0522E−023.7173E+009.8035E−023.2155E+00
516.9101E−021.1611E+008.1774E−024.3686E+008.7514E−023.7573E+009.4712E−023.2498E+00
526.7075E−021.2502E+007.9166E−024.4150E+008.4658E−023.7966E+009.1558E−023.2836E+00
536.5151E−021.3388E+007.6687E−024.4607E+008.1945E−023.8354E+008.8564E−023.3169E+00
546.3323E−021.4269E+007.4329E−024.5059E+007.9365E−023.8737E+008.5718E−023.3497E+00
556.1586E−021.5145E+007.2082E−024.5504E+007.6910E−023.9114E+008.3012E−023.3820E+00
565.9936E−021.6018E+006.9939E−024.5943E+007.4570E−023.9486E+008.0436E−023.4138E+00
575.8367E−021.6887E+006.7894E−024.6377E+007.2338E−023.9853E+007.7979E−023.4451E+00
585.6876E−021.7751E+006.5940E−024.6806E+007.0206E−024.0215E+007.5633E−023.4760E+00
595.5459E−021.8613E+006.4073E−024.7229E+006.8168E−024.0571E+007.3394E−023.5064E+00
605.4114E−021.9473E+006.2286E−024.7647E+006.6220E−024.0924E+007.1254E−023.5365E+00

Ho; [Z=67]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.1843E+013.0231E−011.3925E+012.1822E−011.4740E+011.9568E−011.5766E+011.7525E−01
18.9007E+003.9271E−011.0735E+012.7799E−011.1419E+012.4826E−011.2266E+012.2153E−01
25.5189E+005.9908E−016.9821E+004.0879E−017.4936E+003.6241E−018.1088E+003.2141E−01
33.8117E+008.0493E−015.0185E+005.3543E−015.4258E+004.7229E−015.9051E+004.1718E−01
42.8141E+001.0009E+003.8344E+006.5407E−014.1716E+005.7490E−014.5622E+005.0639E−01
52.1428E+001.2061E+003.0064E+007.7624E−013.2887E+006.8020E−013.6120E+005.9770E−01
61.6766E+001.4215E+002.4048E+009.0291E−012.6423E+007.8908E−012.9124E+006.9190E−01
71.3485E+001.6395E+001.9625E+001.0306E+002.1636E+008.9867E−012.3913E+007.8658E−01
81.1114E+001.8537E+001.6317E+001.1562E+001.8033E+001.0064E+001.9974E+008.7961E−01
99.3435E−012.0615E+001.3786E+001.2784E+001.5264E+001.1112E+001.6933E+009.7007E−01
107.9816E−012.2633E+001.1803E+001.3973E+001.3086E+001.2132E+001.4534E+001.0580E+00
116.9125E−012.4601E+001.0219E+001.5135E+001.1338E+001.3128E+001.2604E+001.1440E+00
126.0619E−012.6527E+008.9342E−011.6276E+009.9150E−011.4107E+001.1027E+001.2285E+00
135.3787E−012.8412E+007.8795E−011.7400E+008.7416E−011.5073E+009.7218E−011.3119E+00
144.8244E−013.0252E+007.0058E−011.8507E+007.7654E−011.6025E+008.6323E−011.3942E+00
154.3691E−013.2039E+006.2763E−011.9594E+006.9468E−011.6961E+007.7157E−011.4752E+00
163.9896E−013.3770E+005.6621E−012.0657E+006.2555E−011.7878E+006.9395E−011.5547E+00
173.6676E−013.5440E+005.1406E−012.1690E+005.6673E−011.8773E+006.2778E−011.6323E+00
183.3896E−013.7052E+004.6936E−012.2692E+005.1629E−011.9640E+005.7100E−011.7077E+00
193.1455E−013.8609E+004.3067E−012.3658E+004.7268E−012.0478E+005.2192E−011.7806E+00
202.9283E−014.0115E+003.9687E−012.4588E+004.3467E−012.1286E+004.7920E−011.8508E+00
212.7330E−014.1576E+003.6708E−012.5483E+004.0128E−012.2061E+004.4174E−011.9183E+00
222.5562E−014.2998E+003.4061E−012.6344E+003.7173E−012.2807E+004.0869E−011.9830E+00
232.3954E−014.4384E+003.1694E−012.7173E+003.4541E−012.3523E+003.7934E−012.0452E+00
242.2486E−014.5738E+002.9566E−012.7973E+003.2183E−012.4213E+003.5312E−012.1050E+00
252.1144E−014.7064E+002.7641E−012.8746E+003.0059E−012.4877E+003.2958E−012.1624E+00
261.9915E−014.8365E+002.5896E−012.9494E+002.8139E−012.5519E+003.0835E−012.2178E+00
271.8789E−014.9640E+002.4306E−013.0220E+002.6395E−012.6141E+002.8912E−012.2713E+00
281.7758E−015.0893E+002.2857E−013.0927E+002.4809E−012.6744E+002.7164E−012.3231E+00
291.6812E−015.2123E+002.1532E−013.1616E+002.3361E−012.7331E+002.5572E−012.3735E+00
301.5942E−015.3331E+002.0320E−013.2289E+002.2037E−012.7903E+002.4117E−012.4225E+00
311.5143E−015.4518E+001.9209E−013.2947E+002.0824E−012.8462E+002.2785E−012.4703E+00
321.4407E−015.5684E+001.8188E−013.3591E+001.9710E−012.9008E+002.1561E−012.5171E+00
331.3728E−015.6830E+001.7249E−013.4223E+001.8685E−012.9544E+002.0435E−012.5629E+00
341.3101E−015.7955E+001.6384E−013.4842E+001.7741E−013.0070E+001.9398E−012.6079E+00
351.2520E−015.9062E+001.5586E−013.5451E+001.6870E−013.0587E+001.8440E−012.6520E+00
361.1981E−016.0149E+001.4850E−013.6049E+001.6065E−013.1094E+001.7554E−012.6955E+00
371.1479E−016.1219E+001.4168E−013.6637E+001.5319E−013.1593E+001.6733E−012.7382E+00
381.1012E−016.2272E+001.3536E−013.7215E+001.4628E−013.2085E+001.5971E−012.7803E+00
391.0575E−014.7612E−021.2950E−013.7784E+001.3986E−013.2568E+001.5263E−012.8217E+00
401.0167E−011.4970E−011.2404E−013.8344E+001.3388E−013.3044E+001.4602E−012.8625E+00
419.7836E−022.5032E−011.1895E−013.8894E+001.2830E−013.3513E+001.3986E−012.9027E+00
429.4238E−023.4959E−011.1420E−013.9437E+001.2309E−013.3975E+001.3411E−012.9424E+00
439.0852E−024.4758E−011.0976E−013.9970E+001.1823E−013.4430E+001.2873E−012.9815E+00
448.7663E−025.4438E−011.0560E−014.0496E+001.1366E−013.4878E+001.2368E−013.0200E+00
458.4657E−026.4007E−011.0169E−014.1014E+001.0937E−013.5319E+001.1893E−013.0579E+00
468.1818E−027.3471E−019.8011E−024.1525E+001.0534E−013.5754E+001.1447E−013.0953E+00
477.9134E−028.2841E−019.4547E−024.2028E+001.0154E−013.6183E+001.1027E−013.1321E+00
487.6592E−029.2125E−019.1279E−024.2524E+009.7957E−023.6605E+001.0630E−013.1684E+00
497.4183E−021.0133E+008.8191E−024.3012E+009.4573E−023.7021E+001.0256E−013.2042E+00
507.1900E−021.1046E+008.5268E−024.3494E+009.1371E−023.7431E+009.9022E−023.2394E+00
516.9733E−021.1952E+008.2497E−024.3969E+008.8336E−023.7836E+009.5667E−023.2741E+00
526.7677E−021.2852E+007.9867E−024.4438E+008.5456E−023.8234E+009.2486E−023.3083E+00
536.5723E−021.3747E+007.7368E−024.4901E+008.2720E−023.8627E+008.9465E−023.3420E+00
546.3867E−021.4636E+007.4990E−024.5358E+008.0120E−023.9014E+008.6595E−023.3752E+00
556.2101E−021.5521E+007.2725E−024.5808E+007.7645E−023.9396E+008.3866E−023.4079E+00
566.0424E−021.6402E+007.0567E−024.6253E+007.5287E−023.9773E+008.1267E−023.4402E+00
575.8828E−021.7280E+006.8506E−024.6692E+007.3037E−024.0144E+007.8789E−023.4719E+00
585.7312E−021.8154E+006.6538E−024.7126E+007.0888E−024.0511E+007.6424E−023.5032E+00
595.5870E−021.9025E+006.4657E−024.7555E+006.8836E−024.0873E+007.4166E−023.5341E+00
605.4501E−021.9894E+006.2857E−024.7978E+006.6873E−024.1230E+007.2008E−023.5646E+00

Er; [Z=68]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.1570E+013.0375E−011.3621E+012.2038E−011.4424E+011.9788E−011.5433E+011.7744E−01
18.7366E+003.9302E−011.0549E+012.7965E−011.1226E+012.5007E−011.2063E+012.2341E−01
25.4435E+005.9766E−016.8956E+004.0981E−017.4044E+003.6376E−018.0159E+003.2296E−01
33.7698E+008.0248E−014.9713E+005.3618E−015.3778E+004.7348E−015.8558E+004.1865E−01
42.7917E+009.9659E−013.8108E+006.5405E−014.1485E+005.7549E−014.5394E+005.0738E−01
52.1312E+001.1994E+002.9971E+007.7510E−013.2809E+006.7989E−013.6056E+005.9795E−01
61.6703E+001.4127E+002.4031E+009.0078E−012.6426E+007.8797E−012.9147E+006.9150E−01
71.3445E+001.6294E+001.9642E+001.0279E+002.1676E+008.9711E−012.3976E+007.8583E−01
81.1088E+001.8433E+001.6350E+001.1534E+001.8089E+001.0048E+002.0052E+008.7882E−01
99.3259E−012.0512E+001.3825E+001.2758E+001.5324E+001.1098E+001.7016E+009.6945E−01
107.9707E−012.2533E+001.1846E+001.3950E+001.3147E+001.2120E+001.4617E+001.0577E+00
116.9059E−012.4504E+001.0263E+001.5115E+001.1400E+001.3119E+001.2685E+001.1440E+00
126.0578E−012.6433E+008.9771E−011.6259E+009.9747E−011.4102E+001.1105E+001.2288E+00
135.3756E−012.8323E+007.9209E−011.7387E+008.7987E−011.5070E+009.7958E−011.3124E+00
144.8216E−013.0168E+007.0452E−011.8497E+007.8193E−011.6025E+008.7020E−011.3950E+00
154.3666E−013.1964E+006.3132E−011.9589E+006.9973E−011.6966E+007.7808E−011.4763E+00
163.9876E−013.3703E+005.6967E−012.0657E+006.3025E−011.7888E+007.0000E−011.5563E+00
173.6667E−013.5385E+005.1729E−012.1699E+005.7109E−011.8789E+006.3338E−011.6345E+00
183.3900E−013.7009E+004.7241E−012.2709E+005.2035E−011.9665E+005.7617E−011.7106E+00
193.1476E−013.8578E+004.3357E−012.3685E+004.7648E−012.0512E+005.2670E−011.7844E+00
202.9322E−014.0097E+003.9965E−012.4626E+004.3824E−012.1329E+004.8364E−011.8555E+00
212.7387E−014.1571E+003.6977E−012.5533E+004.0465E−012.2116E+004.4589E−011.9240E+00
222.5636E−014.3004E+003.4323E−012.6405E+003.7493E−012.2873E+004.1257E−011.9898E+00
232.4042E−014.4401E+003.1949E−012.7246E+003.4846E−012.3601E+003.8299E−012.0531E+00
242.2586E−014.5766E+002.9815E−012.8058E+003.2475E−012.4302E+003.5656E−012.1139E+00
252.1253E−014.7103E+002.7884E−012.8842E+003.0340E−012.4977E+003.3283E−012.1724E+00
262.0031E−014.8414E+002.6132E−012.9601E+002.8407E−012.5629E+003.1142E−012.2287E+00
271.8911E−014.9701E+002.4535E−013.0338E+002.6652E−012.6260E+002.9203E−012.2832E+00
281.7882E−015.0964E+002.3078E−013.1054E+002.5054E−012.6873E+002.7441E−012.3359E+00
291.6937E−015.2205E+002.1745E−013.1752E+002.3595E−012.7468E+002.5834E−012.3870E+00
301.6068E−015.3425E+002.0524E−013.2433E+002.2261E−012.8049E+002.4366E−012.4368E+00
311.5268E−015.4623E+001.9404E−013.3099E+002.1036E−012.8615E+002.3020E−012.4853E+00
321.4531E−015.5801E+001.8374E−013.3751E+001.9912E−012.9169E+002.1785E−012.5327E+00
331.3850E−015.6958E+001.7425E−013.4390E+001.8876E−012.9711E+002.0647E−012.5791E+00
341.3220E−015.8096E+001.6551E−013.5017E+001.7922E−013.0243E+001.9599E−012.6246E+00
351.2636E−015.9215E+001.5744E−013.5633E+001.7041E−013.0765E+001.8630E−012.6693E+00
361.2094E−016.0314E+001.4999E−013.6237E+001.6227E−013.1279E+001.7734E−012.7132E+00
371.1589E−016.1396E+001.4310E−013.6832E+001.5473E−013.1783E+001.6904E−012.7563E+00
381.1118E−016.2461E+001.3670E−013.7416E+001.4774E−013.2279E+001.6134E−012.7988E+00
391.0678E−016.7708E−021.3076E−013.7991E+001.4123E−013.2768E+001.5417E−012.8407E+00
401.0267E−011.7095E−011.2523E−013.8556E+001.3518E−013.3249E+001.4749E−012.8819E+00
419.8806E−022.7272E−011.2008E−013.9113E+001.2954E−013.3722E+001.4127E−012.9225E+00
429.5175E−023.7310E−011.1527E−013.9661E+001.2427E−013.4189E+001.3545E−012.9625E+00
439.1757E−024.7217E−011.1078E−014.0200E+001.1935E−013.4648E+001.3000E−013.0019E+00
448.8536E−025.7003E−011.0656E−014.0731E+001.1473E−013.5101E+001.2490E−013.0408E+00
458.5496E−026.6673E−011.0261E−014.1255E+001.1040E−013.5547E+001.2011E−013.0791E+00
468.2625E−027.6238E−019.8890E−024.1771E+001.0632E−013.5986E+001.1560E−013.1169E+00
477.9909E−028.5704E−019.5388E−024.2279E+001.0248E−013.6419E+001.1135E−013.1541E+00
487.7335E−029.5082E−019.2086E−024.2780E+009.8862E−023.6846E+001.0735E−013.1908E+00
497.4895E−021.0438E+008.8966E−024.3274E+009.5445E−023.7267E+001.0357E−013.2269E+00
507.2580E−021.1360E+008.6014E−024.3761E+009.2213E−023.7681E+009.9996E−023.2626E+00
517.0383E−021.2275E+008.3218E−024.4242E+008.9150E−023.8090E+009.6611E−023.2977E+00
526.8296E−021.3184E+008.0563E−024.4716E+008.6245E−023.8493E+009.3401E−023.3323E+00
536.6313E−021.4087E+007.8042E−024.5184E+008.3486E−023.8891E+009.0354E−023.3664E+00
546.4427E−021.4985E+007.5645E−024.5646E+008.0863E−023.9283E+008.7458E−023.4000E+00
556.2633E−021.5878E+007.3362E−024.6102E+007.8368E−023.9669E+008.4706E−023.4331E+00
566.0927E−021.6768E+007.1186E−024.6552E+007.5991E−024.0051E+008.2085E−023.4658E+00
575.9304E−021.7654E+006.9109E−024.6996E+007.3724E−024.0427E+007.9586E−023.4980E+00
585.7760E−021.8537E+006.7127E−024.7436E+007.1559E−024.0798E+007.7202E−023.5297E+00
595.6292E−021.9417E+006.5232E−024.7870E+006.9491E−024.1164E+007.4925E−023.5610E+00
605.4896E−022.0294E+006.3419E−024.8298E+006.7513E−024.1526E+007.2749E−023.5919E+00

Tm; [Z=69]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.1308E+013.0510E−011.3328E+012.2247E−011.4119E+012.0003E−011.5112E+011.7958E−01
18.5773E+003.9326E−011.0368E+012.8123E−011.1037E+012.5182E−011.1865E+012.2523E−01
25.3695E+005.9615E−016.8101E+004.1075E−017.3160E+003.6504E−017.9236E+003.2444E−01
33.7281E+007.9997E−014.9235E+005.3686E−015.3290E+004.7461E−015.8056E+004.2005E−01
42.7687E+009.9236E−013.7859E+006.5402E−014.1238E+005.7606E−014.5149E+005.0835E−01
52.1192E+001.1928E+002.9865E+007.7397E−013.2714E+006.7958E−013.5974E+005.9821E−01
61.6635E+001.4039E+002.4002E+008.9865E−012.6415E+007.8685E−012.9155E+006.9110E−01
71.3402E+001.6193E+001.9651E+001.0252E+002.1704E+008.9550E−012.4026E+007.8503E−01
81.1058E+001.8326E+001.6375E+001.1504E+001.8135E+001.0030E+002.0120E+008.7792E−01
99.3051E−012.0406E+001.3859E+001.2729E+001.5378E+001.1081E+001.7091E+009.6868E−01
107.9567E−012.2429E+001.1883E+001.3924E+001.3204E+001.2106E+001.4693E+001.0572E+00
116.8966E−012.4402E+001.0302E+001.5092E+001.1456E+001.3108E+001.2760E+001.1437E+00
126.0513E−012.6334E+009.0161E−011.6239E+001.0030E+001.4093E+001.1178E+001.2287E+00
135.3704E−012.8227E+007.9590E−011.7369E+008.8522E−011.5064E+009.8658E−011.3126E+00
144.8170E−013.0078E+007.0817E−011.8483E+007.8702E−011.6022E+008.7683E−011.3954E+00
154.3624E−013.1880E+006.3477E−011.9579E+007.0452E−011.6966E+007.8432E−011.4771E+00
163.9840E−013.3629E+005.7291E−012.0653E+006.3473E−011.7893E+007.0581E−011.5575E+00
173.6640E−013.5321E+005.2034E−012.1701E+005.7527E−011.8800E+006.3877E−011.6363E+00
183.3887E−013.6957E+004.7529E−012.2719E+005.2425E−011.9683E+005.8117E−011.7131E+00
193.1479E−013.8538E+004.3631E−012.3705E+004.8013E−012.0539E+005.3135E−011.7875E+00
202.9343E−014.0068E+004.0229E−012.4656E+004.4167E−012.1366E+004.8797E−011.8596E+00
212.7426E−014.1553E+003.7232E−012.5574E+004.0790E−012.2163E+004.4993E−011.9290E+00
222.5691E−014.2998E+003.4572E−012.6458E+003.7803E−012.2931E+004.1636E−011.9958E+00
232.4113E−014.4406E+003.2193E−012.7310E+003.5143E−012.3669E+003.8655E−012.0601E+00
242.2670E−014.5782E+003.0053E−012.8133E+003.2759E−012.4381E+003.5993E−012.1220E+00
252.1347E−014.7129E+002.8118E−012.8928E+003.0612E−012.5067E+003.3602E−012.1815E+00
262.0134E−014.8450E+002.6360E−012.9697E+002.8669E−012.5730E+003.1445E−012.2388E+00
271.9019E−014.9747E+002.4758E−013.0444E+002.6904E−012.6371E+002.9491E−012.2942E+00
281.7995E−015.1021E+002.3294E−013.1170E+002.5296E−012.6992E+002.7714E−012.3477E+00
291.7052E−015.2273E+002.1954E−013.1877E+002.3827E−012.7597E+002.6094E−012.3997E+00
301.6185E−015.3503E+002.0725E−013.2567E+002.2481E−012.8185E+002.4613E−012.4502E+00
311.5385E−015.4712E+001.9597E−013.3242E+002.1247E−012.8759E+002.3255E−012.4995E+00
321.4647E−015.5901E+001.8558E−013.3902E+002.0112E−012.9320E+002.2007E−012.5475E+00
331.3965E−015.7070E+001.7601E−013.4548E+001.9067E−012.9869E+002.0858E−012.5945E+00
341.3334E−015.8220E+001.6718E−013.5182E+001.8103E−013.0408E+001.9799E−012.6406E+00
351.2748E−015.9350E+001.5903E−013.5804E+001.7213E−013.0936E+001.8820E−012.6858E+00
361.2203E−016.0462E+001.5149E−013.6416E+001.6390E−013.1454E+001.7915E−012.7301E+00
371.1696E−016.1556E+001.4452E−013.7016E+001.5627E−013.1964E+001.7076E−012.7738E+00
381.1223E−016.2632E+001.3804E−013.7607E+001.4920E−013.2466E+001.6296E−012.8167E+00
391.0780E−018.6016E−021.3203E−013.8187E+001.4262E−013.2959E+001.5572E−012.8589E+00
401.0366E−011.9042E−011.2643E−013.8759E+001.3649E−013.3445E+001.4897E−012.9006E+00
419.9769E−022.9331E−011.2122E−013.9321E+001.3079E−013.3923E+001.4267E−012.9416E+00
429.6110E−023.9480E−011.1635E−013.9875E+001.2546E−013.4394E+001.3678E−012.9820E+00
439.2663E−024.9496E−011.1180E−014.0420E+001.2047E−013.4858E+001.3128E−013.0218E+00
448.9412E−025.9386E−011.0754E−014.0957E+001.1581E−013.5315E+001.2612E−013.0610E+00
458.6344E−026.9160E−011.0353E−014.1486E+001.1142E−013.5766E+001.2127E−013.0997E+00
468.3443E−027.8825E−019.9774E−024.2007E+001.0730E−013.6210E+001.1672E−013.1379E+00
478.0696E−028.8388E−019.6233E−024.2521E+001.0342E−013.6648E+001.1243E−013.1755E+00
487.8093E−029.7861E−019.2895E−024.3027E+009.9765E−023.7079E+001.0839E−013.2125E+00
497.5623E−021.0725E+008.9743E−024.3527E+009.6314E−023.7504E+001.0457E−013.2490E+00
507.3278E−021.1656E+008.6761E−024.4019E+009.3050E−023.7923E+001.0096E−013.2850E+00
517.1051E−021.2580E+008.3937E−024.4505E+008.9958E−023.8336E+009.7545E−023.3205E+00
526.8934E−021.3497E+008.1258E−024.4984E+008.7027E−023.8744E+009.4305E−023.3556E+00
536.6921E−021.4409E+007.8713E−024.5458E+008.4243E−023.9146E+009.1231E−023.3900E+00
546.5005E−021.5315E+007.6295E−024.5925E+008.1598E−023.9543E+008.8310E−023.4241E+00
556.3182E−021.6217E+007.3992E−024.6385E+007.9082E−023.9934E+008.5533E−023.4576E+00
566.1447E−021.7115E+007.1798E−024.6841E+007.6686E−024.0319E+008.2890E−023.4907E+00
575.9795E−021.8009E+006.9706E−024.7290E+007.4401E−024.0700E+008.0370E−023.5233E+00
585.8223E−021.8901E+006.7707E−024.7735E+007.2219E−024.1076E+007.7966E−023.5554E+00
595.6727E−021.9790E+006.5798E−024.8174E+007.0134E−024.1447E+007.5670E−023.5871E+00
605.5304E−022.0676E+006.3972E−024.8608E+006.8142E−024.1814E+007.3477E−023.6184E+00

Yb; [Z=70]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.1055E+013.0638E−011.3045E+012.2449E−011.3824E+012.0212E−011.4801E+011.8168E−01
18.4228E+003.9343E−011.0191E+012.8274E−011.0853E+012.5350E−011.1671E+012.2700E−01
25.2969E+005.9457E−016.7255E+004.1161E−017.2284E+003.6625E−017.8321E+003.2586E−01
33.6866E+007.9742E−014.8754E+005.3748E−015.2797E+004.7568E−015.7547E+004.2141E−01
42.7454E+009.8816E−013.7599E+006.5395E−014.0980E+005.7660E−014.4890E+005.0930E−01
52.1066E+001.1863E+002.9746E+007.7286E−013.2606E+006.7927E−013.5876E+005.9847E−01
61.6563E+001.3952E+002.3962E+008.9653E−012.6391E+007.8573E−012.9147E+006.9069E−01
71.3356E+001.6092E+001.9650E+001.0224E+002.1723E+008.9384E−012.4064E+007.8420E−01
81.1025E+001.8219E+001.6393E+001.1474E+001.8172E+001.0012E+002.0179E+008.7694E−01
99.2815E−012.0297E+001.3886E+001.2699E+001.5424E+001.1063E+001.7157E+009.6777E−01
107.9400E−012.2321E+001.1915E+001.3895E+001.3254E+001.2090E+001.4763E+001.0564E+00
116.8849E−012.4297E+001.0336E+001.5066E+001.1508E+001.3095E+001.2830E+001.1432E+00
126.0426E−012.6231E+009.0512E−011.6216E+001.0081E+001.4082E+001.1246E+001.2285E+00
135.3634E−012.8126E+007.9938E−011.7349E+008.9021E−011.5055E+009.9320E−011.3126E+00
144.8108E−012.9981E+007.1154E−011.8465E+007.9181E−011.6016E+008.8314E−011.3956E+00
154.3567E−013.1790E+006.3798E−011.9565E+007.0905E−011.6963E+007.9027E−011.4776E+00
163.9789E−013.3547E+005.7594E−012.0643E+006.3898E−011.7895E+007.1139E−011.5584E+00
173.6597E−013.5249E+005.2320E−012.1697E+005.7926E−011.8807E+006.4398E−011.6376E+00
183.3857E−013.6895E+004.7800E−012.2723E+005.2798E−011.9696E+005.8602E−011.7150E+00
193.1464E−013.8487E+004.3890E−012.3718E+004.8363E−012.0560E+005.3586E−011.7902E+00
202.9346E−014.0029E+004.0478E−012.4679E+004.4498E−012.1396E+004.9217E−011.8630E+00
212.7446E−014.1526E+003.7474E−012.5607E+004.1104E−012.2203E+004.5386E−011.9334E+00
222.5729E−014.2981E+003.4808E−012.6502E+003.8102E−012.2980E+004.2006E−012.0012E+00
232.4166E−014.4399E+003.2425E−012.7365E+003.5429E−012.3730E+003.9004E−012.0664E+00
242.2737E−014.5785E+003.0282E−012.8198E+003.3035E−012.4452E+003.6323E−012.1293E+00
252.1426E−014.7143E+002.8343E−012.9004E+003.0877E−012.5148E+003.3915E−012.1897E+00
262.0222E−014.8474E+002.6581E−012.9784E+002.8925E−012.5821E+003.1742E−012.2480E+00
271.9114E−014.9780E+002.4973E−013.0541E+002.7150E−012.6472E+002.9773E−012.3043E+00
281.8095E−015.1064E+002.3504E−013.1276E+002.5533E−012.7103E+002.7983E−012.3588E+00
291.7156E−015.2326E+002.2158E−013.1992E+002.4054E−012.7716E+002.6350E−012.4116E+00
301.6291E−015.3567E+002.0923E−013.2691E+002.2700E−012.8312E+002.4857E−012.4629E+00
311.5493E−015.4787E+001.9787E−013.3374E+002.1456E−012.8894E+002.3487E−012.5129E+00
321.4755E−015.5987E+001.8740E−013.4041E+002.0311E−012.9462E+002.2228E−012.5616E+00
331.4073E−015.7167E+001.7775E−013.4695E+001.9257E−013.0018E+002.1068E−012.6092E+00
341.3441E−015.8328E+001.6885E−013.5337E+001.8284E−013.0563E+001.9999E−012.6558E+00
351.2854E−015.9470E+001.6062E−013.5966E+001.7385E−013.1097E+001.9010E−012.7016E+00
361.2308E−016.0593E+001.5300E−013.6584E+001.6553E−013.1622E+001.8095E−012.7464E+00
371.1799E−016.1699E+001.4595E−013.7191E+001.5782E−013.2137E+001.7247E−012.7905E+00
381.1324E−016.2787E+001.3940E−013.7787E+001.5066E−013.2644E+001.6459E−012.8339E+00
391.0880E−011.0263E−011.3331E−013.8374E+001.4401E−013.3143E+001.5726E−012.8766E+00
401.0463E−012.0817E−011.2765E−013.8952E+001.3781E−013.3633E+001.5044E−012.9186E+00
411.0072E−013.1219E−011.2237E−013.9520E+001.3204E−013.4116E+001.4407E−012.9600E+00
429.7036E−024.1477E−011.1744E−014.0080E+001.2665E−013.4592E+001.3812E−013.0008E+00
439.3565E−025.1601E−011.1284E−014.0630E+001.2161E−013.5061E+001.3255E−013.0410E+00
449.0290E−026.1597E−011.0852E−014.1173E+001.1688E−013.5522E+001.2734E−013.0806E+00
458.7195E−027.1474E−011.0447E−014.1707E+001.1245E−013.5977E+001.2244E−013.1197E+00
468.4267E−028.1238E−011.0067E−014.2234E+001.0828E−013.6426E+001.1784E−013.1582E+00
478.1493E−029.0899E−019.7085E−024.2753E+001.0436E−013.6868E+001.1350E−013.1962E+00
487.8862E−021.0047E+009.3709E−024.3265E+001.0067E−013.7304E+001.0942E−013.2336E+00
497.6364E−021.0995E+009.0523E−024.3769E+009.7180E−023.7733E+001.0556E−013.2705E+00
507.3991E−021.1935E+008.7510E−024.4267E+009.3884E−023.8157E+001.0192E−013.3069E+00
517.1735E−021.2867E+008.4657E−024.4758E+009.0762E−023.8575E+009.8470E−023.3428E+00
526.9589E−021.3793E+008.1951E−024.5243E+008.7803E−023.8987E+009.5200E−023.3781E+00
536.7547E−021.4713E+007.9383E−024.5721E+008.4995E−023.9393E+009.2098E−023.4130E+00
546.5602E−021.5628E+007.6942E−024.6193E+008.2326E−023.9794E+008.9151E−023.4474E+00
556.3749E−021.6538E+007.4620E−024.6659E+007.9789E−024.0190E+008.6350E−023.4814E+00
566.1985E−021.7444E+007.2407E−024.7119E+007.7372E−024.0580E+008.3684E−023.5148E+00
576.0304E−021.8347E+007.0296E−024.7574E+007.5068E−024.0965E+008.1143E−023.5478E+00
585.8702E−021.9247E+006.8282E−024.8024E+007.2869E−024.1346E+007.8718E−023.5804E+00
595.7178E−022.0144E+006.6358E−024.8468E+007.0768E−024.1721E+007.6404E−023.6125E+00
605.5727E−022.1039E+006.4517E−024.8907E+006.8761E−024.2092E+007.4193E−023.6442E+00

Lu; [Z=71]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.0943E+013.1759E−011.2941E+012.3177E−011.3721E+012.0859E−011.4697E+011.8747E−01
18.5956E+003.9524E−011.0394E+012.8379E−011.1070E+012.5451E−011.1905E+012.2797E−01
25.4783E+005.8749E−016.9420E+004.0753E−017.4594E+003.6289E−018.0814E+003.2310E−01
33.7447E+008.0077E−014.9509E+005.4004E−015.3623E+004.7814E−015.8458E+004.2377E−01
42.7567E+001.0028E+003.7768E+006.6330E−014.1179E+005.8494E−014.5126E+005.1678E−01
52.1084E+001.2058E+002.9786E+007.8527E−013.2664E+006.9028E−013.5956E+006.0829E−01
61.6571E+001.4161E+002.3990E+009.0994E−012.6436E+007.9764E−012.9212E+007.0133E−01
71.3362E+001.6305E+001.9682E+001.0362E+002.1771E+009.0619E−012.4132E+007.9524E−01
81.1031E+001.8436E+001.6427E+001.1618E+001.8222E+001.0140E+002.0246E+008.8843E−01
99.2889E−012.0521E+001.3920E+001.2849E+001.5473E+001.1197E+001.7223E+009.7976E−01
107.9486E−012.2551E+001.1950E+001.4051E+001.3303E+001.2228E+001.4828E+001.0689E+00
116.8939E−012.4530E+001.0372E+001.5225E+001.1557E+001.3237E+001.2894E+001.1560E+00
126.0507E−012.6465E+009.0872E−011.6377E+001.0130E+001.4226E+001.1309E+001.2414E+00
135.3695E−012.8361E+008.0292E−011.7510E+008.9498E−011.5200E+009.9934E−011.3256E+00
144.8145E−013.0218E+007.1494E−011.8628E+007.9641E−011.6161E+008.8908E−011.4087E+00
154.3582E−013.2030E+006.4120E−011.9728E+007.1344E−011.7109E+007.9595E−011.4908E+00
163.9788E−013.3794E+005.7895E−012.0809E+006.4312E−011.8043E+007.1675E−011.5717E+00
173.6588E−013.5504E+005.2601E−012.1867E+005.8312E−011.8958E+006.4901E−011.6512E+00
183.3846E−013.7160E+004.8062E−012.2898E+005.3159E−011.9852E+005.9071E−011.7290E+00
193.1460E−013.8763E+004.4138E−012.3900E+004.8701E−012.0722E+005.4023E−011.8048E+00
202.9353E−014.0315E+004.0715E−012.4869E+004.4817E−012.1566E+004.9625E−011.8783E+00
212.7467E−014.1822E+003.7704E−012.5807E+004.1406E−012.2381E+004.5769E−011.9495E+00
222.5764E−014.3287E+003.5033E−012.6712E+003.8390E−012.3169E+004.2365E−012.0182E+00
232.4215E−014.4716E+003.2647E−012.7585E+003.5706E−012.3928E+003.9343E−012.0844E+00
242.2799E−014.6112E+003.0500E−012.8429E+003.3301E−012.4660E+003.6644E−012.1482E+00
252.1499E−014.7478E+002.8558E−012.9245E+003.1135E−012.5367E+003.4220E−012.2096E+00
262.0304E−014.8818E+002.6793E−013.0035E+002.9173E−012.6050E+003.2033E−012.2689E+00
271.9204E−015.0134E+002.5183E−013.0802E+002.7391E−012.6710E+003.0051E−012.3261E+00
281.8190E−015.1427E+002.3710E−013.1547E+002.5765E−012.7350E+002.8248E−012.3815E+00
291.7255E−015.2699E+002.2358E−013.2272E+002.4278E−012.7972E+002.6603E−012.4351E+00
301.6393E−015.3949E+002.1117E−013.2979E+002.2915E−012.8577E+002.5098E−012.4872E+00
311.5596E−015.5179E+001.9974E−013.3670E+002.1662E−012.9167E+002.3717E−012.5379E+00
321.4859E−015.6390E+001.8921E−013.4345E+002.0509E−012.9742E+002.2447E−012.5873E+00
331.4177E−015.7581E+001.7949E−013.5007E+001.9446E−013.0305E+002.1277E−012.6356E+00
341.3545E−015.8752E+001.7051E−013.5655E+001.8464E−013.0856E+002.0197E−012.6828E+00
351.2957E−015.9905E+001.6220E−013.6291E+001.7556E−013.1397E+001.9199E−012.7290E+00
361.2410E−016.1040E+001.5451E−013.6916E+001.6716E−013.1927E+001.8275E−012.7744E+00
371.1900E−016.2156E+001.4738E−013.7529E+001.5936E−013.2448E+001.7417E−012.8190E+00
381.1423E−014.2364E−021.4075E−013.8132E+001.5213E−013.2960E+001.6621E−012.8628E+00
391.0977E−011.5062E−011.3460E−013.8725E+001.4540E−013.3464E+001.5880E−012.9059E+00
401.0559E−012.5726E−011.2887E−013.9309E+001.3913E−013.3959E+001.5190E−012.9483E+00
411.0165E−013.6238E−011.2352E−013.9883E+001.3329E−013.4447E+001.4546E−012.9901E+00
429.7950E−024.6604E−011.1854E−014.0448E+001.2784E−013.4927E+001.3945E−013.0313E+00
439.4458E−025.6833E−011.1387E−014.1004E+001.2273E−013.5401E+001.3382E−013.0719E+00
449.1160E−026.6932E−011.0950E−014.1552E+001.1796E−013.5867E+001.2855E−013.1119E+00
458.8042E−027.6908E−011.0541E−014.2092E+001.1347E−013.6326E+001.2360E−013.1513E+00
468.5089E−028.6771E−011.0156E−014.2624E+001.0926E−013.6779E+001.1894E−013.1902E+00
478.2290E−029.6528E−019.7934E−024.3148E+001.0530E−013.7225E+001.1456E−013.2285E+00
487.9633E−021.0619E+009.4520E−024.3665E+001.0156E−013.7666E+001.1044E−013.2663E+00
497.7109E−021.1576E+009.1298E−024.4175E+009.8038E−023.8100E+001.0654E−013.3036E+00
507.4709E−021.2524E+008.8253E−024.4678E+009.4707E−023.8527E+001.0286E−013.3403E+00
517.2425E−021.3465E+008.5370E−024.5174E+009.1555E−023.8949E+009.9380E−023.3766E+00
527.0251E−021.4400E+008.2637E−024.5664E+008.8568E−023.9366E+009.6080E−023.4123E+00
536.8180E−021.5328E+008.0044E−024.6147E+008.5733E−023.9777E+009.2949E−023.4476E+00
546.6206E−021.6251E+007.7580E−024.6624E+008.3041E−024.0182E+008.9976E−023.4824E+00
556.4324E−021.7169E+007.5236E−024.7095E+008.0481E−024.0582E+008.7150E−023.5167E+00
566.2530E−021.8083E+007.3004E−024.7561E+007.8044E−024.0977E+008.4461E−023.5506E+00
576.0819E−021.8993E+007.0876E−024.8020E+007.5721E−024.1366E+008.1898E−023.5840E+00
585.9188E−021.9901E+006.8845E−024.8475E+007.3504E−024.1751E+007.9454E−023.6169E+00
595.7634E−022.0806E+006.6905E−024.8924E+007.1387E−024.2131E+007.7121E−023.6494E+00
605.6154E−022.1709E+006.5050E−024.9368E+006.9364E−024.2506E+007.4892E−023.6815E+00

Hf; [Z=72]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.0603E+013.3167E−011.2587E+012.4153E−011.3356E+012.1737E−011.4316E+011.9538E−01
18.5530E+004.0215E−011.0359E+012.8874E−011.1037E+012.5904E−011.1875E+012.3212E−01
25.5915E+005.8256E−017.0794E+004.0530E−017.6076E+003.6123E−018.2428E+003.2187E−01
33.8068E+007.9686E−015.0313E+005.3889E−015.4508E+004.7751E−015.9438E+004.2350E−01
42.7788E+001.0066E+003.8079E+006.6705E−014.1536E+005.8857E−014.5536E+005.2024E−01
52.1162E+001.2155E+002.9904E+007.9273E−013.2813E+006.9714E−013.6138E+006.1455E−01
61.6607E+001.4288E+002.4050E+009.1954E−012.6519E+008.0637E−012.9320E+007.0922E−01
71.3384E+001.6447E+001.9724E+001.0472E+002.1833E+009.1609E−012.4215E+008.0416E−01
81.1046E+001.8590E+001.6463E+001.1738E+001.8276E+001.0248E+002.0319E+008.9816E−01
99.3006E−012.0684E+001.3954E+001.2978E+001.5524E+001.1313E+001.7291E+009.9019E−01
107.9575E−012.2721E+001.1983E+001.4188E+001.3351E+001.2351E+001.4891E+001.0799E+00
116.8963E−012.4704E+001.0400E+001.5367E+001.1599E+001.3364E+001.2950E+001.1674E+00
126.0517E−012.6642E+009.1187E−011.6522E+001.0175E+001.4356E+001.1367E+001.2531E+00
135.3685E−012.8540E+008.0629E−011.7658E+008.9967E−011.5331E+001.0053E+001.3374E+00
144.8099E−013.0401E+007.1829E−011.8776E+008.0104E−011.6293E+008.9498E−011.4205E+00
154.3504E−013.2220E+006.4446E−011.9877E+007.1793E−011.7241E+008.0166E−011.5026E+00
163.9687E−013.3992E+005.8208E−012.0959E+006.4742E−011.8175E+007.2222E−011.5836E+00
173.6475E−013.5715E+005.2899E−012.2020E+005.8721E−011.9093E+006.5419E−011.6632E+00
183.3734E−013.7386E+004.8348E−012.3056E+005.3547E−011.9990E+005.9559E−011.7413E+00
193.1358E−013.9004E+004.4413E−012.4063E+004.9069E−012.0865E+005.4482E−011.8175E+00
202.9268E−014.0574E+004.0984E−012.5041E+004.5166E−012.1715E+005.0057E−011.8916E+00
212.7406E−014.2097E+003.7969E−012.5986E+004.1741E−012.2538E+004.6176E−011.9634E+00
222.5729E−014.3578E+003.5296E−012.6900E+003.8713E−012.3333E+004.2750E−012.0329E+00
232.4207E−014.5021E+003.2908E−012.7783E+003.6018E−012.4102E+003.9708E−012.0999E+00
242.2817E−014.6431E+003.0761E−012.8636E+003.3603E−012.4843E+003.6992E−012.1645E+00
252.1543E−014.7811E+002.8818E−012.9461E+003.1428E−012.5558E+003.4552E−012.2269E+00
262.0372E−014.9164E+002.7052E−013.0259E+002.9459E−012.6249E+003.2351E−012.2870E+00
271.9294E−015.0491E+002.5440E−013.1034E+002.7668E−012.6918E+003.0355E−012.3450E+00
281.8300E−015.1794E+002.3964E−013.1787E+002.6035E−012.7566E+002.8540E−012.4011E+00
291.7383E−015.3075E+002.2609E−013.2519E+002.4539E−012.8195E+002.6882E−012.4555E+00
301.6536E−015.4335E+002.1362E−013.3233E+002.3167E−012.8807E+002.5365E−012.5083E+00
311.5753E−015.5573E+002.0213E−013.3929E+002.1905E−012.9403E+002.3972E−012.5596E+00
321.5028E−015.6790E+001.9152E−013.4610E+002.0743E−012.9984E+002.2691E−012.6096E+00
331.4355E−015.7987E+001.8173E−013.5277E+001.9670E−013.0552E+002.1509E−012.6584E+00
341.3731E−015.9164E+001.7266E−013.5930E+001.8678E−013.1108E+002.0418E−012.7061E+00
351.3149E−016.0321E+001.6427E−013.6570E+001.7761E−013.1653E+001.9410E−012.7528E+00
361.2606E−016.1459E+001.5649E−013.7198E+001.6910E−013.2187E+001.8475E−012.7985E+00
371.2099E−016.2579E+001.4926E−013.7815E+001.6121E−013.2712E+001.7607E−012.8435E+00
381.1623E−016.3680E+001.4255E−013.8422E+001.5388E−013.3227E+001.6801E−012.8876E+00
391.1176E−016.4764E+001.3630E−013.9018E+001.4706E−013.3734E+001.6051E−012.9310E+00
401.0756E−016.5831E+001.3048E−013.9604E+001.4070E−013.4232E+001.5352E−012.9737E+00
411.0359E−016.6882E+001.2505E−014.0181E+001.3477E−013.4723E+001.4699E−013.0158E+00
429.9844E−026.7918E+001.1998E−014.0749E+001.2924E−013.5206E+001.4090E−013.0572E+00
439.6296E−026.8939E+001.1523E−014.1308E+001.2405E−013.5682E+001.3519E−013.0980E+00
449.2931E−026.9948E+001.1079E−014.1858E+001.1920E−013.6150E+001.2984E−013.1383E+00
458.9736E−027.0944E+001.0661E−014.2400E+001.1464E−013.6612E+001.2483E−013.1779E+00
468.6697E−027.1929E+001.0269E−014.2935E+001.1037E−013.7067E+001.2011E−013.2170E+00
478.3804E−027.2903E+009.8996E−024.3461E+001.0634E−013.7516E+001.1567E−013.2556E+00
488.1047E−027.3867E+009.5515E−024.3981E+001.0254E−013.7959E+001.1148E−013.2936E+00
497.8417E−027.4823E+009.2229E−024.4493E+009.8959E−023.8395E+001.0754E−013.3311E+00
507.5906E−027.5771E+008.9122E−024.4998E+009.5574E−023.8826E+001.0380E−013.3681E+00
517.3508E−027.6712E+008.6181E−024.5497E+009.2370E−023.9250E+001.0027E−013.4046E+00
527.1216E−027.7646E+008.3393E−024.5989E+008.9335E−023.9669E+009.6929E−023.4406E+00
536.9025E−027.8576E+008.0747E−024.6475E+008.6455E−024.0083E+009.3756E−023.4761E+00
546.6931E−027.9501E+007.8232E−024.6954E+008.3719E−024.0490E+009.0743E−023.5112E+00
556.4928E−028.0422E+007.5840E−024.7428E+008.1117E−024.0893E+008.7879E−023.5457E+00
566.3014E−028.1340E+007.3561E−024.7897E+007.8640E−024.1291E+008.5153E−023.5799E+00
576.1185E−028.2257E+007.1388E−024.8360E+007.6280E−024.1684E+008.2556E−023.6135E+00
585.9437E−028.3172E+006.9314E−024.8817E+007.4028E−024.2071E+008.0080E−023.6468E+00
595.7770E−028.4086E+006.7333E−024.9270E+007.1877E−024.2455E+007.7716E−023.6796E+00
605.6180E−028.5000E+006.5440E−024.9717E+006.9822E−024.2833E+007.5458E−023.7119E+00

Ta; [Z=73]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.0252E+013.4524E−011.2220E+012.5112E−011.2978E+012.2603E−011.3921E+012.0321E−01
18.4411E+004.1045E−011.0249E+012.9477E−011.0927E+012.6456E−011.1761E+012.3716E−01
25.6583E+005.8029E−017.1658E+004.0479E−017.7018E+003.6107E−018.3465E+003.2197E−01
33.8629E+007.9165E−015.1069E+005.3696E−015.5339E+004.7621E−016.0357E+004.2267E−01
42.8046E+001.0060E+003.8463E+006.6807E−014.1971E+005.8988E−014.6029E+005.2172E−01
52.1272E+001.2204E+003.0086E+007.9718E−013.3027E+007.0144E−013.6390E+006.1865E−01
61.6661E+001.4377E+002.4145E+009.2656E−012.6637E+008.1291E−012.9466E+007.1529E−01
71.3417E+001.6565E+001.9784E+001.0560E+002.1911E+009.2425E−012.4315E+008.1166E−01
81.1071E+001.8728E+001.6507E+001.1841E+001.8335E+001.0343E+002.0396E+009.0679E−01
99.3225E−012.0837E+001.3991E+001.3093E+001.5574E+001.1418E+001.7356E+009.9974E−01
107.9782E−012.2883E+001.2018E+001.4311E+001.3397E+001.2464E+001.4951E+001.0901E+00
116.9154E−012.4871E+001.0434E+001.5497E+001.1644E+001.3482E+001.3008E+001.1781E+00
126.0684E−012.6812E+009.1521E−011.6656E+001.0219E+001.4477E+001.1424E+001.2641E+00
135.3819E−012.8711E+008.0957E−011.7792E+009.0400E−011.5454E+001.0109E+001.3486E+00
144.8195E−013.0572E+007.2144E−011.8911E+008.0525E−011.6416E+009.0037E−011.4318E+00
154.3563E−013.2393E+006.4743E−012.0012E+007.2197E−011.7364E+008.0686E−011.5138E+00
163.9714E−013.4170E+005.8486E−012.1095E+006.5124E−011.8299E+007.2718E−011.5948E+00
173.6480E−013.5900E+005.3158E−012.2159E+005.9081E−011.9218E+006.5888E−011.6746E+00
183.3726E−013.7579E+004.8588E−012.3198E+005.3883E−012.0119E+006.0000E−011.7529E+00
193.1346E−013.9207E+004.4640E−012.4211E+004.9384E−012.0998E+005.4895E−011.8295E+00
202.9258E−014.0786E+004.1199E−012.5195E+004.5464E−012.1854E+005.0444E−011.9042E+00
212.7403E−014.2320E+003.8176E−012.6148E+004.2023E−012.2684E+004.6539E−011.9767E+00
222.5736E−014.3811E+003.5498E−012.7071E+003.8982E−012.3488E+004.3093E−012.0469E+00
232.4225E−014.5265E+003.3108E−012.7963E+003.6276E−012.4265E+004.0033E−012.1147E+00
242.2846E−014.6685E+003.0959E−012.8826E+003.3853E−012.5015E+003.7300E−012.1803E+00
252.1583E−014.8074E+002.9015E−012.9661E+003.1671E−012.5740E+003.4846E−012.2435E+00
262.0422E−014.9436E+002.7248E−013.0469E+002.9695E−012.6441E+003.2632E−012.3045E+00
271.9352E−015.0772E+002.5635E−013.1253E+002.7898E−012.7119E+003.0624E−012.3635E+00
281.8365E−015.2085E+002.4157E−013.2015E+002.6258E−012.7777E+002.8798E−012.4205E+00
291.7455E−015.3376E+002.2799E−013.2756E+002.4757E−012.8414E+002.7130E−012.4757E+00
301.6612E−015.4645E+002.1549E−013.3478E+002.3378E−012.9034E+002.5603E−012.5293E+00
311.5833E−015.5893E+002.0396E−013.4183E+002.2109E−012.9638E+002.4200E−012.5814E+00
321.5111E−015.7121E+001.9331E−013.4871E+002.0939E−013.0227E+002.2909E−012.6320E+00
331.4441E−015.8328E+001.8346E−013.5545E+001.9859E−013.0802E+002.1718E−012.6815E+00
341.3818E−015.9516E+001.7433E−013.6205E+001.8860E−013.1364E+002.0619E−012.7298E+00
351.3238E−016.0684E+001.6588E−013.6853E+001.7934E−013.1915E+001.9600E−012.7771E+00
361.2697E−016.1833E+001.5803E−013.7488E+001.7076E−013.2455E+001.8657E−012.8234E+00
371.2190E−016.2964E+001.5074E−013.8111E+001.6280E−013.2985E+001.7781E−012.8688E+00
381.1716E−016.4076E+001.4396E−013.8724E+001.5539E−013.3506E+001.6967E−012.9134E+00
391.1269E−016.5171E+001.3765E−013.9326E+001.4850E−013.4018E+001.6209E−012.9573E+00
401.0849E−016.6248E+001.3176E−013.9918E+001.4208E−013.4522E+001.5502E−013.0004E+00
411.0452E−016.7310E+001.2627E−014.0501E+001.3608E−013.5017E+001.4843E−013.0428E+00
421.0077E−016.8357E+001.2114E−014.1074E+001.3048E−013.5505E+001.4226E−013.0847E+00
439.7222E−026.9388E+001.1634E−014.1638E+001.2524E−013.5985E+001.3649E−013.1258E+00
449.3850E−027.0407E+001.1184E−014.2194E+001.2033E−013.6458E+001.3109E−013.1664E+00
459.0645E−027.1413E+001.0762E−014.2742E+001.1572E−013.6924E+001.2601E−013.2064E+00
468.7595E−027.2406E+001.0365E−014.3281E+001.1139E−013.7384E+001.2125E−013.2459E+00
478.4688E−027.3389E+009.9911E−024.3813E+001.0732E−013.7837E+001.1676E−013.2848E+00
488.1914E−027.4362E+009.6389E−024.4337E+001.0348E−013.8283E+001.1253E−013.3232E+00
497.9265E−027.5326E+009.3066E−024.4854E+009.9858E−023.8724E+001.0854E−013.3610E+00
507.6734E−027.6281E+008.9924E−024.5364E+009.6436E−023.9158E+001.0477E−013.3984E+00
517.4313E−027.7230E+008.6950E−024.5868E+009.3199E−023.9587E+001.0120E−013.4352E+00
527.1996E−027.8172E+008.4132E−024.6364E+009.0132E−024.0010E+009.7825E−023.4715E+00
536.9779E−027.9108E+008.1458E−024.6855E+008.7224E−024.0427E+009.4622E−023.5074E+00
546.7656E−028.0040E+007.8917E−024.7339E+008.4461E−024.0839E+009.1581E−023.5428E+00
556.5623E−028.0967E+007.6500E−024.7818E+008.1835E−024.1246E+008.8690E−023.5777E+00
566.3678E−028.1892E+007.4199E−024.8291E+007.9335E−024.1648E+008.5939E−023.6122E+00
576.1816E−028.2815E+007.2005E−024.8758E+007.6953E−024.2044E+008.3319E−023.6462E+00
586.0035E−028.3736E+006.9912E−024.9220E+007.4681E−024.2436E+008.0821E−023.6798E+00
595.8333E−028.4656E+006.7913E−024.9677E+007.2512E−024.2823E+007.8437E−023.7130E+00
605.6707E−028.5576E+006.6002E−025.0129E+007.0439E−024.3206E+007.6160E−023.7457E+00

W; [Z=74]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.9115E+003.5816E−011.1863E+012.6042E−011.2610E+012.3446E−011.3535E+012.1086E−01
18.2957E+004.1927E−011.0102E+013.0129E−011.0776E+012.7053E−011.1606E+012.4263E−01
25.6909E+005.7992E−017.2132E+004.0557E−017.7550E+003.6206E−018.4066E+003.2309E−01
33.9107E+007.8642E−015.1727E+005.3510E−015.6066E+004.7499E−016.1167E+004.2192E−01
42.8318E+001.0027E+003.8873E+006.6760E−014.2435E+005.8992E−014.6555E+005.2211E−01
52.1405E+001.2214E+003.0308E+007.9949E−013.3287E+007.0391E−013.6694E+006.2119E−01
61.6729E+001.4430E+002.4268E+009.3153E−012.6788E+008.1770E−012.9648E+007.1987E−01
71.3458E+001.6651E+001.9859E+001.0632E+002.2006E+009.3099E−012.4433E+008.1795E−01
81.1102E+001.8840E+001.6559E+001.1931E+001.8403E+001.0426E+002.0482E+009.1448E−01
99.3494E−012.0969E+001.4032E+001.3198E+001.5628E+001.1514E+001.7426E+001.0086E+00
108.0033E−012.3029E+001.2054E+001.4428E+001.3444E+001.2571E+001.5012E+001.0999E+00
116.9387E−012.5025E+001.0468E+001.5621E+001.1688E+001.3596E+001.3064E+001.1885E+00
126.0890E−012.6969E+009.1852E−011.6784E+001.0262E+001.4596E+001.1478E+001.2750E+00
135.3988E−012.8870E+008.1279E−011.7923E+009.0818E−011.5574E+001.0162E+001.3596E+00
144.8322E−013.0732E+007.2452E−011.9042E+008.0931E−011.6537E+009.0554E−011.4428E+00
154.3648E−013.2555E+006.5034E−012.0144E+007.2586E−011.7485E+008.1185E−011.5249E+00
163.9763E−013.4336E+005.8757E−012.1228E+006.5494E−011.8420E+007.3195E−011.6059E+00
173.6501E−013.6072E+005.3409E−012.2292E+005.9428E−011.9340E+006.6340E−011.6858E+00
183.3729E−013.7758E+004.8821E−012.3335E+005.4209E−012.0243E+006.0426E−011.7643E+00
193.1339E−013.9396E+004.4857E−012.4352E+004.9690E−012.1126E+005.5296E−011.8412E+00
202.9249E−014.0985E+004.1405E−012.5342E+004.5751E−012.1987E+005.0820E−011.9163E+00
212.7398E−014.2528E+003.8374E−012.6303E+004.2295E−012.2824E+004.6892E−011.9893E+00
222.5738E−014.4030E+003.5691E−012.7234E+003.9242E−012.3635E+004.3426E−012.0602E+00
232.4236E−014.5493E+003.3297E−012.8135E+003.6526E−012.4420E+004.0348E−012.1289E+00
242.2868E−014.6923E+003.1147E−012.9007E+003.4095E−012.5180E+003.7600E−012.1952E+00
252.1614E−014.8321E+002.9203E−012.9851E+003.1905E−012.5914E+003.5133E−012.2594E+00
262.0462E−014.9692E+002.7436E−013.0669E+002.9924E−012.6624E+003.2906E−012.3213E+00
271.9401E−015.1038E+002.5822E−013.1462E+002.8121E−012.7311E+003.0888E−012.3811E+00
281.8422E−015.2360E+002.4343E−013.2232E+002.6476E−012.7977E+002.9051E−012.4390E+00
291.7517E−015.3660E+002.2984E−013.2982E+002.4969E−012.8623E+002.7374E−012.4950E+00
301.6680E−015.4938E+002.1731E−013.3712E+002.3584E−012.9251E+002.5837E−012.5494E+00
311.5905E−015.6196E+002.0575E−013.4425E+002.2309E−012.9863E+002.4425E−012.6022E+00
321.5186E−015.7434E+001.9505E−013.5122E+002.1133E−013.0459E+002.3125E−012.6536E+00
331.4519E−015.8651E+001.8515E−013.5803E+002.0046E−013.1041E+002.1926E−012.7037E+00
341.3899E−015.9850E+001.7598E−013.6470E+001.9040E−013.1610E+002.0817E−012.7526E+00
351.3321E−016.1029E+001.6747E−013.7124E+001.8108E−013.2168E+001.9791E−012.8005E+00
361.2782E−016.2189E+001.5956E−013.7766E+001.7242E−013.2714E+001.8838E−012.8473E+00
371.2277E−016.3330E+001.5221E−013.8396E+001.6439E−013.3250E+001.7954E−012.8933E+00
381.1803E−016.4453E+001.4537E−013.9014E+001.5691E−013.3776E+001.7132E−012.9384E+00
391.1358E−016.5558E+001.3900E−013.9623E+001.4995E−013.4293E+001.6367E−012.9827E+00
401.0938E−016.6647E+001.3305E−014.0221E+001.4346E−013.4801E+001.5653E−013.0262E+00
411.0542E−016.7719E+001.2750E−014.0809E+001.3740E−013.5302E+001.4986E−013.0691E+00
421.0168E−016.8776E+001.2232E−014.1388E+001.3173E−013.5794E+001.4363E−013.1113E+00
439.8125E−026.9818E+001.1746E−014.1958E+001.2643E−013.6279E+001.3780E−013.1529E+00
449.4751E−027.0846E+001.1291E−014.2519E+001.2146E−013.6756E+001.3234E−013.1938E+00
459.1542E−027.1861E+001.0863E−014.3072E+001.1681E−013.7227E+001.2721E−013.2342E+00
468.8484E−027.2864E+001.0462E−014.3616E+001.1243E−013.7691E+001.2239E−013.2740E+00
478.5567E−027.3856E+001.0084E−014.4153E+001.0831E−013.8148E+001.1785E−013.3133E+00
488.2781E−027.4837E+009.7274E−024.4683E+001.0443E−013.8599E+001.1358E−013.3520E+00
498.0118E−027.5809E+009.3912E−024.5205E+001.0076E−013.9043E+001.0954E−013.3902E+00
507.7569E−027.6773E+009.0734E−024.5719E+009.7304E−023.9482E+001.0573E−013.4279E+00
517.5129E−027.7728E+008.7727E−024.6227E+009.4032E−023.9914E+001.0213E−013.4650E+00
527.2790E−027.8678E+008.4878E−024.6729E+009.0933E−024.0341E+009.8720E−023.5017E+00
537.0549E−027.9621E+008.2175E−024.7224E+008.7995E−024.0763E+009.5485E−023.5379E+00
546.8400E−028.0559E+007.9607E−024.7713E+008.5205E−024.1179E+009.2414E−023.5736E+00
556.6340E−028.1493E+007.7165E−024.8196E+008.2553E−024.1589E+008.9496E−023.6089E+00
566.4365E−028.2424E+007.4840E−024.8673E+008.0029E−024.1995E+008.6720E−023.6437E+00
576.2471E−028.3352E+007.2625E−024.9145E+007.7625E−024.2396E+008.4076E−023.6781E+00
586.0657E−028.4279E+007.0511E−024.9612E+007.5332E−024.2791E+008.1556E−023.7120E+00
595.8921E−028.5206E+006.8493E−025.0073E+007.3144E−024.3182E+007.9151E−023.7455E+00
605.7260E−028.6132E+006.6564E−025.0529E+007.1053E−024.3568E+007.6855E−023.7786E+00

Re; [Z=75]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.6041E+003.7069E−011.1541E+012.6947E−011.2279E+012.4267E−011.3189E+012.1831E−01
18.1535E+004.2816E−019.9578E+003.0788E−011.0630E+012.7656E−011.1454E+012.4815E−01
25.7116E+005.8065E−017.2475E+004.0704E−017.7945E+003.6365E−018.4521E+003.2473E−01
33.9544E+007.8203E−015.2339E+005.3372E−015.6745E+004.7418E−016.1925E+004.2153E−01
42.8597E+009.9894E−013.9297E+006.6687E−014.2914E+005.8974E−014.7098E+005.2232E−01
52.1553E+001.2213E+003.0555E+008.0109E−013.3575E+007.0578E−013.7028E+006.2321E−01
61.6809E+001.4469E+002.4412E+009.3572E−012.6960E+008.2184E−012.9854E+007.2387E−01
71.3507E+001.6727E+001.9947E+001.0698E+002.2116E+009.3719E−012.4568E+008.2377E−01
81.1138E+001.8946E+001.6618E+001.2017E+001.8479E+001.0506E+002.0578E+009.2188E−01
99.3805E−012.1098E+001.4077E+001.3301E+001.5686E+001.1609E+001.7499E+001.0173E+00
108.0323E−012.3174E+001.2092E+001.4544E+001.3493E+001.2678E+001.5074E+001.1097E+00
116.9655E−012.5181E+001.0503E+001.5747E+001.1732E+001.3712E+001.3120E+001.1991E+00
126.1130E−012.7131E+009.2184E−011.6917E+001.0304E+001.4717E+001.1531E+001.2860E+00
135.4191E−012.9034E+008.1598E−011.8059E+009.1226E−011.5699E+001.0213E+001.3709E+00
144.8479E−013.0898E+007.2757E−011.9179E+008.1325E−011.6662E+009.1051E−011.4543E+00
154.3760E−013.2723E+006.5321E−012.0281E+007.2964E−011.7611E+008.1666E−011.5364E+00
163.9835E−013.4508E+005.9024E−012.1365E+006.5852E−011.8546E+007.3656E−011.6174E+00
173.6541E−013.6248E+005.3655E−012.2431E+005.9766E−011.9466E+006.6778E−011.6973E+00
183.3745E−013.7942E+004.9049E−012.3475E+005.4525E−012.0371E+006.0840E−011.7759E+00
193.1341E−013.9588E+004.5068E−012.4496E+004.9986E−012.1257E+005.5684E−011.8531E+00
202.9245E−014.1187E+004.1603E−012.5491E+004.6030E−012.2122E+005.1185E−011.9286E+00
212.7393E−014.2740E+003.8563E−012.6459E+004.2558E−012.2965E+004.7236E−012.0021E+00
222.5738E−014.4252E+003.5874E−012.7397E+003.9493E−012.3783E+004.3750E−012.0736E+00
232.4243E−014.5725E+003.3477E−012.8307E+003.6767E−012.4576E+004.0655E−012.1430E+00
242.2883E−014.7163E+003.1326E−012.9187E+003.4328E−012.5343E+003.7892E−012.2101E+00
252.1639E−014.8571E+002.9381E−013.0040E+003.2132E−012.6086E+003.5412E−012.2750E+00
262.0495E−014.9951E+002.7614E−013.0867E+003.0145E−012.6805E+003.3174E−012.3378E+00
271.9441E−015.1305E+002.6001E−013.1669E+002.8338E−012.7501E+003.1146E−012.3985E+00
281.8469E−015.2636E+002.4521E−013.2449E+002.6687E−012.8175E+002.9299E−012.4572E+00
291.7570E−015.3945E+002.3161E−013.3207E+002.5175E−012.8830E+002.7613E−012.5141E+00
301.6739E−015.5232E+002.1907E−013.3946E+002.3786E−012.9467E+002.6068E−012.5692E+00
311.5968E−015.6500E+002.0748E−013.4666E+002.2505E−013.0086E+002.4647E−012.6228E+00
321.5254E−015.7747E+001.9676E−013.5370E+002.1324E−013.0689E+002.3339E−012.6749E+00
331.4590E−015.8975E+001.8682E−013.6059E+002.0231E−013.1279E+002.2131E−012.7257E+00
341.3973E−016.0183E+001.7760E−013.6733E+001.9218E−013.1855E+002.1014E−012.7753E+00
351.3397E−016.1372E+001.6904E−013.7394E+001.8279E−013.2418E+001.9980E−012.8237E+00
361.2860E−016.2543E+001.6108E−013.8042E+001.7408E−013.2970E+001.9020E−012.8711E+00
371.2357E−016.3695E+001.5367E−013.8678E+001.6597E−013.3512E+001.8128E−012.9176E+00
381.1885E−016.4829E+001.4678E−013.9303E+001.5843E−013.4044E+001.7298E−012.9632E+00
391.1442E−016.5945E+001.4035E−013.9917E+001.5140E−013.4566E+001.6525E−013.0080E+00
401.1023E−016.7044E+001.3435E−014.0521E+001.4484E−013.5080E+001.5804E−013.0520E+00
411.0628E−016.8127E+001.2874E−014.1115E+001.3872E−013.5585E+001.5131E−013.0952E+00
421.0255E−016.9194E+001.2350E−014.1700E+001.3299E−013.6082E+001.4501E−013.1379E+00
439.9000E−027.0246E+001.1859E−014.2275E+001.2763E−013.6572E+001.3912E−013.1798E+00
449.5629E−027.1284E+001.1398E−014.2842E+001.2261E−013.7053E+001.3359E−013.2211E+00
459.2420E−027.2309E+001.0966E−014.3400E+001.1790E−013.7528E+001.2840E−013.2619E+00
468.9360E−027.3321E+001.0560E−014.3950E+001.1347E−013.7996E+001.2353E−013.3020E+00
478.6439E−027.4321E+001.0177E−014.4492E+001.0930E−013.8458E+001.1895E−013.3416E+00
488.3645E−027.5311E+009.8170E−024.5026E+001.0538E−013.8913E+001.1463E−013.3807E+00
498.0971E−027.6291E+009.4769E−024.5553E+001.0167E−013.9361E+001.1055E−013.4192E+00
507.8409E−027.7262E+009.1555E−024.6073E+009.8178E−023.9804E+001.0670E−013.4573E+00
517.5953E−027.8225E+008.8513E−024.6586E+009.4870E−024.0241E+001.0306E−013.4948E+00
527.3596E−027.9182E+008.5632E−024.7092E+009.1739E−024.0671E+009.9614E−023.5318E+00
537.1334E−028.0132E+008.2899E−024.7592E+008.8769E−024.1097E+009.6347E−023.5683E+00
546.9162E−028.1076E+008.0304E−024.8085E+008.5951E−024.1516E+009.3246E−023.6044E+00
556.7076E−028.2017E+007.7836E−024.8573E+008.3272E−024.1931E+009.0300E−023.6400E+00
566.5073E−028.2954E+007.5487E−024.9054E+008.0724E−024.2340E+008.7498E−023.6751E+00
576.3150E−028.3888E+007.3249E−024.9530E+007.8297E−024.2745E+008.4830E−023.7098E+00
586.1304E−028.4821E+007.1115E−025.0001E+007.5983E−024.3144E+008.2287E−023.7441E+00
595.9535E−028.5753E+006.9077E−025.0467E+007.3774E−024.3539E+007.9861E−023.7780E+00
605.7839E−028.6685E+006.7129E−025.0927E+007.1665E−024.3929E+007.7544E−023.8114E+00

Os; [Z=76]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.3019E+003.8287E−011.1224E+012.7839E−011.1952E+012.5078E−011.2847E+012.2570E−01
17.9932E+004.3726E−019.7929E+003.1472E−011.0461E+012.8284E−011.1279E+012.5391E−01
25.7088E+005.8245E−017.2547E+004.0927E−017.8055E+003.6592E−018.4672E+003.2699E−01
33.9885E+007.7808E−015.2837E+005.3268E−015.7303E+004.7367E−016.2553E+004.2141E−01
42.8862E+009.9394E−013.9707E+006.6547E−014.3379E+005.8900E−014.7626E+005.2205E−01
52.1708E+001.2186E+003.0821E+008.0126E−013.3883E+007.0644E−013.7385E+006.2420E−01
61.6897E+001.4478E+002.4574E+009.3820E−012.7155E+008.2453E−013.0085E+007.2664E−01
71.3561E+001.6773E+002.0048E+001.0747E+002.2241E+009.4199E−012.4721E+008.2838E−01
81.1178E+001.9026E+001.6685E+001.2089E+001.8564E+001.0574E+002.0684E+009.2823E−01
99.4147E−012.1205E+001.4127E+001.3392E+001.5749E+001.1694E+001.7579E+001.0252E+00
108.0643E−012.3301E+001.2132E+001.4651E+001.3544E+001.2777E+001.5138E+001.1188E+00
116.9955E−012.5321E+001.0539E+001.5866E+001.1777E+001.3821E+001.3176E+001.2092E+00
126.1403E−012.7278E+009.2519E−011.7043E+001.0346E+001.4834E+001.1583E+001.2967E+00
135.4426E−012.9186E+008.1918E−011.8190E+009.1627E−011.5820E+001.0263E+001.3820E+00
144.8668E−013.1052E+007.3060E−011.9312E+008.1710E−011.6785E+009.1533E−011.4656E+00
154.3902E−013.2879E+006.5606E−012.0415E+007.3332E−011.7734E+008.2130E−011.5477E+00
163.9932E−013.4667E+005.9287E−012.1499E+006.6201E−011.8669E+007.4101E−011.6287E+00
173.6600E−013.6413E+005.3898E−012.2565E+006.0094E−011.9590E+006.7202E−011.7086E+00
183.3776E−013.8114E+004.9271E−012.3612E+005.4833E−012.0496E+006.1240E−011.7874E+00
193.1353E−013.9768E+004.5274E−012.4636E+005.0274E−012.1384E+005.6062E−011.8647E+00
202.9246E−014.1376E+004.1795E−012.5636E+004.6300E−012.2253E+005.1540E−011.9404E+00
212.7391E−014.2939E+003.8745E−012.6609E+004.2814E−012.3100E+004.7570E−012.0145E+00
222.5737E−014.4460E+003.6049E−012.7554E+003.9735E−012.3924E+004.4065E−012.0865E+00
232.4247E−014.5942E+003.3649E−012.8471E+003.6999E−012.4724E+004.0954E−012.1565E+00
242.2893E−014.7390E+003.1495E−012.9360E+003.4552E−012.5499E+003.8177E−012.2243E+00
252.1656E−014.8807E+002.9550E−013.0221E+003.2350E−012.6250E+003.5684E−012.2901E+00
262.0520E−015.0195E+002.7784E−013.1057E+003.0358E−012.6978E+003.3435E−012.3536E+00
271.9474E−015.1558E+002.6171E−013.1868E+002.8546E−012.7682E+003.1397E−012.4151E+00
281.8509E−015.2898E+002.4692E−013.2655E+002.6892E−012.8365E+002.9542E−012.4747E+00
291.7616E−015.4215E+002.3332E−013.3422E+002.5376E−012.9028E+002.7847E−012.5323E+00
301.6790E−015.5512E+002.2077E−013.4169E+002.3982E−012.9673E+002.6294E−012.5883E+00
311.6024E−015.6788E+002.0916E−013.4897E+002.2697E−013.0300E+002.4866E−012.6426E+00
321.5314E−015.8045E+001.9842E−013.5608E+002.1511E−013.0911E+002.3550E−012.6954E+00
331.4654E−015.9282E+001.8845E−013.6304E+002.0412E−013.1507E+002.2334E−012.7469E+00
341.4039E−016.0500E+001.7919E−013.6985E+001.9394E−013.2090E+002.1210E−012.7971E+00
351.3467E−016.1700E+001.7059E−013.7653E+001.8449E−013.2660E+002.0167E−012.8461E+00
361.2932E−016.2881E+001.6258E−013.8308E+001.7571E−013.3218E+001.9200E−012.8941E+00
371.2432E−016.4043E+001.5513E−013.8950E+001.6755E−013.3765E+001.8300E−012.9411E+00
381.1962E−016.5187E+001.4818E−013.9581E+001.5994E−013.4303E+001.7463E−012.9872E+00
391.1520E−016.6314E+001.4169E−014.0202E+001.5285E−013.4831E+001.6683E−013.0325E+00
401.1104E−016.7424E+001.3564E−014.0812E+001.4623E−013.5349E+001.5955E−013.0769E+00
411.0711E−016.8517E+001.2998E−014.1411E+001.4004E−013.5859E+001.5275E−013.1207E+00
421.0338E−016.9594E+001.2468E−014.2002E+001.3426E−013.6361E+001.4639E−013.1637E+00
439.9843E−027.0656E+001.1972E−014.2583E+001.2885E−013.6855E+001.4043E−013.2060E+00
449.6481E−027.1704E+001.1507E−014.3155E+001.2377E−013.7342E+001.3485E−013.2477E+00
459.3277E−027.2738E+001.1070E−014.3718E+001.1900E−013.7821E+001.2961E−013.2888E+00
469.0220E−027.3759E+001.0659E−014.4273E+001.1452E−013.8293E+001.2468E−013.3294E+00
478.7298E−027.4769E+001.0272E−014.4820E+001.1031E−013.8759E+001.2005E−013.3693E+00
488.4501E−027.5767E+009.9077E−024.5360E+001.0634E−013.9218E+001.1568E−013.4087E+00
498.1821E−027.6755E+009.5637E−024.5891E+001.0260E−013.9671E+001.1156E−013.4476E+00
507.9250E−027.7734E+009.2386E−024.6416E+009.9059E−024.0117E+001.0767E−013.4859E+00
517.6782E−027.8705E+008.9310E−024.6933E+009.5716E−024.0558E+001.0399E−013.5238E+00
527.4410E−027.9668E+008.6397E−024.7444E+009.2550E−024.0993E+001.0051E−013.5611E+00
537.2131E−028.0625E+008.3633E−024.7948E+008.9549E−024.1422E+009.7209E−023.5980E+00
546.9938E−028.1576E+008.1009E−024.8447E+008.6701E−024.1846E+009.4078E−023.6344E+00
556.7830E−028.2523E+007.8515E−024.8938E+008.3995E−024.2264E+009.1103E−023.6703E+00
566.5802E−028.3466E+007.6141E−024.9425E+008.1421E−024.2677E+008.8274E−023.7058E+00
576.3851E−028.4406E+007.3880E−024.9905E+007.8970E−024.3085E+008.5581E−023.7408E+00
586.1976E−028.5344E+007.1723E−025.0380E+007.6634E−024.3489E+008.3014E−023.7754E+00
596.0174E−028.6282E+006.9665E−025.0850E+007.4405E−024.3887E+008.0567E−023.8096E+00
605.8444E−028.7219E+006.7698E−025.1315E+007.2276E−024.4281E+007.8230E−023.8434E+00

Ir; [Z=77]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.0094E+003.9465E−011.0915E+012.8713E−011.1634E+012.5876E−011.2514E+012.3298E−01
17.8231E+004.4641E−019.6163E+003.2167E−011.0280E+012.8924E−011.1091E+012.5978E−01
25.6873E+005.8508E−017.2404E+004.1210E−017.7938E+003.6873E−018.4580E+003.2972E−01
34.0132E+007.7474E−015.3222E+005.3206E−015.7741E+004.7355E−016.3052E+004.2163E−01
42.9103E+009.8831E−014.0090E+006.6376E−014.3815E+005.8800E−014.8124E+005.2156E−01
52.1863E+001.2141E+003.1093E+008.0039E−013.4200E+007.0623E−013.7752E+006.2443E−01
61.6988E+001.4462E+002.4750E+009.3923E−012.7366E+008.2599E−013.0335E+007.2837E−01
71.3618E+001.6793E+002.0161E+001.0780E+002.2380E+009.4548E−012.4889E+008.3189E−01
81.1219E+001.9080E+001.6760E+001.2146E+001.8658E+001.0629E+002.0800E+009.3354E−01
99.4506E−012.1289E+001.4181E+001.3471E+001.5817E+001.1769E+001.7664E+001.0322E+00
108.0983E−012.3409E+001.2175E+001.4748E+001.3598E+001.2867E+001.5205E+001.1272E+00
117.0279E−012.5444E+001.0576E+001.5977E+001.1823E+001.3924E+001.3233E+001.2187E+00
126.1704E−012.7411E+009.2861E−011.7163E+001.0388E+001.4945E+001.1635E+001.3070E+00
135.4690E−012.9325E+008.2241E−011.8316E+009.2024E−011.5937E+001.0312E+001.3928E+00
144.8887E−013.1194E+007.3365E−011.9441E+008.2089E−011.6905E+009.2001E−011.4766E+00
154.4071E−013.3024E+006.5890E−012.0545E+007.3693E−011.7855E+008.2581E−011.5589E+00
164.0054E−013.4816E+005.9550E−012.1630E+006.6543E−011.8791E+007.4533E−011.6399E+00
173.6681E−013.6566E+005.4139E−012.2697E+006.0415E−011.9712E+006.7613E−011.7198E+00
183.3824E−013.8274E+004.9492E−012.3745E+005.5133E−012.0618E+006.1629E−011.7986E+00
193.1378E−013.9936E+004.5476E−012.4772E+005.0555E−012.1508E+005.6429E−011.8760E+00
202.9256E−014.1553E+004.1982E−012.5775E+004.6563E−012.2380E+005.1885E−011.9520E+00
212.7393E−014.3125E+003.8921E−012.6753E+004.3061E−012.3231E+004.7895E−012.0264E+00
222.5737E−014.4655E+003.6217E−012.7704E+003.9970E−012.4061E+004.4372E−012.0989E+00
232.4249E−014.6147E+003.3812E−012.8628E+003.7224E−012.4867E+004.1245E−012.1695E+00
242.2900E−014.7604E+003.1656E−012.9525E+003.4769E−012.5649E+003.8453E−012.2380E+00
252.1669E−014.9030E+002.9711E−013.0394E+003.2561E−012.6408E+003.5949E−012.3044E+00
262.0540E−015.0427E+002.7945E−013.1238E+003.0563E−012.7143E+003.3689E−012.3688E+00
271.9500E−015.1799E+002.6333E−013.2057E+002.8748E−012.7856E+003.1642E−012.4311E+00
281.8541E−015.3146E+002.4855E−013.2854E+002.7090E−012.8547E+002.9778E−012.4914E+00
291.7654E−015.4472E+002.3495E−013.3628E+002.5570E−012.9218E+002.8076E−012.5498E+00
301.6833E−015.5778E+002.2240E−013.4383E+002.4173E−012.9871E+002.6515E−012.6065E+00
311.6072E−015.7063E+002.1079E−013.5119E+002.2884E−013.0505E+002.5080E−012.6616E+00
321.5366E−015.8328E+002.0002E−013.5838E+002.1693E−013.1123E+002.3757E−012.7152E+00
331.4710E−015.9575E+001.9003E−013.6540E+002.0591E−013.1727E+002.2534E−012.7673E+00
341.4099E−016.0803E+001.8075E−013.7229E+001.9568E−013.2316E+002.1403E−012.8182E+00
351.3530E−016.2013E+001.7211E−013.7903E+001.8618E−013.2892E+002.0353E−012.8678E+00
361.2998E−016.3203E+001.6407E−013.8564E+001.7734E−013.3457E+001.9379E−012.9164E+00
371.2500E−016.4376E+001.5656E−013.9213E+001.6912E−013.4010E+001.8472E−012.9639E+00
381.2033E−016.5531E+001.4957E−013.9850E+001.6145E−013.4553E+001.7628E−013.0105E+00
391.1593E−016.6668E+001.4304E−014.0477E+001.5430E−013.5087E+001.6841E−013.0563E+00
401.1179E−016.7788E+001.3693E−014.1092E+001.4762E−013.5610E+001.6106E−013.1012E+00
411.0788E−016.8891E+001.3122E−014.1698E+001.4138E−013.6125E+001.5420E−013.1453E+00
421.0417E−016.9979E+001.2587E−014.2294E+001.3554E−013.6632E+001.4777E−013.1888E+00
431.0065E−017.1051E+001.2086E−014.2880E+001.3006E−013.7131E+001.4176E−013.2315E+00
449.7301E−027.2108E+001.1616E−014.3458E+001.2493E−013.7622E+001.3612E−013.2736E+00
459.4107E−027.3152E+001.1174E−014.4026E+001.2011E−013.8106E+001.3082E−013.3151E+00
469.1058E−027.4182E+001.0759E−014.4587E+001.1559E−013.8582E+001.2584E−013.3560E+00
478.8140E−027.5200E+001.0368E−014.5139E+001.1133E−013.9052E+001.2115E−013.3963E+00
488.5345E−027.6207E+009.9995E−024.5683E+001.0731E−013.9516E+001.1674E−013.4361E+00
498.2663E−027.7204E+009.6516E−024.6220E+001.0352E−013.9972E+001.1258E−013.4753E+00
508.0088E−027.8190E+009.3228E−024.6749E+009.9950E−024.0423E+001.0864E−013.5140E+00
517.7612E−027.9169E+009.0117E−024.7272E+009.6569E−024.0868E+001.0493E−013.5521E+00
527.5230E−028.0139E+008.7171E−024.7787E+009.3368E−024.1306E+001.0141E−013.5898E+00
537.2937E−028.1102E+008.4377E−024.8296E+009.0335E−024.1739E+009.8074E−023.6270E+00
547.0728E−028.2060E+008.1724E−024.8799E+008.7457E−024.2167E+009.4911E−023.6637E+00
556.8600E−028.3013E+007.9202E−024.9295E+008.4722E−024.2589E+009.1906E−023.7000E+00
566.6549E−028.3961E+007.6803E−024.9785E+008.2122E−024.3006E+008.9050E−023.7358E+00
576.4573E−028.4907E+007.4517E−025.0270E+007.9647E−024.3418E+008.6331E−023.7712E+00
586.2670E−028.5851E+007.2338E−025.0750E+007.7288E−024.3825E+008.3740E−023.8061E+00
596.0838E−028.6793E+007.0258E−025.1224E+007.5038E−024.4227E+008.1270E−023.8406E+00
605.9076E−028.7736E+006.8272E−025.1693E+007.2889E−024.4625E+007.8912E−023.8747E+00

Pt; [Z=78]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
08.1369E+004.2159E−019.9585E+003.0728E−011.0636E+012.7707E−011.1459E+012.4960E−01
17.2202E+004.6777E−018.9504E+003.3800E−019.5853E+003.0414E−011.0357E+012.7335E−01
25.4793E+005.9022E−017.0083E+004.1799E−017.5519E+003.7447E−018.2030E+003.3522E−01
33.9884E+007.6099E−015.3007E+005.2663E−015.7540E+004.6951E−016.2864E+004.1864E−01
42.9278E+009.6231E−014.0413E+006.5143E−014.4191E+005.7811E−014.8557E+005.1354E−01
52.2025E+001.1843E+003.1415E+007.8616E−013.4577E+006.9477E−013.8190E+006.1512E−01
61.7081E+001.4186E+002.4970E+009.2638E−012.7630E+008.1577E−013.0648E+007.2015E−01
71.3670E+001.6564E+002.0296E+001.0681E+002.2548E+009.3779E−012.5093E+008.2589E−01
81.1256E+001.8902E+001.6845E+001.2079E+001.8764E+001.0581E+002.0932E+009.3000E−01
99.4859E−012.1152E+001.4238E+001.3433E+001.5889E+001.1746E+001.7754E+001.0309E+00
108.1345E−012.3300E+001.2219E+001.4733E+001.3653E+001.2865E+001.5273E+001.1277E+00
117.0637E−012.5355E+001.0613E+001.5978E+001.1869E+001.3936E+001.3289E+001.2205E+00
126.2040E−012.7333E+009.3205E−011.7176E+001.0429E+001.4967E+001.1685E+001.3098E+00
135.4985E−012.9253E+008.2563E−011.8335E+009.2412E−011.5965E+001.0359E+001.3961E+00
144.9130E−013.1126E+007.3666E−011.9463E+008.2457E−011.6936E+009.2453E−011.4801E+00
154.4260E−013.2959E+006.6170E−012.0568E+007.4043E−011.7887E+008.3015E−011.5625E+00
164.0190E−013.4754E+005.9807E−012.1653E+006.6874E−011.8822E+007.4949E−011.6435E+00
173.6773E−013.6509E+005.4372E−012.2721E+006.0726E−011.9742E+006.8010E−011.7233E+00
183.3880E−013.8223E+004.9704E−012.3769E+005.5423E−012.0649E+006.2005E−011.8021E+00
193.1407E−013.9893E+004.5670E−012.4798E+005.0825E−012.1541E+005.6783E−011.8796E+00
202.9269E−014.1518E+004.2161E−012.5805E+004.6816E−012.2415E+005.2219E−011.9558E+00
212.7396E−014.3099E+003.9088E−012.6787E+004.3299E−012.3270E+004.8210E−012.0305E+00
222.5735E−014.4639E+003.6377E−012.7744E+004.0195E−012.4104E+004.4669E−012.1035E+00
232.4248E−014.6140E+003.3967E−012.8675E+003.7439E−012.4916E+004.1527E−012.1745E+00
242.2902E−014.7606E+003.1809E−012.9579E+003.4977E−012.5705E+003.8722E−012.2437E+00
252.1676E−014.9040E+002.9863E−013.0456E+003.2763E−012.6471E+003.6206E−012.3108E+00
262.0552E−015.0446E+002.8097E−013.1308E+003.0761E−012.7214E+003.3936E−012.3758E+00
271.9519E−015.1826E+002.6486E−013.2135E+002.8942E−012.7935E+003.1880E−012.4389E+00
281.8565E−015.3182E+002.5010E−013.2939E+002.7281E−012.8634E+003.0009E−012.5000E+00
291.7684E−015.4516E+002.3651E−013.3721E+002.5759E−012.9313E+002.8299E−012.5592E+00
301.6868E−015.5830E+002.2396E−013.4484E+002.4358E−012.9973E+002.6732E−012.6167E+00
311.6112E−015.7124E+002.1235E−013.5227E+002.3066E−013.0615E+002.5290E−012.6725E+00
321.5410E−015.8398E+002.0158E−013.5953E+002.1872E−013.1240E+002.3960E−012.7267E+00
331.4758E−015.9654E+001.9158E−013.6663E+002.0765E−013.1851E+002.2732E−012.7796E+00
341.4151E−016.0892E+001.8227E−013.7358E+001.9738E−013.2447E+002.1593E−012.8311E+00
351.3585E−016.2111E+001.7360E−013.8039E+001.8783E−013.3030E+002.0538E−012.8813E+00
361.3056E−016.3312E+001.6552E−013.8707E+001.7895E−013.3600E+001.9556E−012.9305E+00
371.2562E−016.4495E+001.5798E−013.9362E+001.7067E−013.4160E+001.8643E−012.9786E+00
381.2097E−016.5659E+001.5095E−014.0005E+001.6295E−013.4708E+001.7792E−013.0257E+00
391.1661E−016.6807E+001.4437E−014.0638E+001.5574E−013.5247E+001.6999E−013.0719E+00
401.1249E−016.7937E+001.3822E−014.1259E+001.4901E−013.5776E+001.6258E−013.1173E+00
411.0860E−016.9051E+001.3246E−014.1871E+001.4271E−013.6296E+001.5565E−013.1619E+00
421.0492E−017.0149E+001.2707E−014.2472E+001.3681E−013.6807E+001.4916E−013.2058E+00
431.0142E−017.1231E+001.2201E−014.3064E+001.3129E−013.7311E+001.4309E−013.2490E+00
449.8086E−027.2298E+001.1726E−014.3647E+001.2610E−013.7807E+001.3738E−013.2914E+00
459.4908E−027.3351E+001.1280E−014.4221E+001.2123E−013.8295E+001.3203E−013.3333E+00
469.1871E−027.4390E+001.0860E−014.4787E+001.1666E−013.8776E+001.2700E−013.3746E+00
478.8963E−027.5417E+001.0465E−014.5344E+001.1235E−013.9250E+001.2227E−013.4152E+00
488.6175E−027.6433E+001.0092E−014.5893E+001.0829E−013.9718E+001.1780E−013.4553E+00
498.3497E−027.7438E+009.7405E−024.6435E+001.0446E−014.0178E+001.1360E−013.4949E+00
508.0922E−027.8432E+009.4081E−024.6969E+001.0085E−014.0633E+001.0962E−013.5339E+00
517.8443E−027.9418E+009.0935E−024.7496E+009.7430E−024.1082E+001.0587E−013.5724E+00
527.6055E−028.0395E+008.7956E−024.8016E+009.4194E−024.1524E+001.0231E−013.6104E+00
537.3752E−028.1366E+008.5131E−024.8530E+009.1128E−024.1961E+009.8942E−023.6479E+00
547.1530E−028.2330E+008.2448E−024.9037E+008.8219E−024.2392E+009.5746E−023.6850E+00
556.9386E−028.3288E+007.9899E−024.9538E+008.5456E−024.2818E+009.2711E−023.7215E+00
566.7316E−028.4243E+007.7473E−025.0033E+008.2829E−024.3239E+008.9827E−023.7577E+00
576.5319E−028.5194E+007.5163E−025.0522E+008.0328E−024.3655E+008.7081E−023.7933E+00
586.3390E−028.6143E+007.2961E−025.1005E+007.7945E−024.4065E+008.4466E−023.8286E+00
596.1531E−028.7091E+007.0859E−025.1483E+007.5673E−024.4471E+008.1973E−023.8634E+00
605.9738E−028.8039E+006.8852E−025.1957E+007.3503E−024.4872E+007.9593E−023.8978E+00

Au; [Z=79]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
07.8823E+004.3323E−019.6874E+003.1605E−011.0356E+012.8511E−011.1165E+012.5697E−01
17.0483E+004.7730E−018.7687E+003.4536E−019.3982E+003.1093E−011.0161E+012.7960E−01
25.4262E+005.9447E−016.9567E+004.2198E−017.5006E+003.7832E−018.1514E+003.3890E−01
33.9916E+007.5941E−015.3128E+005.2717E−015.7696E+004.7042E−016.3060E+004.1978E−01
42.9439E+009.5661E−014.0694E+006.4976E−014.4517E+005.7716E−014.8936E+005.1312E−01
52.2163E+001.1771E+003.1672E+007.8383E−013.4877E+006.9333E−013.8540E+006.1432E−01
61.7171E+001.4124E+002.5160E+009.2480E−012.7858E+008.1501E−013.0918E+007.1998E−01
71.3726E+001.6528E+002.0426E+001.0682E+002.2708E+009.3857E−012.5287E+008.2707E−01
81.1296E+001.8901E+001.6933E+001.2103E+001.8876E+001.0608E+002.1070E+009.3293E−01
99.5204E−012.1185E+001.4301E+001.3482E+001.5969E+001.1795E+001.7853E+001.0357E+00
108.1688E−012.3362E+001.2267E+001.4804E+001.3713E+001.2933E+001.5349E+001.1343E+00
117.0983E−012.5438E+001.0654E+001.6067E+001.1918E+001.4021E+001.3350E+001.2285E+00
126.2379E−012.7431E+009.3566E−011.7279E+001.0472E+001.5065E+001.1738E+001.3189E+00
135.5299E−012.9359E+008.2898E−011.8447E+009.2810E−011.6071E+001.0407E+001.4060E+00
144.9404E−013.1238E+007.3978E−011.9581E+008.2831E−011.7047E+009.2905E−011.4905E+00
154.4484E−013.3075E+006.6459E−012.0689E+007.4396E−011.8001E+008.3445E−011.5731E+00
164.0365E−013.4874E+006.0072E−012.1776E+006.7206E−011.8937E+007.5359E−011.6542E+00
173.6900E−013.6635E+005.4614E−012.2844E+006.1036E−011.9858E+006.8400E−011.7340E+00
183.3967E−013.8355E+004.9922E−012.3893E+005.5713E−012.0765E+006.2374E−011.8128E+00
193.1463E−014.0032E+004.5867E−012.4924E+005.1094E−012.1657E+005.7131E−011.8904E+00
202.9301E−014.1666E+004.2341E−012.5933E+004.7066E−012.2533E+005.2547E−011.9667E+00
212.7413E−014.3256E+003.9255E−012.6920E+004.3533E−012.3391E+004.8518E−012.0416E+00
222.5744E−014.4805E+003.6533E−012.7881E+004.0416E−012.4230E+004.4960E−012.1149E+00
232.4253E−014.6316E+003.4117E−012.8818E+003.7649E−012.5047E+004.1802E−012.1865E+00
242.2907E−014.7791E+003.1955E−012.9728E+003.5178E−012.5842E+003.8984E−012.2561E+00
252.1683E−014.9234E+003.0007E−013.0613E+003.2958E−012.6614E+003.6456E−012.3238E+00
262.0563E−015.0648E+002.8242E−013.1472E+003.0952E−012.7364E+003.4177E−012.3895E+00
271.9535E−015.2036E+002.6632E−013.2307E+002.9129E−012.8092E+003.2112E−012.4533E+00
281.8586E−015.3401E+002.5157E−013.3118E+002.7465E−012.8799E+003.0234E−012.5151E+00
291.7709E−015.4743E+002.3799E−013.3908E+002.5940E−012.9485E+002.8517E−012.5751E+00
301.6898E−015.6065E+002.2546E−013.4678E+002.4538E−013.0153E+002.6943E−012.6333E+00
311.6146E−015.7367E+002.1385E−013.5429E+002.3243E−013.0802E+002.5496E−012.6898E+00
321.5448E−015.8650E+002.0308E−013.6162E+002.2046E−013.1435E+002.4160E−012.7448E+00
331.4800E−015.9915E+001.9307E−013.6879E+002.0936E−013.2052E+002.2925E−012.7983E+00
341.4196E−016.1162E+001.8374E−013.7581E+001.9905E−013.2655E+002.1781E−012.8505E+00
351.3634E−016.2390E+001.7506E−013.8268E+001.8946E−013.3244E+002.0719E−012.9014E+00
361.3108E−016.3601E+001.6695E−013.8942E+001.8053E−013.3821E+001.9732E−012.9511E+00
371.2617E−016.4793E+001.5938E−013.9604E+001.7221E−013.4386E+001.8813E−012.9997E+00
381.2156E−016.5968E+001.5231E−014.0253E+001.6444E−013.4940E+001.7956E−013.0474E+00
391.1722E−016.7126E+001.4569E−014.0891E+001.5718E−013.5484E+001.7156E−013.0941E+00
401.1314E−016.8266E+001.3950E−014.1519E+001.5040E−013.6019E+001.6409E−013.1400E+00
411.0927E−016.9390E+001.3370E−014.2136E+001.4404E−013.6544E+001.5710E−013.1851E+00
421.0561E−017.0498E+001.2826E−014.2743E+001.3809E−013.7060E+001.5055E−013.2294E+00
431.0214E−017.1589E+001.2316E−014.3340E+001.3252E−013.7569E+001.4442E−013.2729E+00
449.8830E−027.2666E+001.1837E−014.3929E+001.2728E−013.8069E+001.3866E−013.3158E+00
459.5672E−027.3729E+001.1386E−014.4508E+001.2236E−013.8562E+001.3326E−013.3581E+00
469.2652E−027.4778E+001.0962E−014.5079E+001.1774E−013.9047E+001.2817E−013.3997E+00
478.9759E−027.5814E+001.0563E−014.5641E+001.1338E−013.9525E+001.2339E−013.4407E+00
488.6982E−027.6838E+001.0186E−014.6196E+001.0928E−013.9997E+001.1888E−013.4812E+00
498.4312E−027.7850E+009.8306E−024.6742E+001.0541E−014.0462E+001.1463E−013.5211E+00
508.1742E−027.8853E+009.4945E−024.7281E+001.0176E−014.0921E+001.1061E−013.5604E+00
517.9265E−027.9846E+009.1764E−024.7813E+009.8301E−024.1373E+001.0681E−013.5993E+00
527.6875E−028.0830E+008.8752E−024.8338E+009.5030E−024.1820E+001.0322E−013.6376E+00
537.4566E−028.1807E+008.5895E−024.8856E+009.1930E−024.2260E+009.9815E−023.6755E+00
547.2336E−028.2778E+008.3183E−024.9368E+008.8989E−024.2696E+009.6586E−023.7128E+00
557.0180E−028.3743E+008.0605E−024.9873E+008.6197E−024.3125E+009.3520E−023.7497E+00
566.8094E−028.4703E+007.8153E−025.0372E+008.3542E−024.3550E+009.0606E−023.7861E+00
576.6078E−028.5660E+007.5818E−025.0866E+008.1015E−024.3969E+008.7834E−023.8221E+00
586.4127E−028.6614E+007.3592E−025.1353E+007.8608E−024.4383E+008.5193E−023.8577E+00
596.2242E−028.7566E+007.1468E−025.1836E+007.6313E−024.4793E+008.2676E−023.8928E+00
606.0421E−028.8518E+006.9439E−025.2313E+007.4122E−024.5198E+008.0274E−023.9275E+00

Hg; [Z=80]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
08.1999E+004.2779E−011.0057E+013.1227E−011.0747E+012.8183E−011.1585E+012.5414E−01
17.2950E+004.7334E−019.0609E+003.4264E−019.7088E+003.0862E−011.0495E+012.7765E−01
25.5456E+005.9611E−017.1072E+004.2293E−017.6629E+003.7927E−018.3282E+003.3985E−01
34.0362E+007.6853E−015.3757E+005.3276E−015.8394E+004.7544E−016.3839E+004.2432E−01
42.9635E+009.7105E−014.0999E+006.5858E−014.4866E+005.8500E−014.9337E+005.2014E−01
52.2288E+001.1940E+003.1874E+007.9423E−013.5113E+007.0258E−013.8817E+006.2259E−01
61.7262E+001.4301E+002.5315E+009.3598E−012.8042E+008.2500E−013.1137E+007.2894E−01
71.3791E+001.6717E+002.0545E+001.0803E+002.2853E+009.4930E−012.5462E+008.3671E−01
81.1342E+001.9106E+001.7022E+001.2235E+001.8987E+001.0727E+002.1206E+009.4356E−01
99.5569E−012.1414E+001.4367E+001.3631E+001.6053E+001.1928E+001.7958E+001.0476E+00
108.2022E−012.3616E+001.2319E+001.4972E+001.3779E+001.3083E+001.5430E+001.1477E+00
117.1313E−012.5713E+001.0696E+001.6253E+001.1971E+001.4188E+001.3417E+001.2434E+00
126.2710E−012.7723E+009.3942E−011.7481E+001.0518E+001.5245E+001.1794E+001.3350E+00
135.5620E−012.9664E+008.3243E−011.8662E+009.3223E−011.6262E+001.0457E+001.4231E+00
144.9698E−013.1550E+007.4299E−011.9804E+008.3213E−011.7246E+009.3365E−011.5083E+00
154.4739E−013.3393E+006.6758E−012.0917E+007.4753E−011.8205E+008.3877E−011.5914E+00
164.0573E−013.5197E+006.0348E−012.2007E+006.7541E−011.9144E+007.5768E−011.6727E+00
173.7062E−013.6963E+005.4865E−012.3077E+006.1350E−012.0066E+006.8786E−011.7527E+00
183.4087E−013.8689E+005.0150E−012.4128E+005.6005E−012.0974E+006.2740E−011.8315E+00
193.1547E−014.0374E+004.6073E−012.5160E+005.1365E−012.1867E+005.7476E−011.9091E+00
202.9358E−014.2016E+004.2527E−012.6171E+004.7317E−012.2744E+005.2870E−011.9855E+00
212.7449E−014.3616E+003.9424E−012.7161E+004.3766E−012.3605E+004.8822E−012.0606E+00
222.5767E−014.5175E+003.6690E−012.8127E+004.0634E−012.4446E+004.5246E−012.1342E+00
232.4268E−014.6695E+003.4264E−012.9069E+003.7856E−012.5268E+004.2072E−012.2060E+00
242.2919E−014.8179E+003.2097E−012.9985E+003.5375E−012.6068E+003.9240E−012.2762E+00
252.1694E−014.9631E+003.0147E−013.0876E+003.3148E−012.6846E+003.6700E−012.3444E+00
262.0576E−015.1054E+002.8380E−013.1742E+003.1136E−012.7603E+003.4411E−012.4108E+00
271.9550E−015.2450E+002.6771E−013.2584E+002.9310E−012.8338E+003.2338E−012.4752E+00
281.8605E−015.3823E+002.5296E−013.3403E+002.7643E−012.9052E+003.0452E−012.5377E+00
291.7732E−015.5173E+002.3940E−013.4201E+002.6116E−012.9745E+002.8729E−012.5984E+00
301.6925E−015.6503E+002.2688E−013.4978E+002.4711E−013.0420E+002.7150E−012.6573E+00
311.6176E−015.7813E+002.1529E−013.5736E+002.3414E−013.1077E+002.5697E−012.7145E+00
321.5482E−015.9105E+002.0452E−013.6476E+002.2215E−013.1716E+002.4356E−012.7702E+00
331.4837E−016.0378E+001.9450E−013.7199E+002.1102E−013.2340E+002.3116E−012.8244E+00
341.4236E−016.1634E+001.8517E−013.7908E+002.0068E−013.2950E+002.1966E−012.8772E+00
351.3677E−016.2871E+001.7647E−013.8602E+001.9106E−013.3545E+002.0899E−012.9287E+00
361.3155E−016.4091E+001.6834E−013.9282E+001.8210E−013.4128E+001.9906E−012.9790E+00
371.2667E−016.5293E+001.6075E−013.9950E+001.7373E−013.4699E+001.8981E−013.0282E+00
381.2209E−016.6478E+001.5365E−014.0605E+001.6592E−013.5259E+001.8119E−013.0764E+00
391.1778E−016.7646E+001.4700E−014.1249E+001.5861E−013.5808E+001.7313E−013.1237E+00
401.1373E−016.8796E+001.4077E−014.1882E+001.5178E−013.6348E+001.6560E−013.1700E+00
411.0989E−016.9930E+001.3493E−014.2505E+001.4538E−013.6878E+001.5855E−013.2155E+00
421.0626E−017.1047E+001.2945E−014.3117E+001.3938E−013.7400E+001.5195E−013.2603E+00
431.0281E−017.2149E+001.2431E−014.3720E+001.3375E−013.7913E+001.4576E−013.3043E+00
449.9531E−027.3235E+001.1947E−014.4314E+001.2847E−013.8418E+001.3995E−013.3476E+00
459.6396E−027.4307E+001.1493E−014.4899E+001.2350E−013.8915E+001.3449E−013.3902E+00
469.3398E−027.5365E+001.1065E−014.5475E+001.1883E−013.9405E+001.2935E−013.4322E+00
479.0523E−027.6410E+001.0661E−014.6042E+001.1443E−013.9888E+001.2452E−013.4736E+00
488.7761E−027.7442E+001.0281E−014.6602E+001.1028E−014.0363E+001.1996E−013.5144E+00
498.5104E−027.8463E+009.9216E−024.7153E+001.0637E−014.0833E+001.1566E−013.5547E+00
508.2543E−027.9473E+009.5819E−024.7697E+001.0268E−014.1295E+001.1160E−013.5944E+00
518.0072E−028.0474E+009.2604E−024.8234E+009.9183E−024.1752E+001.0777E−013.6335E+00
527.7685E−028.1465E+008.9558E−024.8763E+009.5875E−024.2202E+001.0414E−013.6722E+00
537.5375E−028.2449E+008.6670E−024.9286E+009.2741E−024.2647E+001.0069E−013.7104E+00
547.3140E−028.3426E+008.3928E−024.9802E+008.9769E−024.3086E+009.7431E−023.7480E+00
557.0976E−028.4396E+008.1322E−025.0312E+008.6946E−024.3519E+009.4334E−023.7852E+00
566.8879E−028.5362E+007.8843E−025.0815E+008.4262E−024.3947E+009.1390E−023.8220E+00
576.6847E−028.6324E+007.6482E−025.1313E+008.1709E−024.4370E+008.8590E−023.8583E+00
586.4878E−028.7283E+007.4232E−025.1805E+007.9277E−024.4788E+008.5923E−023.8942E+00
596.2970E−028.8240E+007.2085E−025.2291E+007.6958E−024.5201E+008.3381E−023.9296E+00
606.1124E−028.9197E+007.0035E−025.2772E+007.4745E−024.5609E+008.0956E−023.9646E+00

Tl; [Z=81]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.2105E+003.9940E−011.1194E+012.9255E−011.1941E+012.6432E−011.2856E+012.3856E−01
17.9146E+004.5692E−019.7722E+003.3091E−011.0459E+012.9821E−011.1297E+012.6842E−01
25.7389E+006.0136E−017.3448E+004.2509E−017.9173E+003.8108E−018.6035E+003.4143E−01
34.0865E+007.8942E−015.4453E+005.4443E−015.9161E+004.8553E−016.4693E+004.3315E−01
42.9819E+009.9963E−014.1276E+006.7481E−014.5183E+005.9907E−014.9702E+005.3246E−01
52.2410E+001.2250E+003.2058E+008.1208E−013.5328E+007.1809E−013.9069E+006.3618E−01
61.7357E+001.4615E+002.5465E+009.5428E−012.8220E+008.4095E−013.1349E+007.4296E−01
71.3860E+001.7034E+002.0666E+001.0990E+002.2999E+009.6569E−012.5638E+008.5114E−01
81.1392E+001.9437E+001.7115E+001.2433E+001.9102E+001.0899E+002.1347E+009.5878E−01
99.5953E−012.1767E+001.4438E+001.3843E+001.6142E+001.2114E+001.8068E+001.0640E+00
108.2365E−012.3993E+001.2374E+001.5203E+001.3848E+001.3286E+001.5516E+001.1656E+00
117.1651E−012.6113E+001.0741E+001.6503E+001.2027E+001.4407E+001.3485E+001.2627E+00
126.3053E−012.8141E+009.4333E−011.7748E+001.0565E+001.5480E+001.1852E+001.3558E+00
135.5957E−013.0095E+008.3598E−011.8942E+009.3644E−011.6510E+001.0508E+001.4450E+00
145.0013E−013.1991E+007.4629E−012.0095E+008.3600E−011.7503E+009.3827E−011.5310E+00
154.5017E−013.3840E+006.7064E−012.1214E+007.5114E−011.8468E+008.4307E−011.6146E+00
164.0808E−013.5650E+006.0630E−012.2308E+006.7878E−011.9410E+007.6173E−011.6963E+00
173.7250E−013.7421E+005.5123E−012.3380E+006.1664E−012.0334E+006.9169E−011.7764E+00
183.4231E−013.9154E+005.0382E−012.4433E+005.6296E−012.1243E+006.3100E−011.8553E+00
193.1653E−014.0846E+004.6281E−012.5466E+005.1635E−012.2137E+005.7815E−011.9330E+00
202.9432E−014.2497E+004.2714E−012.6480E+004.7566E−012.3015E+005.3188E−012.0095E+00
212.7501E−014.4106E+003.9594E−012.7473E+004.3997E−012.3878E+004.9121E−012.0847E+00
222.5802E−014.5675E+003.6846E−012.8443E+004.0850E−012.4722E+004.5527E−012.1584E+00
232.4292E−014.7204E+003.4410E−012.9389E+003.8058E−012.5547E+004.2337E−012.2306E+00
242.2937E−014.8698E+003.2236E−013.0311E+003.5567E−012.6352E+003.9491E−012.3012E+00
252.1709E−015.0159E+003.0281E−013.1208E+003.3332E−012.7136E+003.6939E−012.3699E+00
262.0591E−015.1590E+002.8513E−013.2081E+003.1315E−012.7898E+003.4640E−012.4368E+00
271.9566E−015.2995E+002.6903E−013.2930E+002.9484E−012.8640E+003.2559E−012.5018E+00
281.8623E−015.4376E+002.5430E−013.3756E+002.7815E−012.9360E+003.0665E−012.5650E+00
291.7752E−015.5734E+002.4075E−013.4560E+002.6285E−013.0061E+002.8936E−012.6263E+00
301.6948E−015.7071E+002.2824E−013.5344E+002.4879E−013.0743E+002.7351E−012.6859E+00
311.6202E−015.8390E+002.1666E−013.6109E+002.3581E−013.1406E+002.5893E−012.7438E+00
321.5511E−015.9690E+002.0590E−013.6856E+002.2379E−013.2053E+002.4547E−012.8002E+00
331.4869E−016.0971E+001.9589E−013.7586E+002.1264E−013.2683E+002.3302E−012.8550E+00
341.4272E−016.2235E+001.8656E−013.8301E+002.0228E−013.3299E+002.2148E−012.9084E+00
351.3715E−016.3482E+001.7785E−013.9001E+001.9263E−013.3901E+002.1076E−012.9606E+00
361.3196E−016.4711E+001.6971E−013.9688E+001.8363E−013.4490E+002.0078E−013.0115E+00
371.2711E−016.5923E+001.6209E−014.0361E+001.7523E−013.5067E+001.9148E−013.0613E+00
381.2256E−016.7117E+001.5496E−014.1023E+001.6738E−013.5633E+001.8280E−013.1100E+00
391.1829E−016.8294E+001.4828E−014.1673E+001.6003E−013.6187E+001.7469E−013.1578E+00
401.1426E−016.9454E+001.4202E−014.2311E+001.5315E−013.6732E+001.6710E−013.2046E+00
411.1046E−017.0598E+001.3615E−014.2940E+001.4671E−013.7268E+001.6000E−013.2506E+00
421.0686E−017.1725E+001.3063E−014.3558E+001.4066E−013.7794E+001.5334E−013.2958E+00
431.0344E−017.2836E+001.2545E−014.4166E+001.3499E−013.8312E+001.4709E−013.3402E+00
441.0019E−017.3932E+001.2058E−014.4765E+001.2966E−013.8821E+001.4123E−013.3839E+00
459.7080E−027.5013E+001.1600E−014.5355E+001.2464E−013.9323E+001.3572E−013.4270E+00
469.4106E−027.6080E+001.1168E−014.5936E+001.1993E−013.9818E+001.3053E−013.4694E+00
479.1253E−027.7134E+001.0761E−014.6508E+001.1548E−014.0305E+001.2565E−013.5111E+00
488.8512E−027.8175E+001.0376E−014.7073E+001.1129E−014.0785E+001.2105E−013.5523E+00
498.5872E−027.9204E+001.0013E−014.7629E+001.0734E−014.1258E+001.1671E−013.5929E+00
508.3324E−028.0222E+009.6702E−024.8178E+001.0361E−014.1725E+001.1260E−013.6329E+00
518.0864E−028.1230E+009.3453E−024.8720E+001.0007E−014.2185E+001.0873E−013.6725E+00
527.8483E−028.2228E+009.0375E−024.9254E+009.6730E−024.2640E+001.0506E−013.7114E+00
537.6177E−028.3218E+008.7456E−024.9781E+009.3562E−024.3088E+001.0158E−013.7499E+00
547.3942E−028.4201E+008.4684E−025.0302E+009.0557E−024.3531E+009.8283E−023.7879E+00
557.1773E−028.5178E+008.2049E−025.0816E+008.7704E−024.3968E+009.5154E−023.8255E+00
566.9669E−028.6149E+007.9543E−025.1324E+008.4992E−024.4400E+009.2179E−023.8625E+00
576.7625E−028.7116E+007.7157E−025.1826E+008.2411E−024.4826E+008.9350E−023.8991E+00
586.5641E−028.8080E+007.4882E−025.2322E+007.9953E−024.5248E+008.6657E−023.9353E+00
596.3714E−028.9042E+007.2712E−025.2812E+007.7610E−024.5664E+008.4090E−023.9711E+00
606.1845E−029.0003E+007.0639E−025.3298E+007.5374E−024.6076E+008.1641E−024.0064E+00

Pb; [Z=82]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
09.6136E+003.9757E−011.1662E+012.9059E−011.2436E+012.6253E−011.3386E+012.3696E−01
18.2645E+004.5390E−011.0184E+013.2827E−011.0895E+012.9585E−011.1765E+012.6634E−01
25.9257E+006.0212E−017.5761E+004.2504E−018.1652E+003.8106E−018.8720E+003.4146E−01
34.1547E+008.0058E−015.5382E+005.5077E−016.0180E+004.9111E−016.5818E+004.3812E−01
43.0066E+001.0203E+004.1641E+006.8679E−014.5595E+006.0954E−015.0171E+005.4170E−01
52.2543E+001.2507E+003.2252E+008.2711E−013.5553E+007.3123E−013.9331E+006.4777E−01
61.7456E+001.4887E+002.5609E+009.7046E−012.8389E+008.5513E−013.1548E+007.5548E−01
71.3935E+001.7310E+002.0783E+001.1157E+002.3139E+009.8034E−012.5806E+008.6411E−01
81.1445E+001.9721E+001.7208E+001.2606E+001.9216E+001.1052E+002.1485E+009.7231E−01
99.6355E−012.2067E+001.4510E+001.4028E+001.6232E+001.2277E+001.8179E+001.0785E+00
108.2709E−012.4314E+001.2430E+001.5404E+001.3918E+001.3463E+001.5604E+001.1813E+00
117.1981E−012.6456E+001.0787E+001.6722E+001.2085E+001.4600E+001.3557E+001.2799E+00
126.3387E−012.8503E+009.4731E−011.7984E+001.0614E+001.5689E+001.1911E+001.3743E+00
135.6292E−013.0471E+008.3957E−011.9193E+009.4072E−011.6732E+001.0560E+001.4647E+00
145.0333E−013.2378E+007.4962E−012.0357E+008.3990E−011.7736E+009.4293E−011.5517E+00
154.5309E−013.4234E+006.7374E−012.1485E+007.5476E−011.8708E+008.4738E−011.6360E+00
164.1061E−013.6050E+006.0917E−012.2584E+006.8217E−011.9655E+007.6576E−011.7181E+00
173.7460E−013.7827E+005.5386E−012.3659E+006.1980E−012.0582E+006.9549E−011.7985E+00
183.4397E−013.9566E+005.0621E−012.4714E+005.6589E−012.1493E+006.3458E−011.8775E+00
193.1780E−014.1266E+004.6495E−012.5750E+005.1905E−012.2388E+005.8150E−011.9552E+00
202.9526E−014.2926E+004.2906E−012.6765E+004.7816E−012.3267E+005.3503E−012.0318E+00
212.7568E−014.4544E+003.9766E−012.7761E+004.4228E−012.4131E+004.9415E−012.1071E+00
222.5850E−014.6122E+003.7002E−012.8734E+004.1064E−012.4978E+004.5803E−012.1810E+00
232.4326E−014.7661E+003.4555E−012.9685E+003.8258E−012.5806E+004.2597E−012.2535E+00
242.2961E−014.9165E+003.2372E−013.0611E+003.5756E−012.6615E+003.9737E−012.3244E+00
252.1729E−015.0635E+003.0412E−013.1514E+003.3512E−012.7404E+003.7173E−012.3935E+00
262.0608E−015.2076E+002.8640E−013.2393E+003.1489E−012.8172E+003.4863E−012.4609E+00
271.9582E−015.3489E+002.7030E−013.3249E+002.9653E−012.8920E+003.2773E−012.5265E+00
281.8640E−015.4877E+002.5557E−013.4081E+002.7981E−012.9647E+003.0873E−012.5903E+00
291.7771E−015.6244E+002.4203E−013.4893E+002.6449E−013.0354E+002.9138E−012.6523E+00
301.6968E−015.7589E+002.2954E−013.5684E+002.5041E−013.1042E+002.7548E−012.7125E+00
311.6225E−015.8916E+002.1797E−013.6455E+002.3741E−013.1713E+002.6084E−012.7711E+00
321.5536E−016.0223E+002.0722E−013.7209E+002.2538E−013.2366E+002.4734E−012.8281E+00
331.4897E−016.1513E+001.9722E−013.7946E+002.1421E−013.3003E+002.3485E−012.8836E+00
341.4302E−016.2786E+001.8789E−013.8667E+002.0383E−013.3625E+002.2326E−012.9377E+00
351.3748E−016.4041E+001.7918E−013.9373E+001.9416E−013.4233E+002.1249E−012.9904E+00
361.3232E−016.5279E+001.7103E−014.0065E+001.8513E−013.4828E+002.0247E−013.0419E+00
371.2750E−016.6500E+001.6340E−014.0745E+001.7670E−013.5411E+001.9312E−013.0923E+00
381.2298E−016.7704E+001.5625E−014.1412E+001.6882E−013.5982E+001.8439E−013.1415E+00
391.1874E−016.8891E+001.4955E−014.2068E+001.6143E−013.6542E+001.7623E−013.1898E+00
401.1474E−017.0061E+001.4326E−014.2712E+001.5451E−013.7092E+001.6860E−013.2372E+00
411.1098E−017.1214E+001.3735E−014.3346E+001.4803E−013.7633E+001.6144E−013.2836E+00
421.0741E−017.2351E+001.3181E−014.3969E+001.4194E−013.8164E+001.5473E−013.3293E+00
431.0402E−017.3471E+001.2659E−014.4583E+001.3622E−013.8687E+001.4844E−013.3741E+00
441.0080E−017.4577E+001.2169E−014.5187E+001.3084E−013.9201E+001.4252E−013.4183E+00
459.7720E−027.5667E+001.1707E−014.5782E+001.2579E−013.9707E+001.3696E−013.4617E+00
469.4775E−027.6743E+001.1271E−014.6368E+001.2103E−014.0206E+001.3173E−013.5045E+00
479.1949E−027.7806E+001.0860E−014.6946E+001.1654E−014.0697E+001.2679E−013.5466E+00
488.9231E−027.8855E+001.0472E−014.7516E+001.1231E−014.1182E+001.2215E−013.5882E+00
498.6612E−027.9892E+001.0106E−014.8077E+001.0832E−014.1659E+001.1776E−013.6291E+00
508.4083E−028.0918E+009.7593E−024.8631E+001.0454E−014.2130E+001.1362E−013.6695E+00
518.1637E−028.1933E+009.4312E−024.9177E+001.0098E−014.2595E+001.0970E−013.7093E+00
527.9268E−028.2939E+009.1202E−024.9716E+009.7596E−024.3053E+001.0599E−013.7487E+00
537.6970E−028.3936E+008.8252E−025.0248E+009.4394E−024.3505E+001.0247E−013.7875E+00
547.4739E−028.4925E+008.5450E−025.0773E+009.1356E−024.3952E+009.9143E−023.8258E+00
557.2571E−028.5907E+008.2787E−025.1291E+008.8471E−024.4393E+009.5980E−023.8636E+00
567.0463E−028.6884E+008.0254E−025.1803E+008.5730E−024.4828E+009.2975E−023.9010E+00
576.8412E−028.7856E+007.7842E−025.2310E+008.3122E−024.5258E+009.0117E−023.9379E+00
586.6416E−028.8825E+007.5542E−025.2810E+008.0638E−024.5683E+008.7396E−023.9744E+00
596.4474E−028.9791E+007.3349E−025.3305E+007.8270E−024.6103E+008.4803E−024.0104E+00
606.2586E−029.0756E+007.1254E−025.3794E+007.6011E−024.6519E+008.2330E−024.0461E+00

Bi; [Z=83]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.0041E+013.9630E−011.2160E+012.8892E−011.2962E+012.6098E−011.3950E+012.3554E−01
18.6225E+004.5221E−011.0606E+013.2640E−011.1343E+012.9415E−011.2246E+012.6483E−01
26.1233E+006.0352E−017.8215E+004.2529E−018.4282E+003.8127E−019.1568E+003.4168E−01
34.2324E+008.1143E−015.6435E+005.5684E−016.1331E+004.9643E−016.7088E+004.4284E−01
43.0352E+001.0414E+004.2057E+006.9896E−014.6063E+006.2016E−015.0701E+005.5106E−01
52.2688E+001.2781E+003.2456E+008.4310E−013.5788E+007.4517E−013.9604E+006.6004E−01
61.7560E+001.5186E+002.5750E+009.8806E−012.8554E+008.7051E−013.1743E+007.6903E−01
71.4014E+001.7613E+002.0898E+001.1338E+002.3275E+009.9623E−012.5968E+008.7814E−01
81.1503E+002.0028E+001.7301E+001.2791E+001.9329E+001.1215E+002.1622E+009.8675E−01
99.6782E−012.2386E+001.4583E+001.4223E+001.6323E+001.2449E+001.8292E+001.0936E+00
108.3059E−012.4653E+001.2488E+001.5612E+001.3991E+001.3647E+001.5695E+001.1975E+00
117.2309E−012.6815E+001.0835E+001.6947E+001.2144E+001.4799E+001.3631E+001.2975E+00
126.3718E−012.8881E+009.5137E−011.8226E+001.0664E+001.5903E+001.1973E+001.3933E+00
135.6627E−013.0865E+008.4322E−011.9451E+009.4508E−011.6961E+001.0612E+001.4850E+00
145.0660E−013.2783E+007.5299E−012.0628E+008.4386E−011.7976E+009.4765E−011.5731E+00
154.5614E−013.4648E+006.7689E−012.1765E+007.5842E−011.8957E+008.5170E−011.6581E+00
164.1331E−013.6470E+006.1210E−012.2871E+006.8558E−011.9910E+007.6979E−011.7408E+00
173.7689E−013.8254E+005.5654E−012.3951E+006.2297E−012.0841E+006.9927E−011.8215E+00
183.4584E−013.9999E+005.0864E−012.5008E+005.6884E−012.1754E+006.3813E−011.9007E+00
193.1926E−014.1707E+004.6714E−012.6046E+005.2177E−012.2650E+005.8483E−011.9786E+00
202.9638E−014.3374E+004.3102E−012.7064E+004.8066E−012.3531E+005.3815E−012.0552E+00
212.7651E−014.5002E+003.9941E−012.8062E+004.4458E−012.4397E+004.9707E−012.1306E+00
222.5910E−014.6590E+003.7161E−012.9039E+004.1276E−012.5246E+004.6077E−012.2047E+00
232.4370E−014.8139E+003.4699E−012.9993E+003.8456E−012.6077E+004.2853E−012.2774E+00
242.2994E−014.9653E+003.2506E−013.0925E+003.5942E−012.6890E+003.9979E−012.3485E+00
252.1755E−015.1132E+003.0540E−013.1833E+003.3689E−012.7683E+003.7402E−012.4181E+00
262.0629E−015.2582E+002.8764E−013.2718E+003.1658E−012.8456E+003.5082E−012.4859E+00
271.9601E−015.4004E+002.7152E−013.3579E+002.9818E−012.9209E+003.2983E−012.5520E+00
281.8658E−015.5401E+002.5678E−013.4419E+002.8141E−012.9942E+003.1076E−012.6164E+00
291.7789E−015.6775E+002.4325E−013.5236E+002.6607E−013.0656E+002.9334E−012.6790E+00
301.6987E−015.8128E+002.3077E−013.6034E+002.5197E−013.1351E+002.7739E−012.7398E+00
311.6246E−015.9462E+002.1922E−013.6812E+002.3896E−013.2027E+002.6271E−012.7991E+00
321.5558E−016.0778E+002.0849E−013.7572E+002.2692E−013.2687E+002.4917E−012.8567E+00
331.4921E−016.2077E+001.9850E−013.8315E+002.1574E−013.3330E+002.3664E−012.9128E+00
341.4328E−016.3357E+001.8917E−013.9042E+002.0534E−013.3959E+002.2501E−012.9675E+00
351.3777E−016.4621E+001.8046E−013.9755E+001.9565E−013.4573E+002.1420E−013.0208E+00
361.3263E−016.5868E+001.7231E−014.0453E+001.8660E−013.5174E+002.0413E−013.0729E+00
371.2784E−016.7098E+001.6467E−014.1139E+001.7815E−013.5762E+001.9474E−013.1238E+00
381.2335E−016.8311E+001.5751E−014.1811E+001.7023E−013.6339E+001.8597E−013.1737E+00
391.1913E−016.9507E+001.5079E−014.2473E+001.6281E−013.6904E+001.7776E−013.2225E+00
401.1517E−017.0687E+001.4447E−014.3122E+001.5586E−013.7460E+001.7008E−013.2703E+00
411.1144E−017.1850E+001.3855E−014.3762E+001.4934E−013.8005E+001.6288E−013.3172E+00
421.0791E−017.2996E+001.3297E−014.4390E+001.4321E−013.8542E+001.5612E−013.3633E+00
431.0455E−017.4127E+001.2772E−014.5009E+001.3745E−013.9069E+001.4978E−013.4086E+00
441.0136E−017.5242E+001.2278E−014.5619E+001.3204E−013.9588E+001.4381E−013.4532E+00
459.8317E−027.6341E+001.1813E−014.6219E+001.2694E−014.0099E+001.3820E−013.4970E+00
469.5402E−027.7426E+001.1374E−014.6810E+001.2214E−014.0602E+001.3292E−013.5402E+00
479.2606E−027.8498E+001.0960E−014.7393E+001.1761E−014.1098E+001.2794E−013.5827E+00
488.9916E−027.9555E+001.0569E−014.7968E+001.1334E−014.1586E+001.2325E−013.6246E+00
498.7322E−028.0601E+001.0199E−014.8534E+001.0930E−014.2068E+001.1882E−013.6659E+00
508.4816E−028.1634E+009.8492E−024.9092E+001.0549E−014.2543E+001.1463E−013.7067E+00
518.2389E−028.2657E+009.5178E−024.9643E+001.0189E−014.3011E+001.1067E−013.7469E+00
528.0036E−028.3670E+009.2037E−025.0187E+009.8471E−024.3474E+001.0693E−013.7865E+00
537.7751E−028.4673E+008.9057E−025.0723E+009.5235E−024.3930E+001.0338E−013.8256E+00
547.5528E−028.5669E+008.6226E−025.1253E+009.2164E−024.4380E+001.0001E−013.8643E+00
557.3365E−028.6657E+008.3536E−025.1776E+008.9249E−024.4825E+009.6814E−023.9025E+00
567.1258E−028.7639E+008.0976E−025.2292E+008.6478E−024.5264E+009.3778E−023.9401E+00
576.9203E−028.8616E+007.8537E−025.2803E+008.3842E−024.5698E+009.0890E−023.9774E+00
586.7200E−028.9589E+007.6213E−025.3307E+008.1331E−024.6126E+008.8141E−024.0141E+00
596.5247E−029.0560E+007.3996E−025.3806E+007.8938E−024.6550E+008.5522E−024.0505E+00
606.3343E−029.1529E+007.1878E−025.4299E+007.6655E−024.6969E+008.3024E−024.0864E+00

Po; [Z=84]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.0207E+014.0280E−011.2373E+012.9270E−011.3191E+012.6430E−011.4198E+012.3850E−01
18.8298E+004.5584E−011.0863E+013.2830E−011.1618E+012.9582E−011.2543E+012.6633E−01
26.2962E+006.0432E−018.0395E+004.2550E−018.6624E+003.8151E−019.4112E+003.4197E−01
34.3175E+008.1693E−015.7595E+005.6004E−016.2598E+004.9932E−016.8483E+004.4549E−01
43.0694E+001.0565E+004.2558E+007.0787E−014.6624E+006.2802E−015.1332E+005.5805E−01
52.2853E+001.3011E+003.2688E+008.5672E−013.6053E+007.5712E−013.9910E+006.7060E−01
61.7672E+001.5453E+002.5894E+001.0041E+002.8721E+008.8462E−013.1938E+007.8150E−01
71.4100E+001.7891E+002.1010E+001.1507E+002.3407E+001.0112E+002.6125E+008.9136E−01
81.1566E+002.0309E+001.7393E+001.2965E+001.9439E+001.1368E+002.1755E+001.0003E+00
99.7242E−012.2676E+001.4657E+001.4403E+001.6414E+001.2608E+001.8403E+001.1078E+00
108.3420E−012.4959E+001.2547E+001.5803E+001.4065E+001.3816E+001.5787E+001.2125E+00
117.2632E−012.7139E+001.0883E+001.7153E+001.2204E+001.4982E+001.3706E+001.3137E+00
126.4039E−012.9225E+009.5548E−011.8449E+001.0714E+001.6101E+001.2035E+001.4108E+00
135.6954E−013.1224E+008.4690E−011.9689E+009.4950E−011.7172E+001.0666E+001.5039E+00
145.0985E−013.3154E+007.5639E−012.0880E+008.4785E−011.8200E+009.5243E−011.5931E+00
154.5923E−013.5028E+006.8006E−012.2028E+007.6210E−011.9191E+008.5606E−011.6790E+00
164.1612E−013.6858E+006.1506E−012.3141E+006.8900E−012.0152E+007.7383E−011.7623E+00
173.7933E−013.8647E+005.5928E−012.4227E+006.2617E−012.1088E+007.0304E−011.8435E+00
183.4788E−014.0400E+005.1114E−012.5288E+005.7180E−012.2004E+006.4166E−011.9230E+00
193.2092E−014.2114E+004.6939E−012.6329E+005.2451E−012.2902E+005.8815E−012.0010E+00
202.9767E−014.3791E+004.3303E−012.7349E+004.8318E−012.3785E+005.4125E−012.0777E+00
212.7751E−014.5427E+004.0121E−012.8350E+004.4690E−012.4652E+004.9997E−012.1532E+00
222.5986E−014.7025E+003.7321E−012.9329E+004.1489E−012.5503E+004.6347E−012.2274E+00
232.4427E−014.8585E+003.4845E−013.0288E+003.8653E−012.6336E+004.3107E−012.3003E+00
242.3037E−015.0108E+003.2641E−013.1224E+003.6126E−012.7152E+004.0217E−012.3717E+00
252.1787E−015.1597E+003.0666E−013.2137E+003.3862E−012.7949E+003.7628E−012.4416E+00
262.0655E−015.3056E+002.8885E−013.3027E+003.1824E−012.8727E+003.5297E−012.5099E+00
271.9623E−015.4487E+002.7270E−013.3895E+002.9978E−012.9485E+003.3189E−012.5764E+00
281.8677E−015.5892E+002.5795E−013.4740E+002.8297E−013.0224E+003.1274E−012.6413E+00
291.7808E−015.7275E+002.4442E−013.5564E+002.6760E−013.0944E+002.9526E−012.7044E+00
301.7006E−015.8636E+002.3195E−013.6368E+002.5348E−013.1645E+002.7925E−012.7659E+00
311.6264E−015.9978E+002.2041E−013.7152E+002.4046E−013.2328E+002.6453E−012.8257E+00
321.5578E−016.1302E+002.0970E−013.7919E+002.2841E−013.2993E+002.5095E−012.8840E+00
331.4942E−016.2608E+001.9972E−013.8668E+002.1722E−013.3643E+002.3838E−012.9407E+00
341.4351E−016.3898E+001.9040E−013.9401E+002.0681E−013.4278E+002.2672E−012.9960E+00
351.3802E−016.5170E+001.8170E−014.0120E+001.9710E−013.4898E+002.1587E−013.0499E+00
361.3290E−016.6426E+001.7354E−014.0824E+001.8804E−013.5504E+002.0577E−013.1026E+00
371.2813E−016.7665E+001.6590E−014.1515E+001.7956E−013.6098E+001.9634E−013.1541E+00
381.2366E−016.8887E+001.5873E−014.2193E+001.7162E−013.6681E+001.8753E−013.2044E+00
391.1948E−017.0093E+001.5200E−014.2860E+001.6418E−013.7252E+001.7928E−013.2538E+00
401.1555E−017.1282E+001.4567E−014.3515E+001.5719E−013.7812E+001.7155E−013.3021E+00
411.1185E−017.2454E+001.3972E−014.4160E+001.5064E−013.8363E+001.6431E−013.3495E+00
421.0835E−017.3610E+001.3412E−014.4794E+001.4447E−013.8904E+001.5750E−013.3961E+00
431.0503E−017.4750E+001.2884E−014.5418E+001.3868E−013.9436E+001.5111E−013.4418E+00
441.0188E−017.5874E+001.2388E−014.6033E+001.3322E−013.9960E+001.4510E−013.4868E+00
459.8866E−027.6983E+001.1919E−014.6638E+001.2809E−014.0475E+001.3945E−013.5311E+00
469.5986E−027.8078E+001.1477E−014.7234E+001.2325E−014.0983E+001.3412E−013.5746E+00
479.3223E−027.9158E+001.1060E−014.7822E+001.1868E−014.1483E+001.2910E−013.6175E+00
489.0564E−028.0224E+001.0666E−014.8401E+001.1437E−014.1975E+001.2436E−013.6598E+00
498.7999E−028.1278E+001.0293E−014.8973E+001.1030E−014.2461E+001.1988E−013.7015E+00
508.5519E−028.2319E+009.9396E−024.9536E+001.0645E−014.2940E+001.1566E−013.7425E+00
518.3116E−028.3350E+009.6052E−025.0091E+001.0281E−014.3413E+001.1166E−013.7831E+00
528.0783E−028.4369E+009.2880E−025.0640E+009.9356E−024.3879E+001.0787E−013.8231E+00
537.8515E−028.5380E+008.9871E−025.1181E+009.6086E−024.4339E+001.0429E−013.8625E+00
547.6306E−028.6381E+008.7012E−025.1715E+009.2983E−024.4793E+001.0088E−013.9015E+00
557.4152E−028.7375E+008.4294E−025.2242E+009.0037E−024.5242E+009.7656E−023.9400E+00
567.2050E−028.8363E+008.1707E−025.2763E+008.7236E−024.5684E+009.4588E−023.9780E+00
576.9997E−028.9345E+007.9243E−025.3278E+008.4572E−024.6122E+009.1670E−024.0155E+00
586.7991E−029.0323E+007.6895E−025.3787E+008.2034E−024.6554E+008.8893E−024.0526E+00
596.6030E−029.1297E+007.4654E−025.4289E+007.9616E−024.6981E+008.6247E−024.0892E+00
606.4114E−029.2270E+007.2514E−025.4787E+007.7309E−024.7403E+008.3724E−024.1254E+00

At; [Z=85]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.0239E+014.1248E−011.2437E+012.9883E−011.3265E+012.6974E−011.4283E+012.4336E−01
18.9380E+004.6234E−011.1010E+013.3233E−011.1777E+012.9940E−011.2718E+012.6955E−01
26.4388E+006.0566E−018.2238E+004.2631E−018.8612E+003.8231E−019.6278E+003.4277E−01
34.4043E+008.1918E−015.8788E+005.6154E−016.3903E+005.0078E−016.9920E+004.4692E−01
43.1079E+001.0666E+004.3131E+007.1406E−014.7264E+006.3357E−015.2052E+005.6307E−01
52.3038E+001.3199E+003.2955E+008.6805E−013.6357E+007.6713E−014.0258E+006.7952E−01
61.7794E+001.5693E+002.6047E+001.0187E+002.8896E+008.9751E−013.2143E+007.9294E−01
71.4192E+001.8149E+002.1122E+001.1668E+002.3537E+001.0253E+002.6278E+009.0395E−01
81.1636E+002.0573E+001.7484E+001.3130E+001.9547E+001.1515E+002.1885E+001.0134E+00
99.7745E−012.2946E+001.4731E+001.4572E+001.6504E+001.2759E+001.8513E+001.1212E+00
108.3802E−012.5240E+001.2607E+001.5982E+001.4139E+001.3974E+001.5879E+001.2267E+00
117.2958E−012.7438E+001.0932E+001.7345E+001.2265E+001.5151E+001.3782E+001.3288E+00
126.4352E−012.9541E+009.5963E−011.8656E+001.0766E+001.6285E+001.2099E+001.4272E+00
135.7271E−013.1556E+008.5058E−011.9912E+009.5397E−011.7371E+001.0721E+001.5215E+00
145.1304E−013.3499E+007.5978E−012.1116E+008.5186E−011.8412E+009.5726E−011.6119E+00
154.6233E−013.5383E+006.8324E−012.2276E+007.6580E−011.9413E+008.6044E−011.6989E+00
164.1900E−013.7220E+006.1804E−012.3398E+006.9244E−012.0382E+007.7787E−011.7830E+00
173.8190E−013.9016E+005.6205E−012.4490E+006.2938E−012.1324E+007.0681E−011.8647E+00
183.5008E−014.0775E+005.1368E−012.5556E+005.7478E−012.2244E+006.4520E−011.9445E+00
193.2273E−014.2497E+004.7169E−012.6600E+005.2727E−012.3145E+005.9145E−012.0227E+00
202.9914E−014.4181E+004.3510E−012.7624E+004.8572E−012.4030E+005.4434E−012.0996E+00
212.7866E−014.5827E+004.0305E−012.8627E+004.4923E−012.4899E+005.0285E−012.1752E+00
222.6074E−014.7435E+003.7486E−012.9610E+004.1703E−012.5751E+004.6616E−012.2496E+00
232.4495E−014.9005E+003.4993E−013.0572E+003.8850E−012.6588E+004.3358E−012.3226E+00
242.3089E−015.0538E+003.2776E−013.1512E+003.6309E−012.7407E+004.0453E−012.3943E+00
252.1828E−015.2037E+003.0791E−013.2430E+003.4034E−012.8207E+003.7850E−012.4644E+00
262.0687E−015.3506E+002.9004E−013.3325E+003.1986E−012.8989E+003.5508E−012.5330E+00
271.9649E−015.4946E+002.7384E−013.4199E+003.0134E−012.9753E+003.3390E−012.6000E+00
281.8700E−015.6360E+002.5908E−013.5050E+002.8449E−013.0496E+003.1467E−012.6654E+00
291.7828E−015.7751E+002.4555E−013.5880E+002.6908E−013.1222E+002.9713E−012.7290E+00
301.7025E−015.9120E+002.3308E−013.6690E+002.5494E−013.1928E+002.8107E−012.7910E+00
311.6283E−016.0470E+002.2155E−013.7480E+002.4191E−013.2617E+002.6631E−012.8514E+00
321.5596E−016.1802E+002.1085E−013.8253E+002.2984E−013.3289E+002.5269E−012.9103E+00
331.4961E−016.3117E+002.0089E−013.9008E+002.1865E−013.3945E+002.4008E−012.9676E+00
341.4371E−016.4414E+001.9158E−013.9747E+002.0823E−013.4585E+002.2839E−013.0235E+00
351.3823E−016.5695E+001.8289E−014.0472E+001.9851E−013.5211E+002.1751E−013.0780E+00
361.3313E−016.6959E+001.7474E−014.1182E+001.8944E−013.5823E+002.0737E−013.1312E+00
371.2838E−016.8207E+001.6709E−014.1878E+001.8094E−013.6423E+001.9791E−013.1833E+00
381.2394E−016.9438E+001.5992E−014.2562E+001.7298E−013.7011E+001.8906E−013.2342E+00
391.1978E−017.0653E+001.5317E−014.3234E+001.6552E−013.7587E+001.8077E−013.2840E+00
401.1588E−017.1852E+001.4683E−014.3895E+001.5851E−013.8152E+001.7301E−013.3328E+00
411.1221E−017.3034E+001.4086E−014.4544E+001.5192E−013.8708E+001.6572E−013.3807E+00
421.0874E−017.4200E+001.3524E−014.5184E+001.4572E−013.9254E+001.5888E−013.4278E+00
431.0546E−017.5349E+001.2995E−014.5813E+001.3990E−013.9791E+001.5244E−013.4740E+00
441.0234E−017.6483E+001.2496E−014.6433E+001.3441E−014.0319E+001.4639E−013.5194E+00
459.9368E−027.7601E+001.2025E−014.7043E+001.2923E−014.0839E+001.4069E−013.5640E+00
469.6525E−027.8705E+001.1580E−014.7644E+001.2435E−014.1351E+001.3532E−013.6080E+00
479.3797E−027.9794E+001.1159E−014.8237E+001.1975E−014.1856E+001.3025E−013.6513E+00
489.1172E−028.0869E+001.0762E−014.8821E+001.1540E−014.2353E+001.2547E−013.6939E+00
498.8640E−028.1931E+001.0386E−014.9397E+001.1130E−014.2843E+001.2096E−013.7360E+00
508.6190E−028.2980E+001.0030E−014.9965E+001.0741E−014.3326E+001.1669E−013.7774E+00
518.3815E−028.4018E+009.6930E−025.0525E+001.0373E−014.3802E+001.1265E−013.8183E+00
528.1507E−028.5045E+009.3730E−025.1078E+001.0025E−014.4273E+001.0883E−013.8586E+00
537.9260E−028.6062E+009.0692E−025.1624E+009.6946E−024.4736E+001.0521E−013.8984E+00
547.7068E−028.7070E+008.7806E−025.2162E+009.3811E−024.5194E+001.0177E−013.9377E+00
557.4928E−028.8070E+008.5061E−025.2694E+009.0834E−024.5647E+009.8507E−023.9765E+00
567.2836E−028.9063E+008.2448E−025.3220E+008.8004E−024.6093E+009.5407E−024.0148E+00
577.0789E−029.0050E+007.9959E−025.3739E+008.5311E−024.6534E+009.2459E−024.0526E+00
586.8784E−029.1032E+007.7586E−025.4251E+008.2747E−024.6970E+008.9653E−024.0900E+00
596.6821E−029.2011E+007.5322E−025.4759E+008.0303E−024.7400E+008.6980E−024.1269E+00
606.4897E−029.2987E+007.3159E−025.5260E+007.7972E−024.7826E+008.4431E−024.1635E+00

Rn; [Z=86]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.0192E+014.2365E−011.2415E+013.0614E−011.3248E+012.7626E−011.4271E+012.4921E−01
18.9775E+004.7052E−011.1080E+013.3764E−011.1857E+013.0415E−011.2808E+012.7383E−01
26.5512E+006.0787E−018.3738E+004.2787E−019.0241E+003.8379E−019.8062E+003.4420E−01
34.4885E+008.1955E−015.9962E+005.6211E−016.5188E+005.0146E−017.1338E+004.4769E−01
43.1495E+001.0726E+004.3761E+007.1803E−014.7967E+006.3723E−015.2840E+005.6648E−01
52.3241E+001.3345E+003.3258E+008.7715E−013.6702E+007.7525E−014.0653E+006.8681E−01
61.7923E+001.5903E+002.6213E+001.0318E+002.9086E+009.0910E−013.2363E+008.0328E−01
71.4292E+001.8388E+002.1237E+001.1819E+002.3668E+001.0387E+002.6432E+009.1590E−01
81.1712E+002.0821E+001.7575E+001.3289E+001.9653E+001.1656E+002.2011E+001.0260E+00
99.8302E−012.3199E+001.4805E+001.4735E+001.6593E+001.2904E+001.8621E+001.1342E+00
108.4213E−012.5503E+001.2667E+001.6151E+001.4214E+001.4125E+001.5970E+001.2402E+00
117.3293E−012.7715E+001.0981E+001.7524E+001.2327E+001.5312E+001.3859E+001.3432E+00
126.4661E−012.9835E+009.6379E−011.8849E+001.0818E+001.6457E+001.2164E+001.4426E+00
135.7577E−013.1866E+008.5425E−012.0120E+009.5847E−011.7557E+001.0776E+001.5382E+00
145.1614E−013.3821E+007.6315E−012.1339E+008.5589E−011.8611E+009.6214E−011.6298E+00
154.6539E−013.5715E+006.8641E−012.2511E+007.6950E−011.9624E+008.6484E−011.7178E+00
164.2191E−013.7560E+006.2103E−012.3643E+006.9589E−012.0603E+007.8193E−011.8027E+00
173.8454E−013.9363E+005.6485E−012.4743E+006.3260E−012.1552E+007.1058E−011.8851E+00
183.5240E−014.1129E+005.1626E−012.5815E+005.7779E−012.2477E+006.4872E−011.9654E+00
193.2470E−014.2858E+004.7405E−012.6863E+005.3005E−012.3382E+005.9475E−012.0439E+00
203.0075E−014.4551E+004.3722E−012.7890E+004.8828E−012.4269E+005.4742E−012.1210E+00
212.7996E−014.6206E+004.0495E−012.8896E+004.5158E−012.5139E+005.0573E−012.1968E+00
222.6177E−014.7823E+003.7655E−012.9882E+004.1919E−012.5994E+004.6884E−012.2712E+00
232.4575E−014.9403E+003.5145E−013.0847E+003.9048E−012.6833E+004.3608E−012.3444E+00
242.3152E−015.0946E+003.2913E−013.1792E+003.6492E−012.7654E+004.0687E−012.4163E+00
252.1877E−015.2456E+003.0917E−013.2714E+003.4205E−012.8458E+003.8070E−012.4867E+00
262.0726E−015.3934E+002.9122E−013.3614E+003.2147E−012.9244E+003.5715E−012.5556E+00
271.9681E−015.5383E+002.7497E−013.4493E+003.0287E−013.0012E+003.3588E−012.6230E+00
281.8727E−015.6807E+002.6017E−013.5350E+002.8597E−013.0761E+003.1657E−012.6888E+00
291.7851E−015.8206E+002.4663E−013.6186E+002.7053E−013.1491E+002.9896E−012.7529E+00
301.7045E−015.9584E+002.3416E−013.7002E+002.5636E−013.2203E+002.8285E−012.8154E+00
311.6301E−016.0942E+002.2264E−013.7798E+002.4331E−013.2898E+002.6804E−012.8764E+00
321.5614E−016.2282E+002.1195E−013.8577E+002.3123E−013.3576E+002.5438E−012.9358E+00
331.4978E−016.3605E+002.0200E−013.9338E+002.2003E−013.4237E+002.4174E−012.9937E+00
341.4388E−016.4910E+001.9271E−014.0083E+002.0961E−013.4883E+002.3001E−013.0501E+00
351.3841E−016.6199E+001.8402E−014.0813E+001.9988E−013.5515E+002.1911E−013.1052E+00
361.3332E−016.7472E+001.7588E−014.1528E+001.9080E−013.6133E+002.0894E−013.1590E+00
371.2859E−016.8729E+001.6825E−014.2230E+001.8229E−013.6738E+001.9945E−013.2116E+00
381.2417E−016.9970E+001.6107E−014.2920E+001.7431E−013.7331E+001.9057E−013.2630E+00
391.2004E−017.1194E+001.5432E−014.3597E+001.6683E−013.7912E+001.8225E−013.3134E+00
401.1616E−017.2402E+001.4797E−014.4263E+001.5979E−013.8483E+001.7445E−013.3627E+00
411.1252E−017.3593E+001.4199E−014.4918E+001.5318E−013.9044E+001.6712E−013.4111E+00
421.0909E−017.4769E+001.3635E−014.5562E+001.4696E−013.9594E+001.6024E−013.4586E+00
431.0584E−017.5928E+001.3104E−014.6196E+001.4110E−014.0136E+001.5377E−013.5052E+00
441.0276E−017.7071E+001.2602E−014.6821E+001.3558E−014.0669E+001.4767E−013.5510E+00
459.9822E−027.8199E+001.2129E−014.7436E+001.3037E−014.1193E+001.4193E−013.5961E+00
469.7016E−027.9312E+001.1681E−014.8043E+001.2546E−014.1710E+001.3652E−013.6405E+00
479.4326E−028.0409E+001.1259E−014.8640E+001.2082E−014.2219E+001.3141E−013.6842E+00
489.1738E−028.1493E+001.0859E−014.9229E+001.1644E−014.2720E+001.2659E−013.7272E+00
498.9241E−028.2564E+001.0480E−014.9810E+001.1230E−014.3214E+001.2204E−013.7696E+00
508.6825E−028.3621E+001.0121E−015.0383E+001.0838E−014.3701E+001.1773E−013.8114E+00
518.4481E−028.4667E+009.7812E−025.0948E+001.0467E−014.4182E+001.1365E−013.8526E+00
528.2202E−028.5701E+009.4584E−025.1505E+001.0115E−014.4656E+001.0979E−013.8933E+00
537.9981E−028.6725E+009.1519E−025.2055E+009.7815E−024.5124E+001.0613E−013.9334E+00
547.7812E−028.7739E+008.8607E−025.2598E+009.4649E−024.5585E+001.0266E−013.9730E+00
557.5690E−028.8745E+008.5836E−025.3135E+009.1641E−024.6041E+009.9366E−024.0121E+00
567.3613E−028.9744E+008.3198E−025.3664E+008.8782E−024.6491E+009.6235E−024.0507E+00
577.1576E−029.0736E+008.0684E−025.4187E+008.6061E−024.6936E+009.3256E−024.0889E+00
586.9578E−029.1723E+007.8287E−025.4704E+008.3470E−024.7375E+009.0421E−024.1266E+00
596.7616E−029.2705E+007.6000E−025.5216E+008.1000E−024.7809E+008.7720E−024.1638E+00
606.5689E−029.3685E+007.3815E−025.5721E+007.8644E−024.8238E+008.5145E−024.2006E+00

Fr; [Z=87]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.4986E+013.2129E−011.7704E+012.3520E−011.8776E+012.1286E−012.0130E+011.9247E−01
11.0705E+014.3797E−011.3040E+013.1288E−011.3917E+012.8171E−011.5001E+012.5356E−01
26.7315E+006.4961E−018.6029E+004.4955E−019.2706E+004.0203E−011.0074E+013.5974E−01
34.5441E+008.7458E−016.0739E+005.9164E−016.6045E+005.2651E−017.2291E+004.6919E−01
43.1886E+001.1283E+004.4328E+007.4805E−014.8599E+006.6277E−015.3550E+005.8845E−01
52.3471E+001.3946E+003.3598E+009.0990E−013.7086E+008.0318E−014.1091E+007.1090E−01
61.8070E+001.6564E+002.6408E+001.0683E+002.9307E+009.4031E−013.2618E+008.3024E−01
71.4404E+001.9089E+002.1365E+001.2211E+002.3813E+001.0724E+002.6600E+009.4499E−01
81.1799E+002.1539E+001.7672E+001.3695E+001.9764E+001.2004E+002.2141E+001.0562E+00
99.8953E−012.3926E+001.4883E+001.5147E+001.6684E+001.3258E+001.8730E+001.1649E+00
108.4708E−012.6240E+001.2730E+001.6570E+001.4289E+001.4486E+001.6062E+001.2715E+00
117.3670E−012.8464E+001.1033E+001.7951E+001.2390E+001.5679E+001.3937E+001.3751E+00
126.4997E−013.0600E+009.6811E−011.9288E+001.0871E+001.6836E+001.2230E+001.4756E+00
135.7898E−013.2646E+008.5801E−012.0572E+009.6304E−011.7948E+001.0833E+001.5722E+00
145.1929E−013.4614E+007.6656E−012.1804E+008.5997E−011.9014E+009.6709E−011.6649E+00
154.6848E−013.6519E+006.8959E−012.2989E+007.7322E−012.0040E+008.6929E−011.7540E+00
164.2487E−013.8372E+006.2403E−012.4132E+006.9935E−012.1028E+007.8601E−011.8399E+00
173.8729E−014.0182E+005.6766E−012.5240E+006.3583E−012.1985E+007.1437E−011.9230E+00
183.5485E−014.1954E+005.1889E−012.6319E+005.8081E−012.2916E+006.5226E−012.0038E+00
193.2682E−014.3690E+004.7646E−012.7372E+005.3286E−012.3825E+005.9806E−012.0827E+00
203.0254E−014.5391E+004.3940E−012.8403E+004.9088E−012.4715E+005.5052E−012.1601E+00
212.8143E−014.7054E+004.0691E−012.9413E+004.5397E−012.5588E+005.0861E−012.2360E+00
222.6297E−014.8681E+003.7831E−013.0402E+004.2138E−012.6445E+004.7153E−012.3106E+00
232.4671E−015.0271E+003.5302E−013.1371E+003.9249E−012.7286E+004.3859E−012.3840E+00
242.3229E−015.1825E+003.3054E−013.2319E+003.6677E−012.8111E+004.0921E−012.4560E+00
252.1939E−015.3345E+003.1046E−013.3246E+003.4376E−012.8918E+003.8289E−012.5266E+00
262.0776E−015.4833E+002.9241E−013.4151E+003.2308E−012.9708E+003.5922E−012.5959E+00
271.9722E−015.6292E+002.7609E−013.5035E+003.0439E−013.0479E+003.3784E−012.6636E+00
281.8760E−015.7724E+002.6125E−013.5897E+002.8743E−013.1233E+003.1844E−012.7297E+00
291.7879E−015.9132E+002.4768E−013.6739E+002.7194E−013.1968E+003.0076E−012.7943E+00
301.7069E−016.0519E+002.3521E−013.7561E+002.5774E−013.2685E+002.8458E−012.8574E+00
311.6323E−016.1885E+002.2369E−013.8363E+002.4467E−013.3385E+002.6973E−012.9188E+00
321.5634E−016.3233E+002.1301E−013.9147E+002.3258E−013.4069E+002.5603E−012.9787E+00
331.4996E−016.4564E+002.0307E−013.9914E+002.2137E−013.4736E+002.4336E−013.0372E+00
341.4406E−016.5878E+001.9379E−014.0665E+002.1094E−013.5387E+002.3160E−013.0942E+00
351.3859E−016.7175E+001.8512E−014.1400E+002.0121E−013.6024E+002.2067E−013.1498E+00
361.3350E−016.8457E+001.7699E−014.2121E+001.9211E−013.6648E+002.1048E−013.2042E+00
371.2878E−016.9722E+001.6935E−014.2828E+001.8360E−013.7258E+002.0096E−013.2573E+00
381.2437E−017.0972E+001.6218E−014.3523E+001.7561E−013.7856E+001.9205E−013.3092E+00
391.2026E−017.2205E+001.5543E−014.4205E+001.6811E−013.8443E+001.8370E−013.3601E+00
401.1641E−017.3422E+001.4907E−014.4876E+001.6106E−013.9019E+001.7586E−013.4099E+00
411.1279E−017.4623E+001.4308E−014.5536E+001.5443E−013.9584E+001.6851E−013.4588E+00
421.0939E−017.5808E+001.3743E−014.6186E+001.4818E−014.0140E+001.6159E−013.5067E+00
431.0618E−017.6977E+001.3210E−014.6825E+001.4229E−014.0686E+001.5508E−013.5538E+00
441.0313E−017.8130E+001.2707E−014.7455E+001.3674E−014.1224E+001.4895E−013.6001E+00
451.0023E−017.9267E+001.2232E−014.8075E+001.3151E−014.1753E+001.4317E−013.6456E+00
469.7461E−028.0389E+001.1782E−014.8686E+001.2656E−014.2273E+001.3772E−013.6903E+00
479.4809E−028.1496E+001.1357E−014.9288E+001.2190E−014.2786E+001.3257E−013.7344E+00
489.2260E−028.2588E+001.0955E−014.9882E+001.1748E−014.3292E+001.2771E−013.7778E+00
498.9800E−028.3667E+001.0573E−015.0467E+001.1330E−014.3790E+001.2312E−013.8206E+00
508.7420E−028.4732E+001.0212E−015.1045E+001.0935E−014.4281E+001.1877E−013.8627E+00
518.5111E−028.5786E+009.8693E−025.1614E+001.0561E−014.4766E+001.1466E−013.9043E+00
528.2863E−028.6827E+009.5441E−025.2176E+001.0206E−014.5244E+001.1076E−013.9453E+00
538.0671E−028.7858E+009.2350E−025.2731E+009.8691E−024.5716E+001.0707E−013.9858E+00
547.8528E−028.8878E+008.9412E−025.3278E+009.5494E−024.6181E+001.0356E−014.0257E+00
557.6429E−028.9890E+008.6616E−025.3819E+009.2457E−024.6641E+001.0023E−014.0651E+00
567.4370E−029.0894E+008.3953E−025.4353E+008.9569E−024.7094E+009.7071E−024.1041E+00
577.2348E−029.1891E+008.1416E−025.4880E+008.6820E−024.7543E+009.4062E−024.1425E+00
587.0360E−029.2883E+007.8996E−025.5402E+008.4202E−024.7986E+009.1198E−024.1805E+00
596.8404E−029.3869E+007.6686E−025.5917E+008.1707E−024.8423E+008.8469E−024.2180E+00
606.6477E−029.4853E+007.4480E−025.6426E+007.9326E−024.8856E+008.5867E−024.2551E+00

Ra; [Z=88]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.6691E+013.1495E−011.9618E+012.2844E−012.0782E+012.0642E−012.2262E+011.8643E−01
11.1932E+014.2553E−011.4444E+013.0237E−011.5393E+012.7202E−011.6574E+012.4470E−01
27.0122E+006.6802E−018.9517E+004.5834E−019.6437E+004.0928E−011.0477E+013.6584E−01
34.6033E+009.1683E−016.1543E+006.1453E−016.6928E+005.4600E−017.3270E+004.8598E−01
43.2239E+001.1739E+004.4825E+007.7296E−014.9152E+006.8404E−015.4172E+006.0682E−01
52.3704E+001.4419E+003.3942E+009.3596E−013.7474E+008.2550E−014.1533E+007.3023E−01
61.8223E+001.7079E+002.6623E+001.0971E+002.9553E+009.6506E−013.2901E+008.5171E−01
71.4518E+001.9649E+002.1504E+001.2529E+002.3972E+001.0997E+002.6785E+009.6875E−01
81.1891E+002.2127E+001.7773E+001.4033E+001.9878E+001.2297E+002.2274E+001.0816E+00
99.9688E−012.4528E+001.4963E+001.5497E+001.6775E+001.3560E+001.8837E+001.1913E+00
108.5269E−012.6853E+001.2794E+001.6926E+001.4364E+001.4794E+001.6152E+001.2984E+00
117.4116E−012.9089E+001.1085E+001.8315E+001.2453E+001.5995E+001.4014E+001.4026E+00
126.5362E−013.1238E+009.7251E−011.9661E+001.0924E+001.7160E+001.2295E+001.5038E+00
135.8225E−013.3298E+008.6181E−012.0957E+009.6765E−011.8282E+001.0890E+001.6014E+00
145.2244E−013.5279E+007.6997E−012.2202E+008.6405E−011.9361E+009.7207E−011.6952E+00
154.7155E−013.7194E+006.9275E−012.3399E+007.7694E−012.0397E+008.7376E−011.7854E+00
164.2783E−013.9056E+006.2701E−012.4553E+007.0280E−012.1396E+007.9009E−011.8722E+00
173.9006E−014.0874E+005.7048E−012.5670E+006.3907E−012.2361E+007.1816E−011.9561E+00
183.5737E−014.2652E+005.2152E−012.6756E+005.8384E−012.3299E+006.5580E−012.0375E+00
193.2905E−014.4395E+004.7889E−012.7815E+005.3569E−012.4214E+006.0138E−012.1169E+00
203.0445E−014.6103E+004.4163E−012.8851E+004.9350E−012.5108E+005.5361E−012.1946E+00
212.8304E−014.7775E+004.0892E−012.9864E+004.5638E−012.5984E+005.1150E−012.2708E+00
222.6430E−014.9411E+003.8011E−013.0858E+004.2360E−012.6844E+004.7422E−012.3456E+00
232.4780E−015.1010E+003.5463E−013.1830E+003.9453E−012.7687E+004.4110E−012.4191E+00
242.3317E−015.2574E+003.3199E−013.2782E+003.6864E−012.8514E+004.1154E−012.4913E+00
252.2010E−015.4104E+003.1177E−013.3713E+003.4549E−012.9324E+003.8507E−012.5622E+00
262.0834E−015.5603E+002.9361E−013.4623E+003.2469E−013.0117E+003.6127E−012.6316E+00
271.9769E−015.7072E+002.7721E−013.5512E+003.0591E−013.0893E+003.3977E−012.6997E+00
281.8799E−015.8513E+002.6232E−013.6380E+002.8886E−013.1650E+003.2028E−012.7662E+00
291.7912E−015.9931E+002.4871E−013.7227E+002.7333E−013.2390E+003.0253E−012.8312E+00
301.7097E−016.1326E+002.3622E−013.8054E+002.5909E−013.3113E+002.8629E−012.8946E+00
311.6347E−016.2701E+002.2470E−013.8862E+002.4599E−013.3818E+002.7138E−012.9566E+00
321.5655E−016.4057E+002.1402E−013.9652E+002.3389E−013.4507E+002.5764E−013.0170E+00
331.5015E−016.5396E+002.0409E−014.0425E+002.2266E−013.5179E+002.4494E−013.0760E+00
341.4424E−016.6718E+001.9482E−014.1181E+002.1223E−013.5836E+002.3315E−013.1335E+00
351.3875E−016.8024E+001.8616E−014.1922E+002.0249E−013.6479E+002.2220E−013.1897E+00
361.3367E−016.9314E+001.7804E−014.2648E+001.9339E−013.7107E+002.1198E−013.2445E+00
371.2894E−017.0589E+001.7042E−014.3360E+001.8487E−013.7723E+002.0243E−013.2982E+00
381.2455E−017.1847E+001.6325E−014.4060E+001.7687E−013.8326E+001.9350E−013.3507E+00
391.2045E−017.3090E+001.5650E−014.4748E+001.6936E−013.8918E+001.8512E−013.4020E+00
401.1662E−017.4316E+001.5014E−014.5424E+001.6229E−013.9499E+001.7726E−013.4523E+00
411.1303E−017.5527E+001.4415E−014.6089E+001.5564E−014.0069E+001.6987E−013.5017E+00
421.0965E−017.6721E+001.3849E−014.6743E+001.4938E−014.0629E+001.6292E−013.5501E+00
431.0647E−017.7899E+001.3315E−014.7387E+001.4347E−014.1180E+001.5638E−013.5976E+00
441.0345E−017.9062E+001.2810E−014.8021E+001.3790E−014.1722E+001.5022E−013.6443E+00
451.0059E−018.0208E+001.2333E−014.8646E+001.3263E−014.2255E+001.4440E−013.6902E+00
469.7861E−028.1339E+001.1881E−014.9262E+001.2766E−014.2780E+001.3891E−013.7354E+00
479.5248E−028.2455E+001.1454E−014.9869E+001.2296E−014.3298E+001.3373E−013.7799E+00
489.2738E−028.3557E+001.1050E−015.0468E+001.1852E−014.3808E+001.2883E−013.8236E+00
499.0318E−028.4644E+001.0666E−015.1058E+001.1431E−014.4310E+001.2421E−013.8668E+00
508.7977E−028.5718E+001.0303E−015.1640E+001.1033E−014.4805E+001.1982E−013.9093E+00
518.5704E−028.6778E+009.9575E−025.2214E+001.0655E−014.5294E+001.1567E−013.9512E+00
528.3492E−028.7827E+009.6298E−025.2781E+001.0297E−014.5776E+001.1174E−013.9926E+00
538.1333E−028.8865E+009.3183E−025.3340E+009.9573E−024.6251E+001.0801E−014.0333E+00
547.9219E−028.9893E+009.0221E−025.3892E+009.6347E−024.6720E+001.0447E−014.0736E+00
557.7147E−029.0910E+008.7402E−025.4437E+009.3281E−024.7184E+001.0111E−014.1133E+00
567.5112E−029.1920E+008.4716E−025.4975E+009.0364E−024.7641E+009.7915E−024.1526E+00
577.3109E−029.2922E+008.2156E−025.5507E+008.7588E−024.8093E+009.4876E−024.1914E+00
587.1135E−029.3918E+007.9713E−025.6032E+008.4944E−024.8540E+009.1983E−024.2297E+00
596.9190E−029.4909E+007.7381E−025.6551E+008.2423E−024.8980E+008.9226E−024.2675E+00
606.7270E−029.5896E+007.5153E−025.7064E+008.0018E−024.9416E+008.6598E−024.3049E+00

Ac; [Z=89]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.6519E+013.3109E−011.9489E+012.3865E−012.0660E+012.1539E−012.2143E+011.9437E−01
11.2277E+014.2997E−011.4870E+013.0467E−011.5848E+012.7397E−011.7065E+012.4639E−01
27.2733E+006.6761E−019.2827E+004.5758E−019.9986E+004.0858E−011.0862E+013.6523E−01
34.6917E+009.3102E−016.2761E+006.2243E−016.8259E+005.5281E−017.4737E+004.9195E−01
43.2633E+001.1975E+004.5384E+007.8641E−014.9773E+006.9568E−015.4867E+006.1702E−01
52.3938E+001.4703E+003.4272E+009.5233E−013.7845E+008.3972E−014.1955E+007.4270E−01
61.8379E+001.7405E+002.6832E+001.1162E+002.9789E+009.8161E−013.3173E+008.6624E−01
71.4635E+002.0010E+002.1645E+001.2744E+002.4132E+001.1184E+002.6969E+009.8522E−01
81.1985E+002.2513E+001.7877E+001.4266E+001.9996E+001.2500E+002.2411E+001.0995E+00
91.0043E+002.4929E+001.5044E+001.5741E+001.6868E+001.3774E+001.8946E+001.2101E+00
108.5840E−012.7265E+001.2860E+001.7178E+001.4441E+001.5015E+001.6244E+001.3179E+00
117.4568E−012.9514E+001.1139E+001.8575E+001.2517E+001.6223E+001.4091E+001.4228E+00
126.5733E−013.1676E+009.7696E−011.9930E+001.0978E+001.7396E+001.2361E+001.5247E+00
135.8556E−013.3750E+008.6564E−012.1237E+009.7230E−011.8529E+001.0947E+001.6232E+00
145.2559E−013.5744E+007.7340E−012.2495E+008.6816E−011.9619E+009.7708E−011.7180E+00
154.7463E−013.7670E+006.9592E−012.3704E+007.8067E−012.0667E+008.7825E−011.8092E+00
164.3081E−013.9541E+006.2998E−012.4869E+007.0625E−012.1676E+007.9419E−011.8970E+00
173.9288E−014.1366E+005.7329E−012.5996E+006.4229E−012.2650E+007.2195E−011.9818E+00
183.5996E−014.3151E+005.2417E−012.7090E+005.8687E−012.3596E+006.5934E−012.0639E+00
193.3136E−014.4901E+004.8135E−012.8155E+005.3852E−012.4516E+006.0468E−012.1438E+00
203.0647E−014.6616E+004.4388E−012.9195E+004.9613E−012.5414E+005.5670E−012.2218E+00
212.8475E−014.8295E+004.1097E−013.0214E+004.5881E−012.6294E+005.1439E−012.2983E+00
222.6574E−014.9940E+003.8195E−013.1211E+004.2583E−012.7157E+004.7691E−012.3733E+00
232.4899E−015.1549E+003.5628E−013.2187E+003.9658E−012.8002E+004.4360E−012.4470E+00
242.3415E−015.3124E+003.3347E−013.3143E+003.7052E−012.8832E+004.1387E−012.5194E+00
252.2090E−015.4664E+003.1310E−013.4079E+003.4722E−012.9645E+003.8725E−012.5905E+00
262.0900E−015.6173E+002.9482E−013.4993E+003.2629E−013.0442E+003.6331E−012.6602E+00
271.9823E−015.7652E+002.7833E−013.5887E+003.0741E−013.1221E+003.4170E−012.7285E+00
281.8844E−015.9103E+002.6338E−013.6760E+002.9029E−013.1983E+003.2210E−012.7954E+00
291.7949E−016.0530E+002.4973E−013.7613E+002.7469E−013.2727E+003.0427E−012.8608E+00
301.7128E−016.1934E+002.3721E−013.8445E+002.6041E−013.3454E+002.8796E−012.9247E+00
311.6373E−016.3318E+002.2567E−013.9259E+002.4728E−013.4165E+002.7300E−012.9870E+00
321.5677E−016.4682E+002.1499E−014.0054E+002.3516E−013.4858E+002.5922E−013.0480E+00
331.5035E−016.6030E+002.0507E−014.0832E+002.2392E−013.5536E+002.4648E−013.1074E+00
341.4441E−016.7360E+001.9581E−014.1594E+002.1348E−013.6198E+002.3467E−013.1655E+00
351.3891E−016.8674E+001.8716E−014.2340E+002.0373E−013.6846E+002.2368E−013.2221E+00
361.3382E−016.9973E+001.7905E−014.3071E+001.9463E−013.7480E+002.1344E−013.2775E+00
371.2909E−017.1256E+001.7144E−014.3789E+001.8610E−013.8101E+002.0387E−013.3317E+00
381.2470E−017.2524E+001.6428E−014.4494E+001.7810E−013.8709E+001.9492E−013.3846E+00
391.2061E−017.3776E+001.5754E−014.5187E+001.7058E−013.9305E+001.8652E−013.4365E+00
401.1679E−017.5012E+001.5118E−014.5868E+001.6350E−013.9891E+001.7863E−013.4873E+00
411.1322E−017.6232E+001.4518E−014.6537E+001.5684E−014.0466E+001.7122E−013.5371E+00
421.0987E−017.7436E+001.3952E−014.7196E+001.5056E−014.1031E+001.6424E−013.5859E+00
431.0671E−017.8624E+001.3417E−014.7845E+001.4463E−014.1586E+001.5767E−013.6339E+00
441.0373E−017.9796E+001.2911E−014.8484E+001.3903E−014.2133E+001.5147E−013.6810E+00
451.0091E−018.0952E+001.2432E−014.9114E+001.3375E−014.2670E+001.4562E−013.7274E+00
469.8214E−028.2092E+001.1979E−014.9735E+001.2875E−014.3200E+001.4010E−013.7729E+00
479.5641E−028.3217E+001.1550E−015.0346E+001.2402E−014.3721E+001.3489E−013.8178E+00
489.3172E−028.4328E+001.1144E−015.0949E+001.1955E−014.4235E+001.2996E−013.8620E+00
499.0794E−028.5424E+001.0758E−015.1544E+001.1531E−014.4742E+001.2529E−013.9055E+00
508.8493E−028.6506E+001.0393E−015.2131E+001.1130E−014.5241E+001.2087E−013.9484E+00
518.6261E−028.7575E+001.0045E−015.2709E+001.0750E−014.5734E+001.1669E−013.9906E+00
528.4087E−028.8631E+009.7155E−025.3280E+001.0389E−014.6220E+001.1272E−014.0323E+00
538.1964E−028.9676E+009.4018E−025.3844E+001.0046E−014.6699E+001.0896E−014.0735E+00
547.9885E−029.0710E+009.1034E−025.4400E+009.7207E−024.7172E+001.0539E−014.1140E+00
557.7844E−029.1734E+008.8192E−025.4950E+009.4112E−024.7639E+001.0199E−014.1541E+00
567.5836E−029.2749E+008.5484E−025.5492E+009.1168E−024.8100E+009.8768E−024.1937E+00
577.3856E−029.3757E+008.2902E−025.6028E+008.8365E−024.8556E+009.5699E−024.2327E+00
587.1903E−029.4757E+008.0437E−025.6557E+008.5695E−024.9005E+009.2777E−024.2713E+00
596.9972E−029.5752E+007.8084E−025.7081E+008.3148E−024.9450E+008.9993E−024.3095E+00
606.8063E−029.6743E+007.5835E−025.7598E+008.0719E−024.9889E+008.7338E−024.3471E+00

Th; [Z=90]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.6064E+013.4887E−011.9046E+012.5047E−012.0209E+012.2590E−012.1675E+012.0375E−01
11.2347E+014.3840E−011.4991E+013.1016E−011.5984E+012.7884E−011.7217E+012.5075E−01
27.4837E+006.6515E−019.5564E+004.5620E−011.0294E+014.0745E−011.1182E+013.6433E−01
34.7871E+009.3543E−016.4103E+006.2512E−016.9729E+005.5525E−017.6358E+004.9420E−01
43.3061E+001.2117E+004.6007E+007.9490E−015.0467E+007.0314E−015.5644E+006.2365E−01
52.4180E+001.4911E+003.4615E+009.6477E−013.8231E+008.5062E−014.2393E+007.5236E−01
61.8542E+001.7660E+002.7045E+001.1316E+003.0029E+009.9517E−013.3448E+008.7824E−01
71.4758E+002.0301E+002.1789E+001.2923E+002.4294E+001.1342E+002.7156E+009.9916E−01
81.2083E+002.2829E+001.7983E+001.4463E+002.0115E+001.2674E+002.2549E+001.1149E+00
91.0120E+002.5260E+001.5128E+001.5950E+001.6962E+001.3959E+001.9057E+001.2265E+00
108.6437E−012.7608E+001.2927E+001.7394E+001.4519E+001.5207E+001.6336E+001.3349E+00
117.5037E−012.9869E+001.1194E+001.8800E+001.2581E+001.6422E+001.4168E+001.4404E+00
126.6114E−013.2045E+009.8150E−012.0163E+001.1032E+001.7602E+001.2428E+001.5430E+00
135.8891E−013.4132E+008.6951E−012.1480E+009.7696E−011.8744E+001.1004E+001.6423E+00
145.2873E−013.6140E+007.7683E−012.2750E+008.7227E−011.9845E+009.8210E−011.7382E+00
154.7768E−013.8077E+006.9907E−012.3971E+007.8439E−012.0904E+008.8274E−011.8304E+00
164.3376E−013.9957E+006.3294E−012.5148E+007.0969E−012.1924E+007.9828E−011.9192E+00
173.9570E−014.1789E+005.7609E−012.6284E+006.4551E−012.2908E+007.2573E−012.0048E+00
183.6259E−014.3582E+005.2681E−012.7387E+005.8989E−012.3861E+006.6286E−012.0877E+00
193.3374E−014.5337E+004.8383E−012.8459E+005.4135E−012.4788E+006.0798E−012.1681E+00
203.0857E−014.7059E+004.4617E−012.9505E+004.9878E−012.5691E+005.5979E−012.2466E+00
212.8657E−014.8747E+004.1305E−013.0528E+004.6126E−012.6575E+005.1728E−012.3234E+00
222.6728E−015.0400E+003.8384E−013.1529E+004.2809E−012.7441E+004.7961E−012.3987E+00
232.5029E−015.2019E+003.5797E−013.2510E+003.9865E−012.8290E+004.4611E−012.4726E+00
242.3523E−015.3603E+003.3498E−013.3470E+003.7242E−012.9122E+004.1621E−012.5452E+00
252.2180E−015.5153E+003.1446E−013.4410E+003.4897E−012.9938E+003.8942E−012.6165E+00
262.0974E−015.6672E+002.9605E−013.5329E+003.2791E−013.0738E+003.6534E−012.6865E+00
271.9885E−015.8161E+002.7946E−013.6227E+003.0891E−013.1521E+003.4360E−012.7550E+00
281.8895E−015.9623E+002.6443E−013.7105E+002.9170E−013.2287E+003.2391E−012.8222E+00
291.7992E−016.1059E+002.5073E−013.7963E+002.7603E−013.3035E+003.0598E−012.8879E+00
301.7164E−016.2472E+002.3818E−013.8801E+002.6170E−013.3767E+002.8961E−012.9522E+00
311.6403E−016.3864E+002.2662E−013.9620E+002.4854E−013.4482E+002.7459E−013.0150E+00
321.5702E−016.5238E+002.1593E−014.0421E+002.3639E−013.5181E+002.6076E−013.0764E+00
331.5056E−016.6594E+002.0601E−014.1205E+002.2514E−013.5863E+002.4799E−013.1363E+00
341.4459E−016.7933E+001.9677E−014.1972E+002.1468E−013.6531E+002.3615E−013.1948E+00
351.3907E−016.9256E+001.8812E−014.2723E+002.0494E−013.7183E+002.2514E−013.2520E+00
361.3396E−017.0563E+001.8002E−014.3460E+001.9583E−013.7822E+002.1487E−013.3079E+00
371.2922E−017.1855E+001.7242E−014.4183E+001.8730E−013.8448E+002.0528E−013.3625E+00
381.2482E−017.3132E+001.6527E−014.4893E+001.7929E−013.9061E+001.9631E−013.4160E+00
391.2074E−017.4393E+001.5853E−014.5590E+001.7176E−013.9663E+001.8789E−013.4683E+00
401.1693E−017.5638E+001.5218E−014.6276E+001.6468E−014.0253E+001.7998E−013.5196E+00
411.1337E−017.6868E+001.4618E−014.6950E+001.5800E−014.0833E+001.7254E−013.5699E+00
421.1005E−017.8082E+001.4052E−014.7614E+001.5171E−014.1402E+001.6554E−013.6192E+00
431.0692E−017.9279E+001.3516E−014.8268E+001.4577E−014.1962E+001.5894E−013.6676E+00
441.0397E−018.0461E+001.3009E−014.8911E+001.4015E−014.2513E+001.5271E−013.7152E+00
451.0117E−018.1627E+001.2530E−014.9546E+001.3484E−014.3055E+001.4684E−013.7619E+00
469.8520E−028.2777E+001.2076E−015.0171E+001.2982E−014.3589E+001.4129E−013.8079E+00
479.5988E−028.3912E+001.1645E−015.0787E+001.2507E−014.4114E+001.3604E−013.8531E+00
489.3560E−028.5031E+001.1237E−015.1395E+001.2058E−014.4633E+001.3108E−013.8977E+00
499.1224E−028.6136E+001.0850E−015.1994E+001.1632E−014.5143E+001.2638E−013.9416E+00
508.8967E−028.7227E+001.0482E−015.2585E+001.1228E−014.5646E+001.2193E−013.9848E+00
518.6777E−028.8304E+001.0133E−015.3168E+001.0844E−014.6143E+001.1771E−014.0274E+00
528.4644E−028.9368E+009.8010E−025.3744E+001.0481E−014.6632E+001.1371E−014.0695E+00
538.2561E−029.0420E+009.4852E−025.4312E+001.0135E−014.7116E+001.0991E−014.1109E+00
548.0520E−029.1461E+009.1847E−025.4872E+009.8071E−024.7593E+001.0631E−014.1519E+00
557.8514E−029.2492E+008.8984E−025.5426E+009.4949E−024.8063E+001.0288E−014.1922E+00
567.6537E−029.3513E+008.6255E−025.5973E+009.1979E−024.8528E+009.9629E−024.2321E+00
577.4586E−029.4525E+008.3652E−025.6513E+008.9150E−024.8987E+009.6530E−024.2715E+00
587.2657E−029.5531E+008.1167E−025.7046E+008.6454E−024.9440E+009.3579E−024.3104E+00
597.0746E−029.6530E+007.8794E−025.7574E+008.3883E−024.9889E+009.0768E−024.3488E+00
606.8853E−029.7524E+007.6525E−025.8095E+008.1430E−025.0331E+008.8086E−024.3868E+00

Pa; [Z=91]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.5526E+013.4745E−011.8450E+012.5180E−011.9588E+012.2756E−012.1020E+012.0560E−01
11.1835E+014.4153E−011.4422E+013.1463E−011.5390E+012.8330E−011.6590E+012.5511E−01
27.2413E+006.6824E−019.2829E+004.6070E−011.0008E+014.1196E−011.0880E+013.6876E−01
34.7331E+009.2483E−016.3574E+006.2151E−016.9197E+005.5276E−017.5818E+004.9254E−01
43.3065E+001.1884E+004.6188E+007.8388E−015.0696E+006.9432E−015.5927E+006.1655E−01
52.4253E+001.4621E+003.4894E+009.5045E−013.8568E+008.3902E−014.2794E+007.4289E−01
61.8596E+001.7373E+002.7269E+001.1174E+003.0304E+009.8370E−013.3778E+008.6892E−01
71.4799E+002.0048E+002.1948E+001.2801E+002.4490E+001.1245E+002.7395E+009.9145E−01
81.2123E+002.2614E+001.8096E+001.4369E+002.0255E+001.2601E+002.2720E+001.1093E+00
91.0163E+002.5080E+001.5212E+001.5882E+001.7065E+001.3909E+001.9182E+001.2230E+00
108.6865E−012.7455E+001.2994E+001.7348E+001.4598E+001.5178E+001.6432E+001.3331E+00
117.5447E−012.9739E+001.1247E+001.8771E+001.2645E+001.6409E+001.4245E+001.4401E+00
126.6496E−013.1932E+009.8603E−012.0150E+001.1085E+001.7603E+001.2492E+001.5440E+00
135.9246E−013.4036E+008.7343E−012.1480E+009.8151E−011.8757E+001.1058E+001.6444E+00
145.3205E−013.6057E+007.8029E−012.2761E+008.7627E−011.9868E+009.8689E−011.7411E+00
154.8080E−013.8007E+007.0220E−012.3993E+007.8799E−012.0937E+008.8702E−011.8342E+00
164.3670E−013.9897E+006.3582E−012.5179E+007.1298E−012.1966E+008.0217E−011.9238E+00
173.9842E−014.1737E+005.7875E−012.6324E+006.4856E−012.2958E+007.2932E−012.0101E+00
183.6508E−014.3537E+005.2928E−012.7433E+005.9273E−012.3918E+006.6620E−012.0936E+00
193.3597E−014.5300E+004.8611E−012.8512E+005.4400E−012.4850E+006.1111E−012.1746E+00
203.1054E−014.7028E+004.4827E−012.9563E+005.0124E−012.5758E+005.6272E−012.2535E+00
212.8828E−014.8723E+004.1497E−013.0591E+004.6355E−012.6645E+005.2002E−012.3306E+00
222.6874E−015.0384E+003.8557E−013.1596E+004.3020E−012.7514E+004.8217E−012.4062E+00
232.5151E−015.2011E+003.5953E−013.2581E+004.0059E−012.8366E+004.4850E−012.4803E+00
242.3625E−015.3604E+003.3638E−013.3545E+003.7421E−012.9202E+004.1844E−012.5531E+00
252.2264E−015.5164E+003.1572E−013.4490E+003.5062E−013.0021E+003.9151E−012.6247E+00
262.1043E−015.6693E+002.9721E−013.5413E+003.2945E−013.0824E+003.6730E−012.6948E+00
271.9941E−015.8191E+002.8052E−013.6317E+003.1035E−013.1610E+003.4545E−012.7637E+00
281.8940E−015.9662E+002.6542E−013.7200E+002.9306E−013.2380E+003.2566E−012.8312E+00
291.8028E−016.1107E+002.5167E−013.8063E+002.7732E−013.3133E+003.0765E−012.8972E+00
301.7193E−016.2529E+002.3908E−013.8906E+002.6294E−013.3869E+002.9121E−012.9619E+00
311.6427E−016.3931E+002.2751E−013.9731E+002.4974E−013.4588E+002.7613E−013.0251E+00
321.5721E−016.5313E+002.1681E−014.0537E+002.3757E−013.5292E+002.6226E−013.0869E+00
331.5070E−016.6677E+002.0689E−014.1326E+002.2630E−013.5979E+002.4945E−013.1473E+00
341.4470E−016.8024E+001.9765E−014.2098E+002.1584E−013.6652E+002.3758E−013.2063E+00
351.3916E−016.9356E+001.8902E−014.2855E+002.0609E−013.7309E+002.2654E−013.2639E+00
361.3403E−017.0672E+001.8093E−014.3597E+001.9698E−013.7953E+002.1626E−013.3203E+00
371.2928E−017.1974E+001.7334E−014.4325E+001.8844E−013.8584E+002.0665E−013.3754E+00
381.2488E−017.3259E+001.6620E−014.5039E+001.8044E−013.9202E+001.9765E−013.4293E+00
391.2079E−017.4530E+001.5947E−014.5742E+001.7290E−013.9808E+001.8922E−013.4821E+00
401.1699E−017.5785E+001.5313E−014.6432E+001.6582E−014.0403E+001.8129E−013.5339E+00
411.1345E−017.7025E+001.4713E−014.7111E+001.5913E−014.0987E+001.7383E−013.5846E+00
421.1014E−017.8249E+001.4147E−014.7780E+001.5283E−014.1561E+001.6681E−013.6344E+00
431.0704E−017.9457E+001.3611E−014.8438E+001.4687E−014.2126E+001.6019E−013.6832E+00
441.0412E−018.0649E+001.3104E−014.9087E+001.4124E−014.2681E+001.5394E−013.7312E+00
451.0137E−018.1825E+001.2624E−014.9725E+001.3592E−014.3227E+001.4803E−013.7784E+00
469.8752E−028.2985E+001.2169E−015.0355E+001.3088E−014.3765E+001.4245E−013.8247E+00
479.6262E−028.4129E+001.1737E−015.0976E+001.2611E−014.4295E+001.3718E−013.8704E+00
489.3879E−028.5258E+001.1328E−015.1588E+001.2159E−014.4817E+001.3219E−013.9153E+00
499.1589E−028.6372E+001.0939E−015.2192E+001.1731E−014.5332E+001.2746E−013.9596E+00
508.9379E−028.7472E+001.0570E−015.2787E+001.1324E−014.5839E+001.2298E−014.0032E+00
518.7236E−028.8558E+001.0219E−015.3375E+001.0939E−014.6340E+001.1873E−014.0462E+00
528.5151E−028.9630E+009.8857E−025.3955E+001.0573E−014.6833E+001.1470E−014.0886E+00
538.3113E−029.0690E+009.5682E−025.4527E+001.0225E−014.7320E+001.1087E−014.1304E+00
548.1115E−029.1738E+009.2658E−025.5092E+009.8939E−024.7801E+001.0724E−014.1716E+00
557.9150E−029.2775E+008.9776E−025.5650E+009.5792E−024.8275E+001.0378E−014.2123E+00
567.7212E−029.3802E+008.7029E−025.6201E+009.2796E−024.8744E+001.0050E−014.2525E+00
577.5296E−029.4821E+008.4407E−025.6745E+008.9943E−024.9206E+009.7371E−024.2922E+00
587.3398E−029.5831E+008.1904E−025.7283E+008.7223E−024.9663E+009.4392E−024.3314E+00
597.1514E−029.6834E+007.9511E−025.7814E+008.4628E−025.0115E+009.1554E−024.3701E+00
606.9643E−029.7833E+007.7224E−025.8340E+008.2152E−025.0561E+008.8847E−024.4084E+00

U; [Z=92]

[s]10 keV40 keV60 keV90 keV
[|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)][|\,f(s)|][\eta (s)]
01.5083E+013.5370E−011.7980E+012.5724E−011.9103E+012.3266E−012.0511E+012.1038E−01
11.1598E+014.4626E−011.4175E+013.1909E−011.5136E+012.8755E−011.6325E+012.5913E−01
27.1875E+006.6900E−019.2358E+004.6273E−019.9621E+004.1411E−011.0835E+013.7094E−01
34.7328E+009.2179E−016.3709E+006.2130E−016.9374E+005.5299E−017.6043E+004.9309E−01
43.3185E+001.1823E+004.6467E+007.8195E−015.1024E+006.9312E−015.6313E+006.1589E−01
52.4367E+001.4547E+003.5159E+009.4777E−013.8880E+008.3721E−014.3160E+007.4175E−01
61.8679E+001.7309E+002.7474E+001.1153E+003.0548E+009.8244E−013.4068E+008.6830E−01
71.4862E+002.0009E+002.2097E+001.2797E+002.4670E+001.1247E+002.7610E+009.9213E−01
81.2177E+002.2604E+001.8206E+001.4385E+002.0387E+001.2622E+002.2879E+001.1116E+00
91.0212E+002.5096E+001.5296E+001.5917E+001.7165E+001.3947E+001.9303E+001.2269E+00
108.7314E−012.7492E+001.3060E+001.7400E+001.4677E+001.5231E+001.6528E+001.3384E+00
117.5850E−012.9795E+001.1302E+001.8838E+001.2709E+001.6475E+001.4323E+001.4466E+00
126.6860E−013.2005E+009.9061E−012.0229E+001.1140E+001.7681E+001.2557E+001.5515E+00
135.9581E−013.4124E+008.7737E−012.1572E+009.8616E−011.8846E+001.1115E+001.6529E+00
145.3522E−013.6160E+007.8378E−012.2864E+008.8035E−011.9968E+009.9181E−011.7506E+00
154.8384E−013.8121E+007.0535E−012.4108E+007.9165E−012.1048E+008.9140E−011.8447E+00
164.3961E−014.0022E+006.3873E−012.5305E+007.1634E−012.2087E+008.0615E−011.9352E+00
174.0120E−014.1871E+005.8148E−012.6459E+006.5167E−012.3087E+007.3298E−012.0223E+00
183.6767E−014.3678E+005.3183E−012.7576E+005.9564E−012.4055E+006.6961E−012.1065E+00
193.3835E−014.5447E+004.8849E−012.8662E+005.4672E−012.4994E+006.1429E−012.1881E+00
203.1267E−014.7182E+004.5047E−012.9719E+005.0378E−012.5907E+005.6570E−012.2675E+00
212.9015E−014.8885E+004.1698E−013.0752E+004.6591E−012.6799E+005.2280E−012.3450E+00
222.7036E−015.0553E+003.8740E−013.1762E+004.3238E−012.7672E+004.8477E−012.4209E+00
232.5290E−015.2189E+003.6118E−013.2752E+004.0260E−012.8527E+004.5093E−012.4953E+00
242.3742E−015.3791E+003.3786E−013.3721E+003.7606E−012.9366E+004.2070E−012.5683E+00
252.2363E−015.5360E+003.1706E−013.4669E+003.5232E−013.0188E+003.9362E−012.6400E+00
262.1125E−015.6898E+002.9841E−013.5597E+003.3101E−013.0994E+003.6927E−012.7104E+00
272.0009E−015.8406E+002.8162E−013.6505E+003.1181E−013.1784E+003.4730E−012.7796E+00
281.8997E−015.9886E+002.6643E−013.7394E+002.9442E−013.2557E+003.2740E−012.8473E+00
291.8075E−016.1341E+002.5261E−013.8262E+002.7861E−013.3314E+003.0931E−012.9137E+00
301.7232E−016.2773E+002.3998E−013.9110E+002.6417E−013.4055E+002.9279E−012.9787E+00
311.6458E−016.4183E+002.2838E−013.9940E+002.5093E−013.4778E+002.7765E−013.0423E+00
321.5746E−016.5574E+002.1767E−014.0752E+002.3873E−013.5486E+002.6373E−013.1045E+00
331.5091E−016.6947E+002.0774E−014.1546E+002.2744E−013.6179E+002.5088E−013.1653E+00
341.4486E−016.8303E+001.9851E−014.2323E+002.1696E−013.6856E+002.3898E−013.2247E+00
351.3928E−016.9643E+001.8988E−014.3085E+002.0721E−013.7518E+002.2792E−013.2828E+00
361.3412E−017.0968E+001.8181E−014.3832E+001.9809E−013.8167E+002.1761E−013.3397E+00
371.2935E−017.2278E+001.7422E−014.4565E+001.8956E−013.8802E+002.0798E−013.3952E+00
381.2494E−017.3574E+001.6710E−014.5285E+001.8155E−013.9425E+001.9897E−013.4496E+00
391.2085E−017.4854E+001.6038E−014.5992E+001.7401E−014.0036E+001.9052E−013.5029E+00
401.1705E−017.6119E+001.5404E−014.6687E+001.6692E−014.0635E+001.8257E−013.5551E+00
411.1352E−017.7368E+001.4805E−014.7371E+001.6023E−014.1224E+001.7510E−013.6063E+00
421.1022E−017.8602E+001.4239E−014.8044E+001.5392E−014.1803E+001.6806E−013.6565E+00
431.0714E−017.9820E+001.3704E−014.8707E+001.4795E−014.2372E+001.6141E−013.7057E+00
441.0425E−018.1023E+001.3196E−014.9360E+001.4231E−014.2931E+001.5514E−013.7542E+00
451.0152E−018.2209E+001.2716E−015.0003E+001.3698E−014.3482E+001.4921E−013.8017E+00
469.8945E−028.3379E+001.2260E−015.0637E+001.3192E−014.4024E+001.4361E−013.8485E+00
479.6495E−028.4534E+001.1828E−015.1263E+001.2713E−014.4558E+001.3831E−013.8946E+00
489.4155E−028.5672E+001.1417E−015.1879E+001.2260E−014.5084E+001.3329E−013.9399E+00
499.1910E−028.6796E+001.1028E−015.2487E+001.1829E−014.5602E+001.2853E−013.9845E+00
508.9747E−028.7905E+001.0657E−015.3087E+001.1421E−014.6114E+001.2402E−014.0285E+00
518.7652E−028.8999E+001.0305E−015.3679E+001.1033E−014.6618E+001.1975E−014.0718E+00
528.5614E−029.0080E+009.9696E−025.4264E+001.0664E−014.7115E+001.1569E−014.1145E+00
538.3623E−029.1147E+009.6504E−025.4840E+001.0314E−014.7606E+001.1183E−014.1567E+00
548.1671E−029.2203E+009.3464E−025.5409E+009.9807E−024.8091E+001.0817E−014.1983E+00
557.9750E−029.3247E+009.0565E−025.5972E+009.6636E−024.8569E+001.0468E−014.2393E+00
567.7854E−029.4280E+008.7800E−025.6527E+009.3616E−024.9041E+001.0137E−014.2798E+00
577.5976E−029.5304E+008.5161E−025.7075E+009.0739E−024.9507E+009.8216E−024.3198E+00
587.4113E−029.6320E+008.2640E−025.7617E+008.7996E−024.9968E+009.5211E−024.3593E+00
597.2260E−029.7328E+008.0230E−025.8152E+008.5378E−025.0423E+009.2346E−024.3984E+00
607.0415E−029.8330E+007.7924E−025.8682E+008.2879E−025.0872E+008.9613E−024.4369E+00

The scattering of keV electrons from atoms is calculated in the central-field approximation in which the potential of the target is averaged over the angular coordinates and the resulting spherically symmetric potential V(r) is used in the computation. In order to take the relativistic effects properly into account, the Dirac equation has been used. In addition to the straightforward correction for the electron mass, spin-polarization effects are also included in these calculations. The scattering wavefunctions are four-component spinors that can be reduced to two components as shown by Mott & Massey (1965[link]). This reduction leads to two decoupled second-order differential equations in Schrödinger form: [{{\rm d}^2g_l(r)\over {\rm d} r^2}+\left[k^2-{l(l+1)\over r^2}-U_l(r)\right]g_l(r)=0,]where [-U_l(r) =-2\gamma V(r)+\alpha^2V^2(r) + {n\over r} {\beta'\over\beta} - {\textstyle{3\over4}}\left({\beta'\over\beta}\right)^2+ {\textstyle{1\over2}} {\beta''\over\beta},]and [\eqalign{ \alpha &= {e^2\over\hbar c}, \cr \gamma &=\left(1-{v^2\over c^2}\right)^{-1/2} \cr \beta &= \left[{\gamma+1 \over \alpha}-\alpha V(r)\right], \cr n&= \cases{-l-1&for $j=l+{1\over2}$ \cr l&for $j=l-{1\over2}$,\cr}}]where j is the total angular momentum for the lth partial wave including the two spin directions. Asymptotic solutions are available when [U_l(r)] is small relative to the centrifugal term, [l(l+1)/r^2]. If this term is taken into account, but [U_l(r)] is neglected, [g_l(r)] approaches [g_l(r)\sim j_l(kr)\cos(\eta_l)+n_l(kr)\sin(\eta_l)]with a similar limit holding for the [-l-1] solution. These limits lead directly to the scattering factors [\eqalignno{ f(\theta)&={1\over 2ki}\,\sum\big((l+1)[\exp (2i\eta_l)-1] \cr&\quad +l\{\exp[2i\eta_{(-l-1)}]-1\}\big)P_l(\cos\theta) \cr g(\theta) &={1\over2ki} \sum \{-\exp (2i\eta_l) \cr&\quad+\exp [2i\eta_{(-l-1)}]\}P^1_l(\cos\theta)}]and the elastic differential scattering cross section [\eqalign{ {{\rm d}\sigma\over{\rm d}\Omega}&=|\,f|{}^2+|g|^2+(\,fg^*-f^*g) \cr &\quad\times\left \{{-AB^*\exp (i\varphi)+A^*B\exp (-i\varphi)\over |A|{}^2+|B|{}^2}\right\},}]where A, B and [\varphi] describe the direction and degree of spin polarization of the incoming electrons. The latter term is equal to 0 when unpolarized electrons (A = B = 1) are used in the scattering experiment.

The results printed in the tables were obtained in three steps. First, atomic wavefunctions were calculated and transformed into centrosymmetric potentials via Poisson's equation. Second, a sufficient number of phases, [\eta_l] and [\eta_{(-l-1)}], were computed in order to calculate the scattering factors f and g by performing the partial wave sums. Finally, the results were smoothed, because small oscillations were seen between nearest neighbours in the second difference function. These oscillations were only of the order of 0.1% of the data, so smoothing only had an effect in the third or fourth significant figure.

For the scattering potentials, we used relativistic Hartree–Fock wavefunctions calculated by Biggs, Mendelsohn & Mann (1975[link]). The wavefunctions were used to calculate the potentials and their derivatives since they are needed for [U_l(r)] to solve the appropriate Dirac equation.

In order to solve the second-order differential equation, one must take advantage of the known asymptotic solutions. Following the procedure developed by Numerov (Numerov, 1924[link]; Melkanov, Sawada & Raynal, 1966[link]), an auxiliary function, [\xi_l(r)] is introduced: [\xi_l(r_i)=\left[1-{\Delta r^2\over12}\,B_l(r_i)\right]g_l(r_i),]where [B_l(r_i)=-k^2+{l(l+1)\over r^2}+U_l(r_i)]and [r_i=i\Delta r, \quad i=0,1,2, \ldots.]Now [\xi_l(r)] is computed. Starting with [\xi_l(r_0)=\xi_l(0)=0] and [\xi_l(r_1)=\xi_l(\Delta r)=0.2(\Delta r)^{l+1}], the integration of [\xi] following the Numerov procedure is given by [\xi_l(r_{i+1})=[2+\Delta r^2B_l(r_i)+\Delta r^4B^2_l(r_i)/12]\xi_l(r_i)-\xi_l(r_{i-1}).]This recurrence relation is carried through for [a/\Delta r] steps, where a is the asymptotic limit. At the asymptotic limit [g_l(r)] is [\lim g_l(r)\sim B_l(r)\, j_l(kr)\cos(\eta_l)-B_l(r)n_l(kr)\sin(\eta_l).]The proportionality factor is eliminated by matching the logarithmic derivative of [\xi_l(r)] [[=\xi'(r)/\xi(r)]] to the same derivative of [g_l(r)] at r = a. From this equality, the partial wave phase shifts are calculated as follows: [\eqalignno{ &{1\over \xi_l(a)}\,{{\rm d}\xi_l\over{\rm d} r}(a) \cr &\quad =\{[B'_l(a)\, j_l(ka)+kB_l(a)\, j'_l(ka)]\cos(\eta_1) \cr &\qquad-[B'_l(a)n_l(ka)+kB_l(a)n'_l(ka)]\sin(\eta_l)\} \cr &\qquad\times[B_l(a)\, j_l(ka)\cos(\eta_l)-B_l(a)n_l(ka)\sin(\eta_l)]^{-1}.}]Solving for [\eta_l] leads to [\eqalignno{ \tan(\eta_l)&=[B'_l(a)\, j_l(ka)+kB_l(a)\, j'_l(ka)-\omega B_l(a)\, j_l(ka)] \cr &\quad\times [B'_l(a)n_l(ka)+kB_l(a)n'_l(ka) \cr &\quad -\omega B_l(a)n_l(ka)]^{-1},}]where [\eqalignno{ \omega&={1\over\xi_l(a)}\,{{\rm d} \xi_l\over{\rm d} r}\,(a), \cr B_l(a)&=-k^2+{l(l+1)\over a^2}}]and [B'_l(a)=-{2l(l+1)\over a^3} .]

It is straightforward to calculate the scattering amplitudes by partial wave summation since stable numerical methods are readily available for the spherical Bessel functions, [j_l(kr)], the Neumann functions, [n_l(kr)], and the Legendre polynomials, [P_l(\cos\theta)] (Yates, 1971[link]).

Particular attention was given to the choices of the integration step size, [\Delta r], and the matching radius, a. Both were varied to ensure the stability of the scattering factors to 0.1% for light atoms and to 0.3% for heavier atoms and higher incident energies. The results of the sensitivity calculations are summarized elsewhere (Ross & Fink, 1986[link]).

Smoothing was carried out by the following procedure: Sixteen data points, quarter s units apart, were least-squares fit to a cubic polynomial and the eighth point was changed to lie on this analytical curve. This procedure was repeated in running point average mode for [s\gt10] Å−1. The points for [s\lt10] Å−1 were left unchanged since no oscillations were seen. Smoothed and unsmoothed data in quarter s units for f and g are available on tape at cost from the authors.

4.3.3.2.2. Total inelastic scattering factors

| top | pdf |

Total inelastic scattering in the first Born approximation (Bonham & Fink, 1974[link]) is obtained by including all possible excitation processes: [\specialfonts{S(s)_{\rm inel}={\bsf S}\,{k_n\over k}|\langle\psi_n| \textstyle\sum\limits^N_{i=1} \exp (is_{0n}\cdot r_i)|\psi_0\rangle|{}^2,}]where [r_i] is the nuclear electron vector, [k_n=k^2-\Delta E_{0n}], [s_{0n}=[k^2+k^2_n-2kk_n\cos (2\theta)]{}^{1/2}], [\Delta E_{0n}] is the energy loss of the incident electron upon excitation of the scatterer to the nth state, [\theta] is the Bragg angle, [\specialfonts{\bsf S}] signifies a sum over all bound states and an integration over the continuum, and N is equal to the number of electrons in the atom. The sum is carried out over all states [\psi_n] for which [\Delta E_{0n}] is less than the incident electron energy. The Morse approximation is obtained by making three assumptions: (1) that the incident energy is so high that [N\sim\infty], i.e. that all states are accessible; (2) that the ratio [k_n/k] is unity for all inelastic processes of any importance; and (3) that [s_{0n}] may be replaced by its elastic value s. With these approximations, closure may be used to obtain (Morse, 1932[link]; Heisenberg, 1931[link]; Bethe, 1930[link]): [S(s)=Z-F^2_x(s)+\textstyle\sum\limits^N_i \sum\limits^N_{j\neq i} \langle\psi_0|\exp(is\cdot r_{ij})|\psi_0\rangle.]The function S(s) is the X-ray incoherent scattering factor (Wang, Sagar, Schmider & Smith, 1993[link]) and is related to the inelastic electron scattering cross section by [\sigma_{\rm inel}(s)=4S(s)/a^2s^4.]Inelastic scattering factors for X-rays and electrons are given in Table 4.3.3.2[link] in the Morse (1932[link]) approximation for elements Z = 1 to Z = 92 with HF wave functions (Bunge, Barrientos & Bunge, 1993[link]; McLean & McLean, 1981[link]).

Table 4.3.3.2| top | pdf |
Inelastic scattering factors

ElementHHeLiBeBCNOF
Z123456789
s         
00.000000.000000.000000.000000.000000.000000.000000.000000.00000
10.237120.205850.882901.114100.979690.825890.702700.644710.58625
20.627500.676651.296492.057412.358602.301552.123842.051541.93281
30.858361.155021.589072.335473.031243.358573.378553.449943.38314
40.950501.505841.898562.543473.315713.927224.231284.525274.60924
50.982521.723142.179782.763393.505704.234714.762795.262095.53803
60.993491.846912.410522.978643.682704.438405.098425.742646.19823
70.997401.914962.586623.176033.856134.605895.329716.058886.65331
80.998891.952082.714453.348234.021984.759725.508936.280326.96851
90.999491.972482.804273.492474.175534.905335.662036.450357.19556
100.999761.983852.866133.609424.313515.042635.800606.593047.36980
110.999881.990322.908283.701894.434325.170195.929156.720617.51316
120.999931.994072.936873.773664.537805.286636.049006.838687.63830
130.999961.996292.956273.828634.624855.391156.160206.949517.75211
140.999981.997632.969473.870364.697015.483566.262477.053757.85802
150.999991.998462.978513.901854.756155.564196.355557.151377.95762
160.999991.998982.984743.925554.804185.633756.439427.242148.05146
171.000001.999312.989073.943364.842945.693206.514297.325888.13968
181.000001.999532.992093.956764.874065.743636.580557.402508.22220
191.000001.999682.994233.966864.898975.786146.638787.472108.29896
201.000001.999772.995763.974484.918865.821796.689617.534888.36993
211.000001.999842.996853.980274.934745.851576.733757.591178.43516
221.000001.999882.997643.984664.947415.876396.771917.641368.49480
231.000001.999912.998223.988024.957525.897026.804787.685908.54904
241.000001.999942.998653.990604.965605.914156.833007.725288.59816
251.000001.999952.998973.992594.972075.928366.857187.759978.64246
261.000001.999962.999203.994134.977265.940156.877857.790438.68227
271.000001.999972.999383.995324.981435.949926.895507.817128.71793
281.000001.999982.999523.996264.984795.958046.910557.840468.74980
291.000001.999982.999623.996994.987505.964776.923397.860848.77820
301.000001.999992.999703.997574.989705.970386.934337.878608.80347
311.000001.999992.999763.998034.991495.975046.943657.894078.82591
321.000001.999992.999813.998404.992945.978936.951607.907538.84581
331.000001.999992.999853.998694.994135.982176.958387.919258.86344
341.000002.000002.999883.998924.995105.984896.964167.929438.87904
351.000002.000002.999903.999114.995905.987166.969107.938298.89284
361.000002.000002.999923.999274.996565.989076.973327.946008.90503
371.000002.000002.999933.999394.997115.990686.976937.952708.91581
381.000002.000002.999943.999494.997565.992036.980037.958548.92532
391.000002.000002.999953.999584.997945.993186.982687.963628.93373
401.000002.000002.999963.999644.998255.994146.984967.968048.94116
411.000002.000002.999973.999704.998515.994966.986927.971908.94772
421.000002.000002.999973.999754.998735.995666.988607.975268.95352
431.000002.000002.999983.999794.998915.996256.990067.978208.95864
441.000002.000002.999983.999824.999075.996756.991317.980778.96317
451.000002.000002.999983.999844.999205.997196.992407.983018.96718
461.000002.000002.999993.999874.999315.997556.993347.984988.97073
471.000002.000002.999993.999894.999405.997876.994157.986708.97387
481.000002.000002.999993.999904.999485.998146.994867.988228.97666
491.000002.000002.999993.999924.999555.998386.995477.989548.97913
501.000002.000002.999993.999934.999615.998586.996017.990718.98132
511.000002.000002.999993.999944.999665.998766.996477.991748.98327
521.000002.000002.999993.999954.999705.998916.996887.992648.98500
531.000002.000003.000003.999954.999745.999046.997247.993448.98654
541.000002.000003.000003.999964.999775.999156.997557.994158.98791
551.000002.000003.000003.999964.999805.999256.997837.994778.98913
561.000002.000003.000003.999974.999835.999346.998077.995328.99021
571.000002.000003.000003.999974.999855.999416.998287.995818.99119
581.000002.000003.000003.999984.999865.999486.998467.996248.99205
591.000002.000003.000003.999984.999885.999546.998637.996638.99283
601.000002.000003.000003.999984.999895.999596.998777.996978.99352

ElementNeNaMgAlSiPSClAr
Z101112131415161718
s         
00.000000.000000.000000.000000.000000.000000.000000.000000.00000
10.532341.207471.615441.721941.653861.537001.498161.421561.33265
21.800532.287792.942353.507213.780963.805493.954323.946953.84282
33.244753.491933.945304.528345.074365.409545.803436.006856.03450
44.549664.700145.017295.470226.013226.527677.068497.485897.72422
55.619255.778066.038336.410636.880087.409457.987028.533308.96990
66.446526.680586.947607.290487.710788.202048.755859.336349.88639
77.060897.403307.723968.077448.482118.943729.4640510.0304810.61498
87.507427.963728.364608.759029.175889.6298310.1295710.6734611.25279
97.832248.390288.879269.333639.7838010.2503310.7467711.2773211.84272
108.074008.713889.285639.8075910.3048910.7994711.3079711.8383112.39562
118.261348.962339.6045010.1927210.7436511.2765711.8088812.3508712.90995
128.413869.157969.8560110.5034811.1084011.6849612.2490512.8118013.38195
138.544149.3173710.0574810.7545811.4095512.0307712.6310113.2207513.80922
148.659939.4521910.2227010.9593711.6580312.3217312.9594213.5797214.19149
158.765769.5702510.3620611.1290811.8641612.5661413.2401313.8922814.53031
168.864169.6766110.4830211.2726612.0370212.7720713.4795814.1630314.82851
178.956469.7744010.5907811.3969112.1841812.9468513.6841214.3970215.08974
189.043319.8655410.6888611.5068812.3116713.0968113.8597014.5993615.31806
199.124989.9511310.7795511.6061612.4241913.2272314.0116214.7748915.51761
209.2016010.0317610.8643111.6972712.5252413.3423414.1444314.9280515.69240
219.2731910.1077710.9440611.7819512.6174413.4454714.2619015.0627415.84616
229.3398210.1793311.0193511.8613312.7026413.5391814.3671115.1823015.98223
239.4015710.2465311.0905111.9361812.7821713.6253814.4625015.2895216.10354
249.4585410.3094411.1577212.0069812.8569513.7055214.5499815.3866916.21260
259.5109010.3681711.2211112.0740512.9276113.7806214.6310215.4756416.31151
269.5588510.4227911.2807712.1375812.9945913.8514314.7067315.5578316.40201
279.6026210.4734411.3367912.1977113.0581613.9184914.7779315.6344116.48552
289.6424410.5202611.3892512.2545413.1185313.9821614.8452415.7062616.56318
299.6785710.5634211.4382412.3081413.1758314.0427114.9091115.7740516.63589
309.7112810.6031011.4838912.3586113.2301714.1003414.9698815.8383016.70436
319.7408310.6395011.5263112.4060313.2816314.1551715.0277715.8993816.76915
329.7674810.6728111.5656512.4504813.3302814.2073215.0829715.9575916.83069
339.7914610.7032311.6020512.4920613.3762114.2568615.1356116.0131516.88931
349.8130210.7309711.6356612.5308913.4194914.3038715.1858016.0662116.94527
359.8323810.7562211.6666512.5670813.4602014.3484215.2336016.1169116.99876
369.8497410.7791711.6951712.6007513.4984314.3905715.2791116.1653517.04993
379.8653010.8000211.7213712.6320213.5342714.4304115.3223716.2115917.09890
389.8792410.8189311.7454212.6610213.5678314.4679915.3634516.2557317.14577
399.8917110.8360611.7674712.6878913.5991914.5034115.4024316.2978017.19062
409.9028710.8515811.7876512.7127313.6284614.5367315.4393516.3378917.23350
419.9128610.8656211.8061212.7356913.6557614.5680515.4742816.3760317.27449
429.9217910.8783211.8230012.7568813.6811714.5974415.5073016.4122917.31364
439.9297710.8898011.8384212.7764213.7048114.6250015.5384716.4467217.35099
449.9369110.9001811.8525012.7944213.7267814.6508015.5678616.4793817.38661
459.9433010.9095611.8653412.8110013.7471814.6749415.5955416.5103317.42053
469.9490110.9180311.8770512.8262513.7661014.6975015.6215916.5396417.45281
479.9541210.9256911.8877312.8402813.7836414.7185715.6460816.5673617.48351
489.9587010.9326011.8974712.8531713.7998814.7382315.6690916.5935517.51267
499.9627910.9388511.9063412.8650113.8149214.7565615.6906816.6182817.54035
509.9664610.9444911.9144212.8758913.8288414.7736415.7109316.6416117.56660
519.9697410.9495911.9217812.8858813.8417214.7895515.7299116.6636017.59148
529.9726910.9542011.9284912.8950513.8536214.8043515.7476816.6843117.61504
539.9753310.9583711.9346012.9034613.8646214.8181315.7643216.7038117.63733
549.9777010.9621411.9401712.9111813.8747814.8309315.7798916.7221617.65841
559.9798310.9655511.9452512.9182713.8841714.8428415.7944416.7394117.67833
569.9817410.9686311.9498712.9247713.8928414.8539015.8080416.7556217.69714
579.9834610.9714311.9540912.9307413.9008514.8641815.8207516.7708517.71490
589.9850010.9739611.9579312.9362113.9082414.8737315.8326216.7851417.73166
599.9863910.9762511.9614312.9412413.9150714.8825915.8437016.7985617.74746
609.9876510.9783211.9646312.9458513.9213714.8908215.8540516.8111417.76235

ElementKCaScTiVCrMnFeCo
Z192021222324252627
s         
00.000000.000000.000000.000000.000000.000000.000000.000000.00000
11.954092.489622.475052.411472.344701.873382.207602.156052.09981
24.167434.637224.740954.731554.710144.312324.618904.626754.60110
36.286566.637886.791426.818606.825806.580976.757516.805276.79526
48.015898.346508.567158.672218.742088.593268.761398.864478.88855
59.373549.7568610.0507510.2428910.3842010.3368710.5183210.6806010.75511
610.4050410.8853111.2723011.5636011.7874611.8487612.0542512.2717112.40221
711.2010511.7662812.2497712.6466312.9659713.1401713.3927813.6679813.86069
811.8590412.4707213.0292713.5195513.9346814.2201514.5401514.8795915.14206
912.4441613.0690813.6722914.2307914.7271815.1130415.5076215.9144116.25102
1012.9864713.6075314.2308014.8311815.3871715.8552716.3190616.7896617.19864
1113.4946514.1080014.7374515.3599715.9549216.4850017.0055317.5309218.00479
1213.9683314.5774415.2082815.8415616.4601517.0342617.5975118.1662918.69422
1314.4050415.0160815.6490616.2884716.9215017.5261218.1200018.7212019.29164
1414.8030315.4222816.0606716.7058917.3490817.9753718.5910719.2157919.81842
1515.1620115.7947516.4424617.0953217.7476218.3905719.0225619.6645220.29119
1615.4831216.1332116.7937617.4568218.1190118.7762619.4216420.0770020.72194
1715.7685116.4384517.1145617.7903118.4638819.1347419.7924120.4592521.11878
1816.0210316.7121217.4055918.0960218.7825719.4671920.1371620.8148421.48693
1916.2439316.9564317.6682418.3747019.0755819.7744420.4572421.1459221.82968
2016.4405717.1739917.9043418.6275819.3437220.0572820.7536121.4538222.14909
2116.6142817.3675318.1160618.8562319.5881120.3166821.0271521.7395222.44651
2216.7681917.5398018.3057019.0624919.8101820.5538021.2788322.0039222.72298
2316.9052017.6934818.4756119.2483420.0115120.7700121.5097422.2479322.97940
2417.0278717.8310318.6280619.4157920.1938420.9667721.7211122.4725823.21667
2517.1384517.9547118.7652219.5668220.3589321.1456721.9142822.6789523.43574
2617.2388718.0665518.8890819.7033420.5085221.3082822.0906222.8682423.63764
2717.3307718.1683019.0014419.8271020.6442921.4562022.2515523.0417023.82343
2817.4155018.2614819.1039019.9397320.7678321.5909222.3984923.2005923.99424
2917.4941918.3473819.1978620.0426820.8805921.7139022.5327923.3461624.15122
3017.5677418.4270819.2845420.1372420.9839121.8264622.6557623.4796524.29549
3117.6368918.5015019.3649620.2245621.0789721.9298322.7686023.6022324.42819
3217.7022218.5713619.4400020.3056021.1668422.0251122.8724523.7150124.55037
3317.7642018.6372819.5104020.3812121.2484522.1132922.9683323.8190224.66306
3417.8232018.6997419.5767620.4521121.3245922.1952523.0571723.9152324.76720
3517.8795118.7591319.6395920.5188921.3959622.2717623.1397924.0044924.86369
3617.9333418.8157819.6992820.5820621.4631622.3434823.2169424.0875824.95334
3717.9848818.8699419.7561820.6420421.5266922.4109923.2892624.1652225.03688
3818.0342718.9218119.8105620.6991821.5869722.4747823.3573124.2380025.11498
3918.0816118.9715419.8626420.7537721.6443622.5352923.4215824.3065025.18823
4018.1270019.0192619.9125920.8060321.6991522.5928623.4825024.3711725.25716
4118.1705119.0650819.9605620.8561621.7515922.6478123.5404324.4324525.32224
4218.2122119.1090920.0066720.9043221.8018922.7003823.5956824.4906925.38389
4318.2521519.1513520.0510020.9506321.8502122.7507923.6485124.5462025.44246
4418.2903919.1919220.0936420.9952121.8967022.7992123.6991424.5992625.49826
4518.3269719.2308720.1346621.0381321.9414622.8458023.7477724.6500925.55156
4618.3619319.2682220.1741121.0794821.9846022.8906923.7945524.6988925.60260
4718.3953319.3040420.2120421.1193122.0262022.9339623.8396124.7458325.65158
4818.4272019.3383620.2484921.1576722.0663222.9757223.8830824.7910425.69868
4918.4576019.3712220.2835221.1946222.1050223.0160423.9250324.8346425.74404
5018.4865719.4026720.3171421.2302022.1423623.0549723.9655624.8767525.78778
5118.5141519.4327420.3494121.2644322.1783723.0925824.0047324.9174425.83002
5218.5404019.4614720.3803621.2973722.2130923.1289024.0426124.9567825.87085
5318.5653519.4889020.4100321.3290422.2465623.1639824.0792324.9948525.91035
5418.5890619.5150920.4384521.3594822.2788223.1978524.1146425.0317025.94858
5518.6115719.5400520.4656521.3887122.3098923.2305624.1488925.0673625.98561
5618.6329419.5638520.4916821.4167722.3398023.2621224.1820025.1018926.02148
5718.6531919.5865120.5165621.4437022.3685923.2925724.2140125.1353226.05624
5818.6724019.6080820.5403421.4695222.3962823.3219324.2449525.1676826.08992
5918.6905819.6286020.5630521.4942722.4229023.3502424.2748425.1990026.12257
6018.7078119.6481120.5847221.5179722.4484823.3775224.3037125.2293126.15420

ElementNiCuZnGaGeAsSeBrKr
Z282930313233343536
s         
00.000000.000000.000000.000000.000000.000000.000000.000000.00000
12.044711.695731.937622.051862.023881.948621.961871.925291.86388
24.570254.202914.483664.796994.963564.967625.163915.222425.17677
36.780946.606326.710876.997277.317567.532547.871878.087828.15809
48.905048.789528.872969.071649.371309.6978010.0928210.4473010.70005
510.8162110.7298710.8516811.0325811.2888511.6083911.9891512.3947312.77835
612.5113212.4775112.6249212.8178113.0623013.3579013.7061214.0983514.51642
714.0221714.0598914.2228714.4288314.6772914.9644715.2928115.6603416.06428
815.3634515.4804115.6661715.8867316.1437816.4332816.7558517.1093417.49432
916.5391416.7367016.9603217.2042917.4755617.7736418.0991618.4498118.82545
1017.5558317.8318918.1067618.3860218.6805618.9940319.3290619.6846820.06045
1118.4279218.7775419.1109819.4353619.7628920.0998720.4512420.8181221.20099
1219.1758819.5917419.9846220.3593320.7272321.0953621.4700621.8542722.24990
1319.8223120.2955620.7439221.1693921.5812621.9859122.3898722.7970523.21055
1420.3884020.9097921.4069121.8799222.3357222.7792723.2163323.6509724.08679
1520.8919321.4527821.9910122.5062623.0032123.4852423.9568724.4216724.88315
1621.3466521.9394922.5115123.0629523.5966924.1147624.6203125.1161025.60513
1721.7625322.3813822.9809223.5626924.1283324.6788225.2161325.7421426.25912
1822.1464622.7868223.4088924.0159224.6087325.1876125.7536526.3079726.85209
1922.5030223.1616823.8026124.4308225.0466425.6500426.2415026.8215727.39114
2022.8352023.5100024.1672424.8135325.4490026.0735026.6871827.2902427.88309
2123.1449723.8345224.5064225.1685925.8211326.4639127.0970027.7203928.33419
2223.4337124.1371624.8227125.4992926.1670126.8259127.4760628.1174028.74992
2323.7024724.4193225.1179525.8079926.4896027.1630027.8283728.4856929.13493
2423.9521924.6820925.3935326.0964526.7910927.4778628.1570628.8287929.49305
2524.1837624.9264625.6505526.3660127.0731427.7725028.4645329.1494629.82740
2624.3980825.1533525.8899826.6177627.3370428.0484728.7526429.4498930.14045
2724.5961225.3636726.1127226.8526627.5838528.3070229.0228429.7317930.43417
2824.7788825.5583726.3196527.0715827.8144928.5491629.2763229.9965030.71014
2924.9474025.7384126.5116627.2753728.0298328.7757929.5140430.2451530.96963
3025.1027025.9047826.6896527.4648728.2306628.9877429.7368830.4786831.21369
3125.2458426.0584526.8545227.6409228.4177929.1857829.9456130.6979031.44321
3225.3778426.2004027.0072027.8043928.5920229.3706630.1409930.9035731.65898
3325.4996826.3315827.1485727.9560928.7541329.5431430.3237331.0963931.86171
3425.6122926.4529327.2795128.0968928.9049229.7039630.4945331.2770632.05209
3525.7165826.5653027.4008928.2275829.0451529.8538430.6540931.4462332.23076
3625.8133626.6695527.5135228.3489729.1756029.9935330.8030931.6045632.39834
3725.9033926.7664327.6181728.4618229.2969930.1237230.9422331.7527032.55546
3825.9873726.8566827.7155728.5668529.4100530.2451031.0721531.8912732.70272
3926.0659426.9409527.8064128.6647629.5154630.3583631.1935132.0209032.84072
4026.1396627.0198527.8913128.7561729.6138530.4641131.3069232.1422032.97004
4126.2090527.0939327.9708528.8417029.7058430.5629831.4130032.2557533.09125
4226.2745627.1636728.0455528.9218829.7920030.6555331.5123232.3621233.20489
4326.3365927.2295228.1159028.9972429.8728430.7423031.6054032.4618433.31151
4426.3955127.2918728.1823229.0682229.9488630.8238031.6927832.5554433.41161
4526.4516227.3510828.2452129.1352530.0205030.9004931.7749232.6433933.50568
4626.5051927.4074628.3049029.1987030.0881630.9727931.8522732.7261533.59417
4726.5564727.4612628.3617129.2589230.1522231.0411131.9252432.8041533.67753
4826.6056527.5127528.4159029.3162130.2130231.1058031.9942232.8777833.75616
4926.6529327.5621128.4677329.3708530.2708431.1671932.0595532.9474233.83044
5026.6984427.6095428.5174029.4230730.3259631.2255832.1215633.0134033.90072
5126.7423327.6551928.5650929.4731030.3786331.2812232.1805233.0760233.96734
5226.7847127.6992028.6109729.5211130.4290631.3343732.2367233.1355934.03060
5326.8256727.7416928.6551929.5672830.4774331.3852432.2903833.1923534.09077
5426.8653027.7827628.6978729.6117530.5239331.4340332.3417233.2465434.14811
5526.9036827.8224928.7391029.6546530.5687031.4808932.3909433.2983834.20285
5626.9408627.8609828.7790029.6961030.6118731.5260032.4382033.3480634.25521
5726.9769027.8982728.8176429.7361930.6535731.5694832.4836733.3957634.30537
5827.0118527.9344428.8550929.7750130.6938931.6114532.5274933.4416234.35352
5927.0457527.9695328.8914229.8126430.7329231.6520332.5697733.4858034.39980
6027.0786328.0035828.9266729.8491430.7707531.6913032.6106333.5284234.44437

ElementRbSrYZrNbMoTcRuRh
Z373839404142434445
s         
00.000000.000000.000000.000000.000000.000000.000000.000000.00000
12.471083.046853.148573.135362.711322.628072.983302.574662.52855
25.527995.989846.231526.316976.077626.028786.366776.137816.12994
38.429718.788049.058179.201969.103209.085969.360349.301849.34697
410.9875811.3023011.5854311.7912611.8098111.8420612.0733312.1178312.19330
513.1545913.5225413.8514214.1239214.2517614.3549214.5583514.7024714.80976
614.9510015.3884315.7929616.1528716.3978416.6022116.8350017.0675417.22869
716.5050816.9697117.4277017.8626618.2180718.5337618.8416419.1574719.39679
817.9191518.3774318.8517419.3260619.7596420.1660720.5560720.9487721.27607
919.2352519.6779620.1472620.6312821.1054921.5683422.0204022.4742222.88053
1020.4632320.8943621.3542721.8346222.3236222.8135423.3015523.7956624.26063
1121.6045222.0312222.4853622.9603723.4524923.9521524.4565224.9727525.47475
1222.6605823.0894523.5431024.0159924.5086725.0110725.5213426.0480526.57052
1323.6339024.0705824.5285525.0034225.4980626.0022026.5147427.0465127.57948
1424.5276024.9769925.4434125.9240126.4230326.9304227.4454227.9808228.51972
1525.3452925.8115926.2900726.7796527.2854427.7982928.3174828.8570629.40064
1626.0912826.5777227.0713827.5727928.0875328.6080129.1335529.6784830.22717
1726.7706327.2793527.7906528.3063128.8319329.3620329.8959630.4474731.00229
1827.3890627.9210328.4516528.9834629.5216830.0630630.6071631.1663631.72846
1927.9526828.5078329.0586129.6078430.1600430.7140931.2698231.8376932.40810
2028.4676529.0451329.6161130.1833830.7505531.3182931.8867532.4641733.04374
2128.9398629.5382530.1288830.7142231.2969231.8789932.4609133.0486333.63805
2229.3746829.9923230.6016031.2045531.8029132.3996032.9953633.5939634.19377
2329.7768530.4120131.0386831.6584632.2722532.8835133.4931834.1030934.71364
2430.1504430.8014431.4441832.0798032.7085433.3340633.9574334.5788835.20037
2530.4987931.1641831.8216832.4720833.1151133.7543834.3910635.0241135.65660
2630.8246931.5032032.1742932.8384233.4949934.1473934.7968435.4414136.08482
2731.1303531.8209832.5046333.1815333.8508834.5157535.1773735.8332436.48738
2831.4175732.1195232.8148933.5037134.1851234.8618035.5349736.2018436.86647
2931.6878132.4004833.1068733.8068934.4997135.1875835.8717136.5492537.22407
3031.9422532.6651833.3820634.0927134.7963635.4948836.1894136.8772637.56196
3132.1818732.9147433.6417034.3624935.0765035.7851836.4896537.1874637.88172
3232.4075433.1501033.8868034.6173835.3413436.0597936.7737737.4812238.18473
3332.6199933.3720434.1182534.8583135.5919036.3197737.0429437.7597138.47222
3432.8199133.5812934.3367935.0861035.8290436.5660737.2981438.0239838.74524
3533.0079533.7784934.5431135.3014736.0535336.7994937.5402238.2749039.00470
3633.1847033.9642634.7378235.5050436.2660237.0207237.7699338.5132539.25140
3733.3507734.1391634.9214935.6974136.4671237.2303837.9879138.7396939.48604
3833.5067434.3037535.0946635.8791136.6573837.4290438.1947538.9548239.70923
3933.6531734.4585935.2578836.0506836.8373137.6172138.3909739.1591839.92152
4033.7906334.6042035.4116536.2125937.0074037.7954038.5770739.3532840.12342
4133.9196534.7411135.5564836.3653637.1681537.9640638.7535139.5375640.31539
4234.0407834.8698335.6928636.5094437.3199938.1236438.9207239.7124740.49786
4334.1545234.9908635.8212736.6453137.4633938.2745839.0791439.8784240.67125
4434.2613935.1046835.9421836.7734237.5987938.4173239.2291740.0358140.83593
4534.3618635.2117836.0560536.8942137.7266338.5522639.3712340.1850440.99231
4634.4564035.3126036.1633437.0081337.8473138.6798139.5057040.3265041.14075
4734.5454335.4075836.2644637.1155937.9612638.8003939.6329740.4605541.28160
4834.6293835.4971336.3598437.2170038.0688838.9143839.7534340.5875741.41524
4934.7086335.5816536.4498637.3127538.1705639.0221639.8674440.7079241.54201
5034.7835635.6615136.5349137.4032238.2666639.1240939.9753640.8219541.66225
5134.8544935.7370636.6153437.4887838.3575539.2205540.0775540.9300141.77630
5234.9217535.8086336.6914837.5697538.4435839.3118640.1743441.0324341.88449
5334.9856435.8765336.7636637.6464738.5250739.3983640.2660741.1295341.98714
5435.0464235.9410536.8321737.7192438.6023339.4803740.3530441.2216342.08455
5535.1043536.0024436.8972937.7883438.6756639.5581840.4355641.3090342.17703
5635.1596436.0609536.9592737.8540538.7453439.6320840.5139241.3920242.26486
5735.2125336.1168237.0183637.9166238.8116239.7023340.5883841.4708842.34833
5835.2631936.1702337.0747737.9762838.8747539.7691940.6592141.5458742.42770
5935.3118036.2214037.1287238.0332438.9349739.8329040.7266641.6172542.50322
6035.3585136.2704837.1803838.0877138.9924739.8936840.7909541.6852442.57515

ElementPdAgCdInSnSbTeIXe
Z464748495051525354
s         
00.000000.000000.000000.000000.000000.000000.000000.000000.00000
12.130812.423432.709752.834412.815352.738162.772962.746542.68555
25.959616.035916.304596.634516.841146.876537.115367.210107.17883
39.236329.338589.519999.8190910.1602610.4458310.8152511.0977311.24839
412.0759812.2378412.4605412.7297813.0547513.4159913.8203214.2262214.58946
514.7556014.9004115.1176815.3768215.6791816.0203116.4006916.8125617.24286
617.2717817.4053917.5909617.8241718.1018518.4156218.7646319.1440119.55212
719.5454519.7142619.9007320.1190120.3744420.6639520.9860921.3361521.71173
821.5294021.7705722.0028222.2409322.4975122.7772023.0828023.4131523.76633
923.2284523.5544323.8588224.1487824.4375724.7329625.0418925.3673625.71067
1024.6845925.0875125.4674225.8240926.1668726.5021226.8373827.1776427.52690
1125.9529926.4149426.8588427.2802227.6835428.0718228.4503728.8235329.19578
1227.0836327.5856328.0765928.5509229.0092029.4514329.8798430.2966730.70506
1328.1134028.6402629.1625329.6753230.1770430.6658831.1415431.6041132.05470
1429.0659029.6075830.1494330.6880231.2209531.7457632.2607532.7645333.25645
1529.9547930.5057931.0598531.6151332.1692032.7197333.2646433.8018334.32964
1630.7876631.3455931.9079832.4743833.0426033.6108334.1772134.7395935.29596
1731.5689232.1332332.7024033.2770233.8552234.4357535.0172235.5978236.17566
1832.3016332.8726533.4483634.0300434.6161235.2057935.7981736.3918936.98544
1932.9883833.5667734.1494134.7379635.3311035.9283536.5292437.1328137.73796
2033.6317334.2181734.8083235.4039936.0040936.6083537.2165837.8281538.44232
2134.2342934.8293635.4275936.0307736.6380337.2492537.8643938.4830639.10481
2234.7987135.4028636.0096436.6206937.2354037.8537338.4757439.1012239.72986
2335.3276535.9411936.5568637.1760737.7984838.4241339.0531439.6853740.32066
2435.8237436.4468537.0716137.6991738.3294738.9626139.5987440.2378140.87972
2536.2895036.9222637.5562038.1922238.8305239.4712440.1146140.7605941.40916
2636.7273637.3697438.0128638.6573739.3037039.9520540.6026841.2556341.91088
2737.1395837.7914938.4437039.0966839.7510040.4069741.0648641.7247642.38669
2837.5282638.1895538.8507239.5120740.1743340.8378441.5029342.1697342.83831
2937.8953338.5658139.2357639.9053740.5754641.2464241.9186242.5922343.26737
3038.2425338.9219839.6005240.2782540.9560541.6343442.3135342.9938543.67544
3138.5714239.2596339.9465440.6322241.3175942.0030942.6891643.3760644.06399
3238.8833839.5801240.2752140.9686941.6614942.3540743.0468943.7402444.43437
3339.1796339.8847040.5877641.2888941.9889842.6885143.3879644.0876544.78786
3439.4612340.1744540.8853141.5939342.3011843.0075543.7135144.4194345.12561
3539.7291040.4503041.1688141.8847942.5990943.3121844.0245644.7366145.44865
3639.9840640.7131041.4391242.1623642.8835943.6033244.3220345.0401145.75792
3740.2268340.9635941.6970042.4273943.1554843.8817644.6067245.3307746.05429
3840.4580241.2023941.9431142.6805743.4154444.1482144.8793645.6093246.33848
3940.6782041.4300942.1780342.9224943.6640844.4032945.1405945.8764246.61118
4040.8878841.6472042.4023043.1536943.9019544.6475645.3909746.1326446.87297
4141.0875141.8541842.6163843.3746644.1295444.8815145.6310246.3785147.12440
4241.2775342.0514742.8207143.5858244.3473045.1056045.8611846.6144947.36592
4341.4583342.2394743.0156843.7875844.5556145.3202346.0818746.8409847.59796
4441.6303242.4185543.2016743.9803144.7548645.5257746.2934647.0583747.82090
4541.7938642.5890943.3790444.1643544.9453845.7225546.4962847.2669948.03509
4641.9493042.7514243.5481344.3400445.1275145.9109146.6906647.4671748.24083
4742.0970142.9058943.7092544.5077145.3015546.0911546.8769047.6592048.43843
4842.2373343.0528443.8627544.6676545.4677946.2635447.0552747.8433448.62815
4942.3705943.1925844.0089244.8201745.6265546.4283947.2260548.0198848.81026
5042.4971443.3254544.1480844.9655645.7780946.5859647.3895048.1890648.98499
5142.6172943.4517544.2805345.1041345.9227046.7365147.5458948.3511449.15259
5242.7313743.5718044.4065845.2361546.0606546.8803247.6954648.5063449.31330
5342.8396943.6858944.5265045.3619146.1922247.0176547.8384648.6549249.46733
5442.9425643.7943444.6406045.4816946.3176747.1487447.9751448.7971149.61492
5543.0402743.8974344.7491645.5957646.4372747.2738648.1057548.9331449.75629
5643.1331143.9954444.8524545.7043946.5512847.3932648.2305249.0632449.89165
5743.2213644.0886444.9507445.8078446.6599547.5071848.3496949.1876450.02123
5843.3052944.1773245.0443045.9063846.7635547.6158848.4635049.3065750.14524
5943.3851544.2617145.1333846.0002646.8623147.7195848.5721949.4202450.26389
6043.4611944.3420745.2182346.0897146.9564747.8185348.6759749.5288950.37741

ElementCsBaLaCePrNdPmSmEu
Z555657585960616263
s         
00.000000.000000.000000.000000.000000.000000.000000.000000.00000
13.260563.865133.981733.829923.797803.766023.733913.700933.66574
27.510437.937968.166287.958537.925937.893617.860557.818537.76614
311.5072711.8217212.0783611.8909111.8693611.8534711.8414611.8122611.76155
414.9431315.2916315.5933415.4146615.4072815.4097715.4210415.4072515.35978
517.6865318.1332518.5437318.3827518.4222318.4687718.5239318.5448618.51896
619.9968420.4685120.9427120.8407320.9367221.0354721.1410021.2067921.21677
722.1232722.5679923.0381623.0148423.1549323.2945423.4391123.5434423.58933
824.1477924.5592225.0003325.0458425.2172525.3856525.5568125.6905425.76819
926.0741426.4622626.8774326.9749527.1705127.3605027.5505027.7072927.81321
1027.8876728.2662528.6664728.8059429.0232329.2318429.4371129.6132529.74482
1129.5707029.9552730.3534930.5330530.7737631.0018931.2225231.4169431.57265
1231.1088131.5142431.9239832.1468232.4159532.6679132.9074433.1220533.30236
1332.4962832.9335233.3667133.6374933.9415434.2236534.4880734.7273334.93493
1433.7382634.2124734.6770734.9993435.3440335.6626335.9586336.2282636.46740
1534.8487035.3595535.8586436.2333936.6220336.9817137.3149537.6203437.89555
1635.8463136.3896936.9220037.3474137.7802838.1830138.5569138.9019039.21679
1736.7505237.3205437.8820138.3539338.8286339.2736839.6890840.0753540.43188
1837.5786738.1693738.7547239.2675939.7798840.2643840.7198741.1469441.54518
1938.3447638.9510539.5551240.1028340.6476241.1674041.6599042.1255842.56396
2039.0593639.6774040.2958340.8724941.4446441.9949842.5205543.0214943.49721
2139.7300240.3572440.9867441.5871742.1819642.7582743.3126543.8450144.35455
2240.3621140.9969241.6352542.2551542.8686343.4667544.0459044.6057245.14531
2340.9594441.6009942.2467442.8827343.5117244.1281744.7284445.3120545.87800
2441.5248542.1727542.8251243.4746344.1167144.7486645.3669945.9711146.56001
2542.0606242.7147543.3733044.0344444.6877845.3330345.9668946.5887447.19760
2642.5687343.2290543.8935844.5649445.2282145.8850646.5324247.1697047.79597
2743.0509543.7174744.3878845.0684245.7406246.4077747.0670247.7178548.35940
2843.5089744.1816944.8579045.5468246.2272046.9036447.5735148.2363648.89142
2943.9443944.6232545.3052046.0018646.6898347.3747648.0542248.7278549.39496
3044.3587345.0436745.7312746.4351347.1302047.8229648.5111949.1945849.87253
3144.7534345.4443346.1374946.8480947.5498648.2499048.9461849.6384950.32626
3245.1298645.8266046.5251947.2421347.9502248.6570649.3608150.0612950.75804
3345.4892646.1917046.8956147.6185248.3326149.0458349.7565250.4645651.16953
3445.8327946.5407947.2499147.9784648.6982549.4174750.1346450.8496851.56224
3546.1615046.8749547.5891548.3230549.0482749.7731550.4964051.2179651.93753
3646.4763647.1951247.9143248.6533149.3837250.1139650.8429251.5705752.29665
3746.7782047.5022048.2263148.9701649.7055550.4408951.1752351.9085952.64073
3847.0678147.7969648.5259249.2744350.0146250.7548251.4942752.2330052.97081
3947.3458748.0801048.8138649.5668950.3117151.0565851.8008952.5447053.28783
4047.6129948.3522649.0907949.8482050.5975351.3469052.0958652.8444953.59264
4147.8697048.6139949.3572750.1189850.8727151.6264552.3798953.1331253.88602
4248.1165048.8657949.6138250.3797551.1378151.8958152.6535853.4112254.16865
4348.3538249.1081049.8609050.6309951.3933352.1555152.9175053.6794054.44116
4448.5820449.3413350.0989150.8731551.6397252.4060253.1721353.9381854.70412
4548.8015149.5658350.3282151.1065851.8773752.6477553.4179454.1880354.95801
4649.0125549.7819150.5491351.3316452.1066452.8810953.6552954.4293655.20329
4749.2154549.9898850.7619751.5486352.3278553.1063653.8845654.6625455.44034
4849.4104850.1900150.9670051.7578352.5412853.3238754.1060454.8879155.66953
4949.5979150.3825451.1644651.9595052.7472053.5338854.3200355.1057755.89117
5049.7779650.5677351.3546052.1538652.9458453.7366354.5267755.3163756.10553
5149.9508850.7457851.5376352.3411653.1374353.9323654.7265055.5199756.31287
5250.1168850.9169251.7137752.5215853.3221754.1212754.9194255.7167756.51342
5350.2762051.0813751.8832152.6953253.5002754.3035555.1057555.9069956.70740
5450.4290351.2393252.0461552.8625953.6719054.4794055.2856656.0908156.89499
5550.5756051.3909752.2027953.0235753.8372554.6489855.4593256.2684057.07636
5650.7161151.5365452.3533253.1784353.9965054.8124755.6269156.4399457.25170
5750.8507751.6762152.4979253.3273654.1498154.9700455.7885856.6055757.42115
5850.9797951.8101852.6367753.4705354.2973655.1218455.9445056.7654657.58487
5951.1033851.9386652.7700853.6081354.4393155.2680456.0948256.9197657.74301
6051.2217352.0618252.8980253.7403354.5758455.4088056.2396857.0686057.89571

ElementGdTbDyHoErTmYbLuHf
Z646566676869707172
s         
00.000000.000000.000000.000000.000000.000000.000000.000000.00000
13.713613.610033.581293.551743.523203.493523.464933.551503.53769
27.858467.712837.675617.636347.600497.560107.515137.642437.65165
311.8702311.7571911.7315411.7063011.6873611.6581711.6154711.6963411.69972
415.5103915.4065815.3934715.3859315.3889015.3756415.3391315.4263415.47770
518.7464718.6417718.6519618.6705118.7023418.7108118.6851718.8207618.94311
621.5146821.4328421.4783721.5328121.6013721.6401721.6349821.8361422.03782
723.9162723.8872523.9687724.0587424.1624924.2325424.2519624.4972824.75775
826.0953526.1290626.2426126.3631226.4962926.5944626.6389926.9000927.18736
928.1336028.2225528.3645628.5114028.6690928.7925228.8624429.1257829.41882
1030.0604130.1925630.3599830.5297430.7081830.8545130.9498931.2143131.50686
1131.8860632.0525032.2425632.4321732.6281132.7948732.9147933.1823233.47536
1233.6161533.8126534.0236134.2310134.4420834.6269834.7698535.0412735.33636
1335.2530835.4790735.7110135.9359336.1614236.3632436.5276936.8027737.10023
1436.7956737.0528237.3076737.5518237.7929738.0121338.1979138.4769438.77678
1538.2405838.5315038.8125039.0790539.3387839.5773139.7855040.0702840.37345
1639.5847839.9119840.2227340.5155240.7976841.0586741.2914541.5852941.89416
1740.8275441.1927241.5363041.8589842.1674742.4544042.7144743.0216243.33975
1841.9712742.3749242.7533043.1086443.4467843.7628044.0528344.3776944.70926
1943.0213243.4626343.8764644.2660144.6360544.9835245.3056645.6521946.00131
2043.9851244.4621844.9108245.3348145.7378146.1180846.4736646.8449747.21519
2144.8711745.3813145.8630746.3206246.7564847.1698347.5592747.9574348.35143
2245.6882046.2282746.7407947.2301047.6978048.1435848.5664248.9924549.41196
2346.4444547.0111947.5517248.0704748.5682649.0450849.5001549.9541750.39996
2447.1473847.7376348.3032948.8488749.3746049.8805750.3661450.8475251.31957
2547.8034348.4142949.0023249.5720650.1233750.6563151.1703251.6778952.17554
2648.4180949.0470049.6548350.2462050.8206951.3783051.9185252.4507652.97288
2748.9959449.6407050.2660750.8767151.4720952.0521052.6162753.1714653.71663
2849.5408150.1995750.8404851.4683052.0824552.6827253.2686453.8449854.41164
2950.0559050.7271151.3818752.0250352.6560453.2745853.8802054.4759355.06245
3050.5439051.2262851.8934652.5503753.1965553.8315754.4550055.0684355.67321
3151.0071451.6996252.3779953.0473053.7071554.3570654.9966055.6261656.24769
3251.4476452.1493252.8378453.5183654.1906054.8539955.5081356.1523956.78923
3351.8671652.5772853.2750653.9657954.6492855.3249155.9923056.6499757.30083
3452.2673152.9852053.6914854.3915455.0852955.7720756.4515257.1214557.78512
3552.6495153.3746154.0887054.7973355.5004756.1974456.8879057.5690458.24446
3653.0150853.7468554.4681855.1847055.8964756.6027857.3033157.9947358.68094
3753.3651854.1031954.8312255.5550356.2747456.9896457.6994158.4002959.09641
3853.7009254.4447355.1790055.9095756.6366357.3594358.0777058.7872959.49253
3954.0232554.7725155.5126056.2494656.9833157.7134258.4395259.1571559.87082
4054.3330955.0874755.8329956.5757257.3158758.0527558.7860859.5111660.23260
4154.6312455.3904356.1410756.8892857.6353058.3784559.1184959.8504760.57912
4254.9184355.6821756.4376357.1909957.9424958.6914859.4377460.1761360.91146
4355.1953155.9633856.7234057.4816158.2382358.9926859.7447260.4891061.23063
4455.4624856.2346756.9990357.7618258.5232759.2828260.0402760.7902261.53755
4555.7204656.4966057.2651158.0322658.7982659.5626160.3251161.0803061.83303
4655.9697256.7496857.5221758.2934859.0638059.8326760.5999261.3600262.11783
4756.2106956.9943457.7706858.5459859.3204160.0935760.8653161.6300562.39262
4856.4437357.2309858.0110658.7902159.5685860.3458261.1218161.8909462.65802
4956.6691857.4599558.2436859.0265759.8087460.5898961.3699262.1432362.91457
5056.8873457.6815758.4689059.2554260.0412660.8261761.6100762.3873863.16278
5157.0984657.8961358.6869959.4770860.2665061.0550561.8426662.6238163.40309
5257.3028058.1038758.8982459.6918460.4847561.2768362.0680462.8528963.63591
5357.5005758.3050359.1028859.8999460.6962961.4918362.2865363.0749863.86160
5457.6919658.4998159.3011360.1016360.9013761.7003062.4984263.2903664.08049
5557.8771658.6884059.4931960.2971161.1002161.9024962.7039463.4993164.29285
5658.0563458.8709859.6792460.4865761.2930162.0985962.9033463.7020864.49897
5758.2296559.0477159.8594460.6701861.4799562.2888263.0968263.8988864.69906
5858.3972559.2187360.0339660.8481161.6612062.4733363.2845664.0899164.89334
5958.5592859.3842060.2029461.0205061.8369162.6523063.4667464.2753565.08201
6058.7158959.5442660.3665161.1874962.0072362.8258863.6435264.4553765.26522

ElementTaWReOsIrPtAuHgTl
Z737475767778798081
s         
00.000000.000000.000000.000000.000000.000000.000000.000000.00000
13.511103.474403.420843.397103.356652.627182.920073.216243.35316
27.663807.675067.625627.695657.700937.282997.385977.648567.98942
311.6961111.6983511.6213111.7341811.7557511.4037411.5461811.7493512.05736
415.5024215.5117615.4517215.5813915.6285615.2838015.4344915.6538115.91600
519.0320519.0846219.0837619.2264519.3130719.1195619.2178619.3884119.60547
622.2144722.3503522.4435922.6266722.7744922.7522422.8450022.9777223.15315
725.0113225.2377525.4337825.6805625.9053726.0226326.1720226.3285626.50417
827.4851527.7763228.0534328.3606828.6571928.8826029.1151129.3391129.56069
929.7324030.0552930.3796230.7261531.0726131.3764231.6842531.9826232.27085
1031.8226232.1554632.4997532.8637933.2360733.5890133.9484634.3045234.65371
1133.7904834.1246434.4745134.8427535.2239535.6022035.9895436.3805536.77187
1235.6518035.9858136.3364036.7038437.0858937.4745437.8733438.2809338.69506
1337.4168437.7511738.1017338.4678338.8485039.2407039.6423140.0553340.47858
1439.0948039.4298139.7804840.1459140.5253840.9191141.3201641.7333842.15838
1540.6934341.0294341.3804441.7457842.1246742.5197442.9195043.3312043.75506
1642.2177142.5557142.9076643.2734843.6523444.0488444.4476344.8577145.27989
1743.6696944.0117544.3660944.7334245.1130045.5109445.9094646.3185246.73945
1845.0492645.3984045.7575346.1281446.5097646.9093647.3086547.7176448.13811
1946.3553146.7151147.0821547.4585947.8442648.2463048.6478149.0580349.47908
2047.5868747.9609848.3393648.7246649.1169749.5229549.9285750.3416950.76463
2148.7438349.1355349.5285849.9258650.3277150.7397851.1517451.5697851.99627
2249.8272850.2392150.6497951.0619851.4762351.8969452.3176652.7428653.17482
2350.8395251.2735351.7038852.1334252.5626452.9946253.4264953.8611654.30069
2451.7839052.2410452.6926553.1413853.5876854.0333854.4786054.9249055.37411
2552.6644653.1450753.6187754.0878654.5527755.0142955.4746855.9345356.39540
2653.4857153.9895554.4855154.9755655.4600455.9389656.4159356.8908857.36512
2754.2523054.7786855.2966055.8076656.3121456.8095257.3040257.7952358.28421
2854.9688655.5167656.0559456.5876657.1121257.6285358.1410958.6492959.15401
2955.6398056.2080056.7675057.3192057.8632658.3988058.9295659.4551259.97622
3056.2692356.8564357.4351258.0059158.5689159.1233559.6721360.2151060.75286
3156.8609357.4657958.0624758.6513259.2324359.8052360.3716160.9317461.48617
3257.4183258.0395258.6529659.2587759.8570460.4474661.0308261.6076862.17854
3357.9444758.5807559.2097359.8314060.4458061.0529561.6525662.2455762.83242
3458.4421359.0923059.7356660.3720761.0015861.6245162.2395462.8479963.45027
3558.9137459.5766960.2333360.8834361.5270262.1647262.7943363.4174664.03451
3659.3614960.0362060.7050961.3678862.0245662.6760363.3193563.9563664.58745
3759.7873360.4728861.1530761.8275962.4964263.1606863.8168464.4669365.11132
3860.1930160.8885461.5791662.2645362.9446363.6207364.2889064.9512765.60820
3960.5801161.2848561.9850862.6805063.3710364.0580864.7374665.4113366.08005
4060.9500461.6632962.3724163.0771163.7773164.4744765.1642865.8489166.52868
4161.3040962.0252062.7425463.4558464.1649964.8714765.5710166.2656866.95579
4261.6434262.3718263.0967663.8180264.5354765.2505565.9591266.6631667.36294
4361.9690862.7042463.4362364.1648764.8900165.6130366.3300067.0427867.75158
4462.2820463.0234863.7620264.4975065.2297765.9601266.6849167.4058268.12304
4562.5831663.3304564.0750764.8169265.5558266.2929567.0249967.7534868.47856
4662.8732363.6259864.3762765.1240565.8691266.6125167.3513168.0868668.81925
4763.1529663.9108364.6664265.4197366.1705466.9197467.6648368.4069669.14617
4863.4230164.1856864.9462465.7047166.4608867.2154967.9664468.7147069.46027
4963.6839764.4511665.2163865.9797066.7408967.5005368.2569469.0109369.76243
5063.9363564.7078365.4774566.2453267.0112267.7755768.5370969.2964170.05346
5164.1806464.9561965.7299766.5021567.2724768.0412468.8075469.5718770.33409
5264.4172765.1967065.9744466.7506967.5251968.2981269.0689169.8379370.60500
5364.6466365.4297866.2113066.9914267.7698968.5467569.3217770.0952070.86682
5464.8690565.6557866.4409467.2247568.0070068.7875969.5666170.3441971.12009
5565.0848665.8750666.6637167.4510768.2369269.0210869.8038970.5854071.36534
5665.2943266.0878966.8799367.6707268.4600369.2476270.0340370.8192771.60303
5765.4977066.2945667.0898967.8839968.6766569.4675470.2574071.0461871.83358
5865.6952166.4953167.2938668.0911868.8870869.6811670.4743471.2665172.05737
5965.8870766.6903467.4920568.2925269.0915869.8887670.6851571.4805872.27474
6066.0734566.8798667.6846868.4882569.2903970.0906170.8900971.6886672.48602

ElementPbBiPoAtRnFrRaAcTh
Z828384858687888990
s         
00.000000.000000.000000.000000.000000.000000.000000.000000.00000
13.346213.278063.332813.321153.269303.832414.444644.605654.53225
28.222178.290088.559148.686268.678909.012889.437619.701969.73030
312.4112512.7368413.1294313.4589613.6775513.9629314.2818114.5641514.68382
416.2297016.5862516.9833117.3984117.8023118.2034218.5973818.9541519.10180
519.8683720.1717920.5137820.8885821.2921821.7279022.1817222.6298522.83294
623.3715823.6279823.9192024.2394024.5876024.9745325.3944325.8391226.08504
726.7065326.9377727.1975027.4828427.7920428.1306628.4989428.8956929.15467
829.7890230.0299230.2869630.5617630.8549631.1685331.5043431.8639532.12548
932.5538632.8361033.1215233.4132433.7141134.0267434.3532434.6975334.96690
1034.9959735.3327235.6657235.9958936.3263636.6604536.9999037.3488037.63823
1137.1606937.5463237.9285338.3046838.6770939.0476639.4174239.7879040.11077
1239.1124139.5317639.9521840.3686140.7824141.1931041.6008442.0036942.36942
1340.9093541.3468741.7905942.2347942.6802843.1249943.5681844.0055444.41624
1442.5931943.0376743.4920743.9512544.4159344.8838145.3535245.8200446.27058
1544.1894844.6347945.0918245.5565746.0298546.5101146.9957647.4823947.96308
1645.7125946.1563446.6121147.0770747.5521548.0367548.5294649.0271849.52726
1747.1705847.6124348.0658048.5288149.0023749.4866049.9805250.4824650.99268
1848.5683849.0088949.4601249.9209350.3920350.8738951.3660151.8680352.38179
1949.9094150.3494750.7994151.2586351.7275852.2068252.6961553.1963453.70975
2051.1961751.6368052.0865352.5451153.0127553.4900053.9767754.4746754.98596
2152.4304252.8728453.3235453.7825654.2499254.7261655.2111855.7071656.21594
2253.6132554.0589154.5119254.9725455.4407555.9171156.4014456.8962557.40291
2354.7452755.1958355.6526556.1161956.5864757.0641457.5489558.0435158.54882
2455.8267956.2840656.7463457.2142557.6879458.1682158.6547159.1500759.65498
2556.8581057.3238857.7933658.2672158.7457559.2299759.7194760.2167560.72234
2657.8395858.3156258.7940059.2753759.7602960.2498860.7437461.2441561.75155
2758.7719159.2597659.7486260.2390660.7318661.2282561.7278662.2326962.74312
2859.6561260.1570560.6577961.1587061.6608162.1653962.6721063.1826763.69739
2960.4935761.0085861.5223362.0349262.5476163.0616563.5767664.0943664.61464
3061.2859661.8157362.3433362.8685963.3929263.9175464.4422264.9680565.49516
3162.0352262.5801663.1221863.6608364.1976464.7337765.2690065.8041866.33929
3262.7435163.3037463.8604964.4130064.9629065.5112466.0578466.6032967.14746
3363.4130663.9885164.5600465.1266665.6900366.2510866.8096667.3661567.92027
3464.0461764.6365865.2227665.8035366.3805466.9546067.5255668.0936568.65848
3564.6451465.2501165.8506466.4454367.0360667.6232468.2068268.7869169.36298
3665.2122065.8312366.4456967.0542467.6583268.2585868.8548369.4471370.03482
3765.7495266.3820267.0099267.6318368.2490868.8622469.4710970.0756670.67518
3866.2591566.9045167.5452768.1800968.8101369.4358970.0571570.6739171.28532
3966.7430467.4006168.0536268.7008369.3432169.9812170.6145971.2433671.86659
4067.2030167.8721468.5367769.1958269.8500470.4998571.1449971.7854972.42036
4167.6407868.3208068.9964369.6667370.3322670.9934171.6499072.3017972.94803
4268.0579168.7481969.4342070.1151670.7914571.4634472.1308272.7937173.45099
4368.4559069.1558169.8515870.5426271.2291271.9114372.5892373.2626773.93061
4468.8361069.5450370.2499970.9505271.6466872.3387873.0265273.7100674.38824
4569.1997769.9171670.6307271.3401972.0454772.7468573.4440274.1371974.82516
4669.5480870.2733770.9950171.7128772.4267473.1368973.8430174.5453375.24264
4769.8821070.6147871.3439872.0697272.7916773.5100874.2246674.9356675.64185
4870.2028370.9424171.6786872.4118073.1413473.8675474.5901175.3093176.02393
4970.5111871.2572172.0000972.7401273.4767874.2103074.9404175.6673676.38996
5070.8079871.5600372.3091173.0556173.7989574.5393575.2765576.0107976.74094
5171.0940171.8516972.6065673.3591274.1087174.8555775.5994576.3405677.07783
5271.3699772.1329172.8932273.6514474.4069075.1598275.9099676.6575477.40152
5371.6365272.4043973.1697873.9333174.6942675.4528776.2089076.9625577.71286
5471.8942472.6667273.4368974.2053974.9714975.7354476.4970077.2563678.01262
5572.1436772.9205073.6951474.4683175.2392576.0082176.7749677.5396878.30154
5672.3853173.1662273.9450974.7226475.4981176.2717977.0434277.8131678.58030
5772.6195973.4043674.1872174.9689075.7486476.5267477.3029678.0774378.84953
5872.8469473.6353674.4219875.2075675.9913276.7735977.5541378.3330479.10982
5973.0677073.8595974.6497975.4390576.2266177.0128277.7974378.5805279.36171
6073.2822274.0774274.8710375.6637876.4549477.2448778.0333278.8203579.60571

ElementPaU
Z9192
s  
00.000000.00000
14.486054.46901
29.647609.65990
314.5030514.53454
418.8863018.93052
522.6701022.75975
626.0197926.15376
729.1762729.33734
832.2088932.38794
935.0998435.29714
1037.8217938.04410
1140.3512540.60907
1242.6713442.97470
1344.7787145.13292
1446.6867747.09059
1548.4220548.86853
1650.0165750.49569
1751.5008952.00222
1852.8999053.41447
1954.2316154.75278
2055.5079256.03139
2156.7362257.25961
2257.9209758.44323
2359.0648659.58582
2460.1696460.68962
2561.2364661.75612
2662.2661562.78632
2763.2593063.78093
2864.2163364.74047
2965.1375765.66531
3066.0232966.55575
3166.8738067.41207
3267.6894668.23461
3368.4707769.02374
3469.2183469.77999
3569.9329170.50398
3670.6154071.19646
3771.2668071.85830
3871.8882572.49049
3972.4809473.09410
4073.0461373.67027
4173.5851274.22018
4274.0991974.74506
4374.5896775.24613
4475.0578475.72462
4575.5049376.18173
4675.9321976.61863
4776.3407677.03649
4876.7317877.43640
4977.1063177.81941
5077.4653778.18654
5177.8099178.53875
5278.1408478.87696
5378.4590179.20201
5478.7652279.51472
5579.0602179.81586
5679.3447080.10614
5779.6193280.38622
5879.8846880.65672
5980.1413580.91823
6080.3898481.17129

There are two kinds of relativistic correction that can be made on inelastic scattering factors. The first is for relativistic effects on the atomic field and has been neglected. This should not be too serious since HF wavefunctions are used and the corrections are only large for the heavier atoms where the contribution to the total scattering for [s\gt] 3–4 Å−1 tends to be negligible. The other correction is for effects in the scattering process, which can be significant above 40 keV, but again these corrections tend to be localized to the small-angle region ([s\lt] 3 Å−1) (Yates, 1970[link]). Hence the tables of inelastic scattering factors given here are based on HF atomic fields since these appear to be the most accurate results presently available.

The inelastic scattering equations must be modified in order to compare theory with experiment. First, the Morse theory is corrected to ensure that both energy and momentum are conserved in the scattering process. In the description of the elastic scattering process, no transformation is required from the centre-of-mass system (CMS), where the scattering factors are calculated, to the laboratory system (LS), where data are taken, since the nuclei are heavy compared with the incident electrons. In the inelastic channels, a similar argument holds for scattering involving the bound states. However, for ionizing processes, the interaction can be assumed to take place between the incident electron and the ejected electron, so that the CMS is entirely different from the LS. Considering the atomic electrons as free particles and considering only the ionization process, the transformation between the CMS and the LS is possible and leads to the Bethe modification (Tavard & Bonham, 1969[link]) for inelastic scattering. The inelastic cross section can now be given by [\sigma_{\rm inel}={4\cos(2\theta)S(s\cos\theta) \over a^2s^4\cos^4\theta}]for [\theta\lt\pi/4] and by [\sigma_{\rm inel}=0] for [\theta\gt\pi/4].

Another modification is necessary because the average energy of inelastically scattered electrons varies with energy and is given from approximate conservation of energy and momentum for a fast incident particle by [k^2\cos^2(2\theta)]. This means that for [s\gt] 30 Å−1 at 40 keV the average energy of inelastically scattered electrons may be around 30 keV and the fact that the response of the detector may be different for the 40 keV inelastically scattered electrons and the elastic ones may have to be considered (Fink, Bonham, Lee & Ng, 1969[link]).

In addition to the values given in Table 4.3.3.2[link], a few calculations of S(s) have been carried out with very exact wavefunctions that include more than 85% of the correlation energy (Kohl & Bonham, 1967[link]; Bartell & Gavin, 1964[link]; Peixoto, Bunge & Bonham, 1969[link]; Thakkar & Smith, 1978[link]; Wang, Esquivel, Smith & Bunge, 1995[link]).

4.3.3.2.3. Corrections for defects in the theory of atomic scattering

| top | pdf |

Errors in the inelastic scattering factors from the three approximations made in the Morse theory have been investigated (Tavard & Bonham, 1969[link]; Bonham, 1965b[link]). The Morse theory breaks down at very large scattering angles [(\theta\gt30^\circ)], and is incorrect at small angles. Investigations carried out so far indicate that the small-angle failure is not serious outside s = 1 Å−1. It must be stressed that these uncertainties do not introduce important errors into the analysis of molecular structure using theoretical atomic scattering amplitudes. This is mainly because such deviations are smooth compared with molecular features and thus do not interfere with the analysis of molecular structure.

4.3.3.3. Molecular scattering factors for electrons

| top | pdf |

The simplest theory of molecular scattering assumes that a molecule consists of spherical atoms and that each electron is scattered by only one atom in the molecule. If only single scattering is allowed within each atom, the molecular intensity can be written as [\eqalignno{ I(s) &=I_a(s)+I_m(s) \cr &=\left[{{4I_0}\over {a^2s^4R^2}}\right]\Biggl[\sum^M_{i=1}\{[Z_i-F_i(s)]^2+S_i(s)\} \cr & +\sum^M_i\,\sum^M_{j\neq i}[Z_i-F_i(s)][Z_j-F_j(s)] \cr & \times \int\limits^\infty_0 {\rm d} r\,P_{ij}(r,T)(\sin sr)/sr\Biggr], & (4.3.3.1)}]where M is the number of constituent atoms in the molecule, [F_i(s)] and [S_i(s)] are the coherent and incoherent X-ray scattering factors, and [P_{ij}(r, T)] is the probability of finding atom i at a distance r from atom j at the temperature T (Bonham & Su, 1966[link]; Kelley & Fink, 1982b[link]; Mawhorter, Fink & Archer, 1983[link]; Mawhorter & Fink, 1983[link]; Miller & Fink, 1985[link]; Hilderbrandt & Kohl, 1981[link]; Kohl & Hilderbrandt, 1981[link]). The constant [I_0] is proportional to the product of the intensities of the electron and molecular beams and R is the distance from the point of scattering to the detector. The single sum is the atomic intensity [I_a(s)] and the double sum is the molecular intensity [I_m(s)]. This expression, referred to here as the independent atom model (IAM), may be improved by replacing the atomic elastic electron scattering factors by their partial wave counterparts. This modification is necessary to explain the failure of the Born approximation observed in molecules containing light and heavy atoms in proximity (Schomaker & Glauber, 1952[link]; Seip, 1965[link]), and may be written as [\eqalignno{ I(s) &=I_a(s)+I_m(s) \cr&={I_0\over R^2}\Biggl\{\sum^M_{i=1} [|\,f_i|^2+4S_i(s)/(a^2s^4)] \cr &+\sum^M_i \sum^M_{j\neq i}\,|\,f_i|\,|\,f_j|\cos (\eta_i-\eta_j) \cr & \times \int\limits^\infty_0\,{\rm d} r\,P_{ij}(r,T)(\sin sr)/sr\Biggr\}. & (4.3.3.2)}]This is the most commonly used expression for the interpretation of molecular gas electron-diffraction patterns in the keV energy range. If it is necessary to consider relativistic effects in the scattering intensity, equation (4.3.3.2)[link] becomes (Yates & Bonham, 1969[link]) [\eqalignno{ I(s) &=I_a(s)+I_m(s) \cr &={I_0\over R^2}\Biggl\{\sum^M_{i=1} [|\,f_i|^2+|g_i|^2+4S_i(s)/(a^2s^4)] \cr & +\sum^M_i \sum^M_{j\neq i} [|\,f_i|\,|\,f_j|\cos (\eta ^f_i - \eta ^f_j)+|g_i| |g_j|\cos (\eta^g_i-\eta^g_j)] \cr & \times \int\limits^\infty_0\, {\rm d} r\,P_{ij}(r,T)(\sin sr)/sr\Biggr\}, & (4.3.3.3)}]where [|g_i|] and [\eta^g_i] refer to the scattering-factor magnitude and phase for electrons that have changed their electron spin state during the scattering process and [|\,f_i|] and [\eta^f_i] refer to retention of spin orientation. The incident electron beam is assumed to be unpolarized and no attempt has been made to consider relativistic effects on the inelastic scattering cross section, which is usually negligible in the structural s range.

If it is necessary to consider binding effects, the first Born approximation may usually be used in describing molecular scattering, since binding effects are largest for molecules containing small atoms where the Born approximation is most valid.

The exact expression for I(s) in the first Born approximation can be written as (Bonham & Fink, 1974[link]; Tavard & Roux, 1965[link]; Tavard, Rouault & Roux, 1965[link]; Iijima, Bonham & Ando, 1963[link]; Bonham, 1967[link]) [\eqalignno{ I(s)&={{4I_0}\over {a^2s^4R^2}}\,\Biggr\{\sum^M_{i=1} (Z^2_i+Z_i) \cr& +\sum^M_i \sum^M_{j\neq i}\,Z_iZ_j \int\limits^\infty_0\,{\rm d} r\,P_{ij}(r,T)(\sin sr)/sr \cr& -2\sum^M_{i=1} Z_i \Biggl\langle\int\limits^{}_{} {\rm d} r\,\rho(r+r_i)(\sin sr)/sr\Biggr\rangle_{\rm vib} \cr &+ \Biggl\langle\int{\rm d} r\, \rho_c(r)(\sin sr)/sr\Biggr\rangle_{\rm vib}\Biggr\}, }]where [\rho(r)=\textstyle\sum\limits^N_{i=1}\int{\rm d} r_1\ldots\int{\rm d} r_N\,|\psi(r_1,\ldots,r_N)|{}^2\delta(r-r_i)]and [\rho_c(r)=\textstyle\sum\limits^N_i \sum\limits^N_{j\neq i} \int {\rm d} r_1\ldots\int{\rm d} r_N\,|\psi(r_1,\ldots,r_N)|{}^2\delta(r-r_i+r_j).]The brackets [\langle\,\rangle_{\rm vib}] denote averaging over the vibrational motion, [\delta(r)] is the Dirac delta function, and [\psi(r_i,\ldots,r_n)] is the molecular wavefunction. Binding effects appear to be proportional to the ratio of the number of electrons involved in binding to the total number of electrons in the system (Kohl & Bonham, 1967[link]; Bonham & Iijima, 1965[link]) so that binding effects in molecules containing mainly heavy atoms should be quite small.

The intensities, I(s), for many small molecules have been calculated based on molecular Hartree–Fock wavefunctions. In most cases, a distinctive minimum has been found at about s = 3–4 Å−1 and a much small maximum at s = 8–10 Å−1 in the cross-sectional difference curve between the IAM and the molecular HF results (Pulay, Mawhorter, Kohl & Fink, 1983[link]; Kohl & Bartell, 1969[link]; Liu & Smith, 1977[link]; Epstein & Stewart, 1977[link]; Sasaki, Konaka, Iijima & Kimura, 1982[link]; Shibata, Hirota, Kakuta & Muramatsu, 1980[link]; Horota, Kakuta & Shibata, 1981[link]; Xie, Fink & Kohl, 1984[link]). Further studies using correlated wavefunctions (accounting for up to 60% of the correlation energy) showed that in the elastic channel the binding effects are only weakly modified; only the maximum at s = 8–10 Å−1 is further reduced. However, strong effects are seen in the inelastic channel, deepening the minimum at s = 3–4 Å−1 significantly (Breitenstein, Endesfelder, Meyer, Schweig & Zittlau, 1983[link]; Breitenstein, Endesfelder, Meyer & Schweig, 1984[link]; Breitenstein, Mawhorter, Meyer & Schweig, 1984[link]; Wang, Tripathi & Smith, 1994[link]). Detailed calculations on CO2 and H2O averaging over many internuclear distances and applying the pair distribution functions [P_{ij}(r)] showed that vibrational effects do not alter the binding effects (Breitenstein, Mawhorter, Meyer & Schweig, 1986[link]). For CO2, the calculations have been confirmed in essence by an experimental set of data (McClelland & Fink, 1985[link]). However, more molecules and more detailed analysis will be available in the future. The binding effects make it desirable to avoid the small-angle-scattering range when structural information is the main goal of a diffraction analysis.

The problem of intramolecular multiple scattering may necessitate corrections to the molecular intensity when three or more closely spaced heavy atoms are present. This correction (Karle & Karle, 1950[link]; Hoerni, 1956[link]; Bunyan, 1963[link]; Gjønnes, 1964[link]; Bonham, 1965a[link], 1966[link]) appears to be more serious for three atoms in a right triangular configuration than for a collinear arrangement of three atoms. A case study by Kohl & Arvedson (1980[link]) on SF6 showed the importance of multiple scattering. However, their approach is too cumbersome to be used in routine structure work. A very good approximate technique is available utilizing the Glauber approximation (Bartell & Miller, 1980[link]; Bartell & Wong, 1972[link]; Wong & Bartell, 1973[link]; Bartell, 1975[link]); Kohl's results are reproduced quite well using the atomic scattering factors only. Several applications of the multiple scattering routines showed that the internuclear distances are rather insensitive to this perturbation, but the mean amplitudes of vibration can easily change by 10% (Miller & Fink, 1981[link]; Kelley & Fink, 1982a[link]; Ketkar & Fink, 1985[link]).

4.3.4. Electron energy-loss spectroscopy on solids

| top | pdf |
C. Colliexa

4.3.4.1. Definitions

| top | pdf |

4.3.4.1.1. Use of electron beams

| top | pdf |

Among the different spectroscopies available for investigating the electronic excitation spectrum of solids, inelastic electron scattering experiments are very useful because the range of accessible energy and momentum transfer is very large, as illustrated in Fig. 4.3.4.1[link] taken from Schnatterly (1979[link]). Absorption measurements with photon beams follow the photon dispersion curve, because it is impossible to vary independently the energy and the momentum of a photon. In a scattering experiment, a quasi-parallel beam of monochromatic particles is incident on the specimen and one measures the changes in energy and momentum that can be attributed to the creation of a given excitation in the target. Inelastic neutron scattering is the most powerful technique for the low-energy range [(\lesssim] 0.1 eV). On the other hand, inelastic X-ray scattering is well suited for the study of high momentum and large energy transfers because the energy resolution is limited to ∼1 eV and the cross section increases with momentum transfer. In the intermediate range, inelastic electron scattering [or electron energy-loss spectroscopy (EELS)] is the most useful technique. For recent reviews on different aspects of the subject, the reader may consult the texts by Schnatterly (1979[link]), Raether (1980[link]), Colliex (1984[link]), Egerton (1986[link]), and Spence (1988a[link]).

[Figure 4.3.4.1]

Figure 4.3.4.1| top | pdf |

Definition of the regions in (E, q) space that can be investigated with the different primary sources of particles available at present [courtesy of Schnatterly (1979[link])].

4.3.4.1.2. Parameters involved in the description of a single inelastic scattering event

| top | pdf |

The importance of inelastic scattering as a function of energy and momentum transfer is governed by a double differential cross section: [{{\rm d}^2\sigma\over {\rm d}\Omega\,{\rm d}(\Delta E)}, \eqno (4.3.4.1)]where d[\Omega] corresponds to the solid angle of acceptance of the detector and d(ΔE) to the energy window transmitted by the spectrometer. The experimental conditions must therefore be defined before any interpretation of the data is possible. Integrations of the cross section over the relevant angular and energy-loss domains correspond to partial or total cross sections, depending on the feature measured. For instance, the total inelastic cross section [(\sigma_i)] corresponds to the probability of suffering any energy loss while being scattered into all solid angles. The discrimination between elastic and inelastic signal is generally defined by the energy resolution of the spectrometer, that is the minimum energy loss that can be unambiguously distinguished from the zero-loss peak; it is therefore very dependent on the instrumentation used.

The kinematics of a single inelastic event can be described as shown in Fig. 4.3.4.2[link] . In contrast to the elastic case, there is no simple relation between the scattering angle [\theta] and the transfer of momentum [\hbar{\bf q}]. One has also to take into account the energy loss ΔE. Combining both equations of conservation of momentum and energy, [{\hbar^2k'^2\over 2m_0}+\Delta E= {\hbar^2k^2\over 2m_0}, \eqno (4.3.4.2)]and [q^2=k^2+k'^2 - 2kk'\cos\theta, \eqno (4.3.4.3)]one obtains [(qa_0)^2={2E_0\over R}\left[1-\left(1-{\Delta E\over E_0}\right)^{1/2}\cos\theta\right]-{\Delta E\over R}, \eqno (4.3.4.4)]where the fundamental units [a_0=\hbar^2/m_0e^2] = Bohr radius and [R=m_0e^4/2\hbar^2] = Rydberg energy are used to introduce dimensionless quantities. In this kinematical description, one deals only with factors concerning the primary or the scattered particle, without considering specifically the information on the ejected electron. For a core-electron excitation of an atom, one distinguishes q (the momentum exchanged by the incident particle) and χ (the momentum gained by the excited electron), the difference being absorbed by the recoil of the target nucleus (Maslen & Rossouw, 1983[link]).

[Figure 4.3.4.2]

Figure 4.3.4.2| top | pdf |

A primary electron of energy E0 and wavevector k is inelastically scattered into a state of energy E0ΔE and wavevector k′. The energy loss is ΔE and the momentum change is ħq. The scattering angle is θ and the scattered electron is collected within an aperture of solid angle dΩ.

4.3.4.1.3. Problems associated with multiple scattering

| top | pdf |

The strong coupling potential between the primary electron and the solid target is responsible for the occurrence of multiple inelastic events (and of mixed inelastic–elastic events) for thick specimens. To describe the interaction of a primary particle with an assembly of randomly distributed scattering centres (with a density N per unit volume), a useful concept is the mean free path defined as [\Lambda=1/N\sigma \eqno (4.3.4.5)]for the cross section σ. The ratio t/Λ measures the probability of occurrence of the event associated with the cross section σ when the incident particle travels a given length t through the material. This is true in the single scattering case, that is when [t/\Lambda\ll1].

For increased thicknesses, one must take into account all multiple scattering events and this contribution begins to be non-negligible for [t\,\gtrsim] a few tens of nanometres. Multiple scattering is responsible for a broadening of the angular distribution of the scattering electrons – mostly due to single or multiple elastic events – and of an important fraction of inelastic electrons suffering more than one energy loss. The probability of having n inelastic processes of mean free path Λ is governed by the Poisson distribution: [P_n(t)={1\over n!}\left({t\over \Lambda}\right)^{-n}\exp\left(-{t\over\Lambda}\right).\eqno (4.3.4.6)]Multiple losses introduce additional peaks in the energy-loss spectrum; they are also responsible for an increased background that complicates the detection of single characteristic core-loss signals. Consequently, when the specimen thickness is not very small (i.e. for [t\,\gtrsim 50\hbox{ nm}] for 100 keV primary electrons), it is necessary to retrieve the single scattering profile that is truly representative of the electronic and chemical properties of the specimen.

Deconvolution techniques have therefore been developed to remove the effects of plural scattering from the low-loss spectrum (up to 100 eV) or from ionization edges but very few treatments deal with both angle and energy-loss distributions. Batson & Silcox (1983[link]) have made a detailed study of the inelastic scattering properties of incident 75 keV electrons through a ~100 nm thick polycrystalline aluminium film, over the full range of transferred wavevectors [(0\rightarrow3\,{\rm \AA}^{-1})] and energy losses [(0\rightarrow100\,{\rm eV})]. Schattschneider (1983[link]) has proposed a matrix approach that is sufficiently elaborate to handle angle-resolved energy-loss data. Simpler deconvolution schemes have been proposed and used for processing multiple losses without specific consideration of angular truncation effects. They are valid when the data have been recorded over sufficiently large angles of collection so that all appreciable inelastic scattering is included. They are generally based on Fourier transform techniques, except for the iterative approach of Daniels, Festenberg, Raether & Zeppenfeld (1970[link]), which has been used for energy losses up to about 60 eV (Colliex, Gasgnier & Trebbia, 1976[link]). The most accurate current methods are the Fourier-log method of Johnson & Spence (1974[link]) and Spence (1979[link]), and the Fourier-ratio method of Swyt & Leapman (1982[link]), which only applies to the core-loss region. The first is far more complete and accurate and applies to any spectral range when one has recorded a full spectrum in unsaturated conditions.

4.3.4.1.4. Classification of the different types of excitations contained in an electron energy-loss spectrum

| top | pdf |

Figs. 4.3.4.3[link] and 4.3.4.4[link] display examples of electron energy-loss spectra over large energy domains, typically from 1 to about 2000 eV. With one instrument, all elementary excitations from the near infrared to the X-ray domain can be investigated. Apart from the main beam or zero-loss peak, two major families of electronic transitions can be distinguished in such spectra:

  • (a) The excitations in the low or moderate energy-loss region [(1\lt\Delta E\lt50\,{\rm eV})] concern the quasifree (valence and conduction) electron gas. In a pure metal, such as Al, the dominant feature is the intense narrow peak at 15 eV with its multiple satellites at about 30, 45, and 60 eV. One also detects an interband transition at 1.5 eV and a surface plasmon peak at [\sim7] eV. For the more complex mineral specimen, rhodizite, this contribution lies in the intense and broad, but not very specific, peak around 25 eV. All these features are discussed in detail in Subsection 4.3.4.3[link].

    [Figure 4.3.4.3]

    Figure 4.3.4.3| top | pdf |

    Excitation spectrum of aluminium from 1 to 250 eV, investigated by EELS on 300 keV primary electrons [courtesy of Schnatterly (1979[link])].

    [Figure 4.3.4.4]

    Figure 4.3.4.4| top | pdf |

    Complete electron energy-loss spectrum of a thin rhodizite crystal (thickness ~60 nm). Separate spectra from eight significantly overlapping energy ranges were measured and matched. Primary energy 60 keV. Semi-angle of collection 5 mrad. Recording time 300 s (parallel acquisition). Scanned area 30 × 40 nm. Analysed mass 2 × 10−15 g [courtesy of Engel, Sauer, Zeitler, Brydson, Williams & Thomas (1988[link])].

  • (b) The excitations in the high-energy-loss domain [(50\lt\Delta E\lt2000\,{\rm eV})] concern excitation and ionization processes from core atomic orbitals: in Al, the [L_{2,3}] edge is associated with the creation of holes on the 2p level, [L_1] is due to the excitation of 2s, and K of 1s electrons. These contributions appear as edges superposed on a regularly decreasing background. In the complex specimen, the succession of these different edges on top of the monotonously decaying background is a signature of the elemental composition, the intensity of the signals being roughly proportional to the relative concentration in the associated element. Core-level EELS spectroscopy therefore investigates transitions from one well defined atomic orbital to a vacant state above the Fermi level: it is a probe of the energy distribution of vacant states in a solid, see Fig. 4.3.4.5[link] . As the excited electron is promoted on a given atomic site, the information involved has two specific characters: it provides the local atomic point of view and it reflects the existence of the hole created, which can be more or less screened by the surrounding population of electrons in the solid. The properties of this family of excitations are the subject of Subsection 4.3.4.4[link].

    [Figure 4.3.4.5]

    Figure 4.3.4.5| top | pdf |

    Schematic energy-level representation of the origin of a core-loss excitation (from a core level C at energy Ec to an unoccupied state U above the Fermi level Ef) and its general shape in EELS, as superimposed on a continuously decreasing background.

The non-characteristic background is due to the superposition of several contributions: the high-energy tail of valence-electron scattering, the tails of core losses with lower binding energy, Bremsstrahlung energy losses, plural scattering, etc. It is therefore rather difficult to model its behaviour, although some efforts have been made along this direction using Monte Carlo simulation of multiple scattering (Jouffrey, Sevely, Zanchi & Kihn, 1985[link]).

When one monochromatizes the natural energy width of the primary beam to much smaller values (about a few meV) than its natural width, one has access to the infrared part of the electromagnetic spectrum. An example is provided in Fig. 4.3.4.6[link] for a specimen of germanium in the energy-loss range 0 up to 500 meV. In this case, one can investigate phonon modes, or the bonding states of impurities on surfaces. This field has been much less extensively studied than the higher-energy-loss range [for references see Ibach & Mills (1982[link])].

[Figure 4.3.4.6]

Figure 4.3.4.6| top | pdf |

Energy-loss spectrum, in the meV region, of an evaporated germanium film (thickness [\simeq] 25 nm). Primary electron energy 25 keV. Scattering angle < 10−4. One detects the contributions of the phonon excitation, of the Ge&mdash;O bonding, and of intraband transitions [courtesy of Schröder & Geiger (1972[link])].

Generally, EELS techniques can be applied to a large variety of specimens. However, for the following review to remain of limited size, it is restricted to electron energy-loss spectroscopy on solids and surfaces in transmission and reflection. It omits some important aspects such as electron energy-loss spectros­copy in gases with its associated information on atomic and molecular states. In this domain, a bibliography of inner-shell excitation studies of atoms and molecules by electrons, photons or theory is available from Hitchcock (1982[link]).

4.3.4.2. Instrumentation

| top | pdf |

4.3.4.2.1. General instrumental considerations

| top | pdf |

In a dedicated instrument for electron inelastic scattering studies, one aims at the best momentum and energy resolution with a well collimated and monochromatized primary beam. This is achieved at the cost of poor spatial localization of the incident electrons and one assumes the specimens to be homogeneous over the whole irradiated volume. In a sophisticated instrument such as that built by Fink & Kisker (1980[link]), the energy resolution can be varied from 0.08 to 0.7 eV, and the momentum transfer resolution between 0.03 and 0.2 Å−1, but typical values for the electron-beam diameter are about 0.2 to 1 mm. Nowadays, many energy-analysing devices are coupled with an electron microscope: consequently, an inelastic scattering study involves recording for a primary intensity [I_0], the current I(r, [\boldtheta], ΔE) scattered or transmitted at the position r on the specimen, in the direction [\boldtheta] with respect to the primary beam, and with an energy loss ΔE. Spatial resolution is achieved either with a focused probe or by a selected area method, angular acceptance is defined by an aperture, and energy width is controlled by a detector function after the spectrometer. It is not possible from signal-to-noise considerations to reduce simultaneously all instrumental widths to very small values. One of the parameters (r, [\boldtheta] or ΔE) is chosen for signal integration, another for selection, and the last is the variable. Table 4.3.4.1[link] classifies these different possibilities for inelastic scattering studies.

Table 4.3.4.1| top | pdf |
Different possibilities for using EELS information as a function of the different accessible parameters (r, [\boldtheta], ΔE)

 Integration parameterSelection parameterResultsWorking mode of the spectrometer
1[\boldtheta]rSpectrum Ir (ΔE)Analyser
2r[\boldtheta]Spectrum [I_\boldtheta] (ΔE)Analyser
3[\boldtheta]ΔEEnergy-filtered image [I_{\Delta E}(\bf r)]Filter
4rΔEEnergy-filtered diffraction pattern [I_{\Delta E}({\boldtheta})]Filter

Because of the great variety of possible EELS experiments, it is impossible to build an optimum spectrometer for all applications. For instance, the design of a spectrometer for low-energy incident electrons and surface studies is different from that for high-energy incident electrons and transmission work. In the latter category, instruments built for dedicated EELS studies (Killat, 1974[link]; Gibbons, Ritsko & Schnatterly, 1975[link]; Fink & Kisker, 1980[link]; etc.) are different from those inserted within an electron-microscope environment, in which case it is possible to investigate the excitation spectrum from a specimen area well characterized in image and diffraction [see the reviews by Colliex (1984[link]) and Egerton (1986[link])].

The literature on dispersive electron–optical systems (equivalent to optical prisms) is very large. For example, the theory of uniform field magnets, which constitute an important family of analysing devices, has been extensively developed for the components in high-energy particle accelerators (Enge, 1967[link]; Livingood, 1969[link]). As for EELS spectrometers, they can be classified as:

  • (a) Monochromators, which filter the incident beam to obtain the smallest primary energy width. The natural width for a heated W filament is about 1 eV, possibly rising to about a few eV as a consequence of stochastic interactions [Boersch (1954[link]) effect, analysed for instance by Rose & Spehr (1980[link])]. For a low-temperature field-emission source, this energy spread is only ∼0.3 eV. This constitutes a clear gain but remains insufficient for meV studies. In this case, one has to introduce a filter lens such as the three-electrode design developed by Hartl (1966[link]) or a cylindrical electrostatic deflector before the accelerator [Kuyatt & Simpson (1967[link]) or Gibbons et al. (1975[link])]. In both cases, an energy resolution of 50 meV has been achieved for electron beams of 50–300 keV at the specimen.

  • (b) Analysers, which measure the energy distribution of the beam scattered from the specimen. They can be used either strictly as analysers displaying the energy loss from a given specimen volume, or as filters (or selecting devices) that provide 2D images or diffraction patterns with a given energy loss.

4.3.4.2.2. Spectrometers

| top | pdf |

Fig. 4.3.4.7[link] defines the basic parameters of a `general' energy-loss spectrometer: a region of electrostatic E and/or magnetic B fields transforms a distribution of electrons [I_0] [(x_0,y_0,t_0,u_0,\rho)] in the object plane of coordinate [z_0] along the principal trajectory, into a distribution of electrons [I_1] [(x_1,y_1,t_1,u_1,\rho)] in the object plane of coordinate [z_1], coincident with the detector plane (or optically conjugate to it). The transverse coordinates are labelled as (x, y), the angular ones as (t, u), and ρ = Δp/p = ΔE/2E is the relative change in absolute momentum value associated with the energy loss.

[Figure 4.3.4.7]

Figure 4.3.4.7| top | pdf |

Schematic drawing of a uniform magnetic sector spectrometer with induction B normal to the plane of the figure. Definition of the coordinates used in the text (the object plane at coordinate z0 along the mean trajectory coincides with the specimen, and the image plane at z1 coincides with the dispersion plane and the detector level).

Common properties of such systems are:

  • (a) first-order imaging properties or stigmatism, i.e. all electrons leaving [(x_0,y_0)] are focused at the same [(x_1,y_1)] point, independently of their inclination on the optical axis;

  • (b) strong chromatic aberration in order to realize an efficient discrimination between electrons of different ρ.

The spectrometer performance can be evaluated with the following parameters:

  • D = dispersion = beam displacement in the spectrometer image plane for a given momentum change ρ; it is generally expressed in cm/eV. The higher the dispersion, the easier it is to resolve small energy losses. For a straight-edge 90° magnetic sector, [D\propto 2R/E_0], where R is the curvature radius of the mean trajectory and [E_0] is the primary energy.

  • [\delta E_{\rm min}] = energy resolution. This corresponds to the minimum-energy variation that can be resolved by the instrument. It takes into account the width of the image [\Delta x_{\rm image}=Mr], where M is the spectrometer magnification and r the radius of the spectrometer source, as well as the second- and higher-order angular aberrations. These are responsible for the imperfect focusing of the electrons that enter the spectrometer within a cone of angular acceptance [\beta_0] and contribute through a term [\Delta x_{\rm aber}=C\beta^2_0]. Moreover, one must convolute these terms with the natural width [\delta E_0] of the primary beam, including AC fields, and with the detection slit width [\Delta x_{\rm slit}]. Combining all these effects, as shown schematically in Fig. 4.3.4.8[link] , one obtains approximately: [\Delta x_{\rm tot}=[(\Delta x_{\rm slit})^2+(\Delta x_{\rm image})^2+(\Delta x_{\rm aber})^2+ D\delta E^2_0]^{1/2} \eqno (4.3.4.7)]and the corresponding energy resolution is defined as [\delta E_{\min}=(\Delta x_{\rm tot})_{\min}/D]. In many situations, the dominant factor is the second-order aberration term [C\beta^2_0] so that the figure of merit F, defined as [F=\pi\beta_0 E_0/\delta E_{\rm min}], is of the order of unity for an uncorrected magnetic spectrometer.

    [Figure 4.3.4.8]

    Figure 4.3.4.8| top | pdf |

    Different factors contributing to the energy resolution in the dispersion plane [courtesy of Johnson (1979[link])].

From this simplified discussion, one deduces that there is generally competition between large angular acceptance for the inelastic signal, which is very important for obtaining a high signal-to-noise ratio (SNR) for core-level excitations, and good energy resolution. Two solutions have been used to remedy this limitation. The first is to improve spectrometer design, for example by correcting second-order aberrations in a homogeneous magnetic prism (Crewe, 1977a[link]; Parker, Utlaut & Isaacson, 1978[link]; Egerton, 1980b[link]; Krivanek & Swann, 1981[link]; etc). This can enhance the figure of merit by at least a factor of 100. The second possibility is to transform the distribution of electrons to be analysed at the exit surface of the specimen into a more convenient distribution at the spectrometer entrance. This can be done by introducing versatile transfer optics (see Crewe, 1977b[link]; Egerton, 1980a[link]; Johnson, 1980[link]; Craven & Buggy, 1981[link]; etc.). As a final remark on the energy resolution of a spectrometer, it is meaningless to define it without reference to the size and the angular aperture of the analysed beam.

Historically, many types of spectrometer have been used since the first suggestion by Wien (1897[link]) that an energy analyser could be designed by employing crossed electric and magnetic fields. Reviews have been published by Klemperer (1965[link]), Metherell (1971[link]), Pearce-Percy (1978[link]), and Egerton (1986[link]). Nowadays, two configurations are mostly used and have become commercially available on modern electron microscopes: these are spectrometers on TEM/STEM instruments and filters on CTEM ones. In the first case, homogeneous magnetic sectors are the simplest and most widely used devices. Recent instrumental developments by Shuman (1980[link]), Krivanek & Swann (1981[link]), and Scheinfein & Isaacson (1984[link]) have given birth to a generation of spectrometers with the following major characteristics: double focusing, correction for second-order aberrations, dispersion plane perpendicular to the trajectory. This has been made possible by a suitable choice of several parameters, such as the tilt angles and the radius of curvature for the entrance and exit faces and the correct choice of the object source position. As an example, for a 100 keV STEM equipped with a field emission gun, the coupling illustrated in Fig. 4.3.4.9[link] leads to an energy resolution of 0.35 eV for β0 = 7.5 mrad on the specimen as visible on the elastic peak, and 0.6 eV for α0 = 25 mrad as checked on the fine structures on core losses. Krivanek, Manoubi & Colliex (1985[link]) demonstrated a sub-eV energy resolution over the whole range of energy losses up to 1 or 2 keV.

[Figure 4.3.4.9]

Figure 4.3.4.9| top | pdf |

Optical coupling of a magnetic sector spectrometer on a STEM column.

A very competitive solution is the Wien filter, which consists of uniform electric and magnetic fields crossed perpendicularly, see Fig. 4.3.4.10[link] . An electron travelling along the axis with a velocity [{\bf v}_0] such that [|{\bf v}_0|=E/B] is not deflected, the net force on it being null. All electrons with different velocities, or at some angle with respect to the optical axis, are deflected. The dispersion of the system is greatly enhanced by decelerating the electrons to about 100 eV within the filter, in which case [D\simeq] a few 100 µm/eV. A presently achievable energy resolution of 150 meV at a spectrometer collection half-angle of 12.5 mrad has been demonstrated by Batson (1986[link], 1989[link]). It allows the study of the detailed shape of the energy distribution of the electrons emitted from a field emission source and the taking of it into account in the investigation of band-gap states in semiconductors (Batson, 1987[link]).

[Figure 4.3.4.10]

Figure 4.3.4.10| top | pdf |

Principle of the Wien filter used as an EELS spectrometer: the trajectories are shown in the two principal (dispersive and focusing) sections.

Filtering devices have been designed to form an energy-filtered image or diffraction pattern in a CTEM. The first solution, reproduced in Fig. 4.3.4.11[link] , is due to Castaing & Henry (1962[link]). It consists of a double magnetic prism and a concave electrostatic mirror biased at the potential of the microscope cathode. The system possesses two pairs of stigmatic points that may coincide with a diffraction plane and an image plane of the electron-microscope column. One of these sets of points is achromatic and can be used for image filtering. The other is strongly chromatic and is used for spectrum analysis. Zanchi, Sevely & Jouffrey (1977[link]) and Rose & Plies (1974[link]) have proposed replacing this system, which requires an extra source of high voltage for the mirror, by a purely magnetic equivalent device. Several solutions, known as the α and [\omega] filters, with three or four magnets, have thus been built, both on very high voltage microscopes (Zanchi, Perez & Sevely, 1975[link]) and on more conventional ones (Krahl & Herrmann, 1980[link]), the latest version now being available from one EM manufacturer (Zeiss EM S12).

[Figure 4.3.4.11]

Figure 4.3.4.11| top | pdf |

Principle of the Castaing & Henry filter made from a magnetic prism and an electrostatic mirror. (R1, R2, and R3 are the real conjugate stigmatic points, and V1, V2, and V3 the virtual ones: the dispersion plane coincides with the R3 level and achromatic one with the V3 level.)

4.3.4.2.3. Detection systems

| top | pdf |

The final important component in EELS is the detector that measures the electron flux in the dispersion plane of the spectrometer and transfers it through a suitable interface to the data storage device for further computer processing. Until about 1990, all systems were operated in a sequential acquisition mode. The dispersed beam was scanned in front of a narrow slit located in the spectrometer dispersion plane. Electrons were then generally recorded by a combination of scintillator and photomultiplier capable of single electron counting.

This process is, however, highly inefficient: while the counts are measured in one channel, all information concerning the other channels is lost. These requirements for improved detection efficiency have led to the consideration of possible solutions for parallel detection of the EELS spectrum. They use a multiarray of detectors, the position, the size and the number of which have to be adapted to the spectral distribution delivered by the spectrometer. In most cases with magnetic type devices, auxiliary electron optics has to be introduced between the spectrometer and the detector so that the dispersion matches the size of the individual detection cells. Different systems have been proposed and tested for recording media, the most widely used solutions at present being the photodiode and the charge-coupled diode arrays described by Shuman & Kruit (1985[link]), Krivanek, Ahn & Keeney (1987[link]), Strauss, Naday, Sherman & Zaluzec (1987[link]), Egerton & Crozier (1987[link]), Berger & McMullan (1989[link]), etc. Fig. 4.3.4.12[link] shows a device, now commercially available from Gatan, that is made of a convenient combination of these different components. This progress in detection has led to significant improvements in many areas of EELS: enhanced detection limits, reduced beam damage in sensitive materials, data of improved quality in terms of both SNR and resolution, and access to time-resolved spectroscopy at the ms time scale (chronospectra). Several of these important consequences are illustrated in the following sections.

[Figure 4.3.4.12]

Figure 4.3.4.12| top | pdf |

A commercial EELS spectrometer designed for parallel detection on a photodiode array. The family of quadrupoles controls the dispersion on the detector level [courtesy of Krivanek et al. (1987[link])].

4.3.4.3. Excitation spectrum of valence electrons

| top | pdf |

Most inelastic interaction of fast incident electrons is with outer atomic shells in atoms, or in solids with valence electrons (referred to as conduction electrons in metals). These involve excitations in the 0–50 eV range, but, in a few cases, interband transitions from low-binding-energy shells may also contribute.

4.3.4.3.1. Volume plasmons

| top | pdf |

The basic concept introduced by the many-body theory in the interacting free electron gas is the volume plasmon. In a condensed material, the assembly of loosely bound electrons behaves as a plasma in which collective oscillations can be induced by a fast external charged particle. These eigenmodes, known as volume plasmons, are longitudinal charge-density fluctuations around the average bulk density in the plasma n [\simeq] 1028 e/m3). Their eigen frequency is given, in the free electron gas, as [\omega_p=\left({n\,e^2\over m\varepsilon_0}\right)^{1/2}. \eqno (4.3.4.8)]The corresponding [\hbar\omega_p] energy, measured in an energy-loss spectrum (see the famous example of the plasmon in aluminium in Fig. 4.3.4.3[link]), is the plasmon energy, for which typical values in a selection of pure solid elements are gathered in Table 4.3.4.2[link]. The accuracies of the measured values depend on several instrumental parameters. Moreover, they are sensitive to the specimen crystalline state and to its degree of purity. Consequently, there exist slight discrepancies between published values. Numbers listed in Table 4.3.4.2[link] must therefore be accepted with a 0.1 eV confidence. Some specific cases require comments: amorphous boron, when prepared by vacuum evaporation, is not a well defined specimen. Carbon exists in several allotropic varieties. The selection of the diamond type in the table is made for direct comparison with the other tetravalent specimens (Si, Ge, Sn). The results for lead (Pb) are still subject to confirmation. The volumic mass density is an important factor (through n) in governing the value of the plasmon energy. It varies with temperature and may be different in the crystal, in the amorphous, and in the liquid phases. In simple metals, the amorphous state is generally less dense than the crystalline one, so that its plasmon energy shifts to lower energies.

Table 4.3.4.2| top | pdf |
Plasmon energies measured (and calculated) for a few simple metals; most data have been extracted from Raether (1980[link])

MonovalentDivalentTrivalentTetravalent
[\hbar\omega_p] (eV)[\hbar\omega_p] (eV)[\hbar\omega_p] (eV)[\hbar\omega_p] (eV)
 Meas.Calc. Meas.Calc. Meas.Calc. Meas.Calc.
Li7.1(8.0)Be18.7(18.4)B22.7(?)C34.0(31)
Na5.7(5.9)Mg10.4(10.9)Al14.95(15.8)Si16.5(16.6)
K3.7(4.3)Ca8.8(8.0)Ga13.8(14.5)Ge16.0(15.6)
Rb3.4(3.9)Sr8.0(7.0)In11.4(12.5)Sn13.7(14.3)
Cs2.9(3.4)Ba7.2(6.7)Sc14.0(12.9)Pb(13)(13.5)

The above description applies only to very small scattering vectors q. In fact, the plasmon energy increases with scattering angle (and with momentum transfer [\hbar{\bf q}]). This dependence is known as the dispersion relation, in which two distinct behaviours can be described:

  • (a) For small momentum transfers [(q\,\lesssim\, q_c)], the dispersion curve is parabolic: [\hbar\omega_p(q)=\hbar\omega_p(0)+{\alpha\hbar^2 \over m_0}q^2. \eqno (4.3.4.9)]The coefficient α has been measured in a number of substances and calculated for the free-electron case in the random phase approximation (Lindhard, 1954[link]); see Table 4.3.4.3[link] for some data. A simple expression for α is [\alpha=\textstyle{3\over5} \displaystyle{E_F \over\hbar \omega_p(0)}, \eqno (4.3.4.10)]where [E_F] is the Fermi energy of the electron gas. More detailed observations indicated that it is not possible to describe the dispersion curve over a large momentum range with a single [q^2] law. In fact, one has to fit the experiment data with different linear or quadratic slopes as a function of q [see values indicated for Al and In in Table 4.3.4.3[link], and Höhberger, Otto & Petri (1975[link])]. Moreover, anisotropy has been found along different q directions in monocrystals (Manzke, 1980[link]). In parallel, refinements have been brought into the calculations by including band-structure effects to deal with the anisotropy of the dispersion relation and with the bending of the experimental curves. Electron–electron correlations have also been considered, which has slightly improved the agreement between calculated and measured values of α (Bross, 1978a[link],b[link]).

    Table 4.3.4.3| top | pdf |
    Experimental and theoretical values for the coefficient α in the plasmon dispersion curve together with estimates of the cut-off wavevector (from Raether, 1980[link])

     Measured αCalculated α[q_c]−1)
    Li0.240.350.9
    Na0.240.320.8
    K0.140.290.8
    Mg0.350.391.0
    Al0.2 (< 0.5 Å−1)  
    0.45 (> 0.5 Å−1)0.431.3
    In 0.40 (< 0.5 Å−1)  
    0.66 (> 0.5 Å−1)  
    Si 0.41  
    0.30.451.1
  • (b) For large momentum transfers, there exists a critical wavevector [q_c], which corresponds to a strong decay of the plasmon mode into single electron–hole pair excitations. This can be calculated using conservation rules in energy and momentum, giving [\hbar\omega_p(0)+\alpha{\hbar^2\over m_0}\,q^2_c = {\hbar^2\over 2m_0}\,(q^2_c+2q_c q_F), \eqno (4.3.4.11)]where [q_F] is the Fermi wavevector. A simple approximation is [q_c\simeq\omega_p/v_F], [v_F] being the Fermi velocity. Single pair excitations can be created by fast incoming electrons in the domain of scattering conditions contained between the two curves: [\left.\matrix{\Delta E_{\max}=\displaystyle{\hbar^2\over 2m_0} (q^2+2qq_F) \cr \Delta E_{\min}=\displaystyle{\hbar^2 \over 2m_0}\,(q^2 - 2qq_F)} \right\}\eqno(4.3.4.12)]shown in Fig. 4.3.4.13[link] . They bracket the curve [\Delta E=\hbar^2q^2/2m_0] corresponding to the transfer of energy and momentum to an isolated free electron. For momentum transfers such as [q\gt q_c], the plasmon mode is heavily damped and it is difficult to distinguish its own specific behaviour from the electron–hole continuum. A few studies, e.g. Batson & Silcox (1983[link]), indicate that the plasmon dispersion curve flattens as it enters the quasiparticle domain and approaches the centre of the continuum close to the free-electron curve. However, not only is the scatter between measurements fairly high, but a satisfactory theory is not yet available [see Schattschneider (1989[link]) for a compilation of data on the subject].

    [Figure 4.3.4.13]

    Figure 4.3.4.13| top | pdf |

    The dispersion curve for the excitation of a plasmon (curve 1) merges into the continuum of individual electron–hole excitations (between curves 2 and 4) for a critical wavevector qc. The intermediate curve (3) corresponds to Compton scattering on a free electron.

Plasmon lifetime is inversely proportional to the energy width of the plasmon peak [\Delta E_{1/2}]. Even for Al, with one of the smallest plasmon energy widths ([\simeq0.5] eV), the lifetime is very short: after about five oscillations, their amplitude is reduced to 1/e. Such a damping demonstrates the strength of the coupling of the collective modes with other processes. Several mechanisms compete for plasmon decay:

  • (a) For small momentum transfer, it is generally attributed to vertical interband transitions. Table 4.3.4.4[link], extracted from Raether (1980[link]), compares a few measured values of [\Delta E_{1/2}(0)], with values calculated using band-structure descriptions.

    Table 4.3.4.4| top | pdf |
    Comparison of measured and calculated values for the halfwidth ΔE1/2(0) of the plasmon line (from Raether, 1980[link])

     Experimental (eV)Theory (eV)
    Li2.22.55
    Na0.30.12
    K0.250.15
    Rb0.60.64
    Cs1.20.96
    Al0.530.43
    Mg0.70.7
    Si3.25.4
    Ge3.13.9
  • (b) For moderate momentum transfer q, a variation law such as [\Delta E_{1/2} (q) = \Delta E_{1/2}(0)+Bq^2+O(q^4) \eqno (4.3.4.13)]has been measured. The q dependence of [\Delta E_{1/2}] is mainly accounted for by non-vertical transitions compatible with the band structure, the number of these transitions increasing with q (Sturm, 1982[link]). Other mechanisms have also been suggested, such as phonons, umklapp processes, scattering on surfaces, etc.

  • (c) For large momentum transfer (i.e. of the order of the critical wavevector [q_c]), the collective modes decay into the strong electron–hole-pair channels already described giving rise to a clear increase of the damping for values of [q\gt q_c].

Within this free-electron-gas description, the differential cross section for the excitation of bulk plasmons by incident electrons of velocity v is given by [{{\rm d} \sigma_p \over{\rm d} \Omega} (\theta) = {\Delta E_p \over2\pi Na_0 m_0 v^2}\ {1\over \theta^2+\theta^2_E}, \eqno (4.3.4.14)]where N is the density of atoms per volume unit and [\theta_E] is the characteristic inelastic angle defined as [\Delta E_p/2E_0] in the non-relativistic description and as [\Delta E_p/\gamma m_0v^2] {with [\gamma=[1-(v^{2}/c^{2})]^{-1/2}]} in the relativistic case. The angular dependence of the differential cross section for plasmon scattering is shown in Fig. 4.3.4.14[link] . The integral cross section up to an angle [\beta_0] is [\sigma_p(\beta_0)=\int\limits^{\beta_0}_0\,\left(\displaystyle{{\rm d}\sigma_p \over {\rm d}\Omega}\right){\rm d}\Omega= \,\displaystyle{\Delta E_p\log(\beta_0/\theta_E) \over Na_0 m_0 v^2}. \eqno (4.3.4.15)]The total plasmon cross section is calculated for [\beta_0=\theta_c=q_c/k_0]. Converted into mean free path, this becomes [\Lambda_p={1\over N\sigma_p} = {a_0\over \theta_E} \, \left(\log{\theta_c\over \theta_E}\right)^{-1} \quad \hbox {(non-relativistic formula)}\semi \eqno (4.3.4.16)]and [\Lambda_p= \,{a_0\gamma m_0v^2 \over \Delta E_p}\, \left(\log{\hbar q_c v \over 1.132\,\hbar\omega_p}\right)^{-1} \quad \hbox{(relativistic formula)}. \eqno (4.3.4.17)]

[Figure 4.3.4.14]

Figure 4.3.4.14| top | pdf |

Measured angular dependence of the differential cross section dσ/dΩ for the 15 eV plasmon loss in Al (dots) compared with a calculated curve by Ferrell (solid curve) and with a sharp cut-off approximation at θc (dashed curved). Also shown along the scattering angle axis, θE = characteristic inelastic angle defined as ΔE/2E0, [\tilde\theta] = median inelastic angle defined by [\int^{\tilde\theta}_{0}({\rm d}\sigma/{\rm d}\Omega)\,{\rm d}\Omega=1/2\int^{\theta_{c}}_{0}({\rm d}\sigma/{\rm d}\Omega)\,{\rm d}\Omega], and [\bar\theta] = average inelastic angle defined by [\bar\theta = \int {\theta}({\rm d}\sigma/{\rm d}\Omega)\,{\rm d}\Omega/\int({\rm d}\sigma/{\rm d}\Omega)\,{\rm d}\Omega] [courtesy of Egerton (1986[link])].

The behaviour of [\Lambda_p] as a function of the primary electron energy is shown in Fig. 4.3.4.15[link] .

[Figure 4.3.4.15]

Figure 4.3.4.15| top | pdf |

Variation of plasmon excitation mean free path Λp as a function of accelerating voltage V in the case of carbon and aluminium [courtesy of Sevely (1985[link])].

4.3.4.3.2. Dielectric description

| top | pdf |

The description of the bulk plasmon in the free-electron gas can be extended to any type of condensed material by introducing the dielectric response function [\varepsilon({\bf q},\omega)], which describes the frequency and wavevector-dependent polarizability of the medium; cf. Daniels et al. (1970[link]). One associates, respectively, the [\varepsilon_T] and [\varepsilon_L] functions with the propagation of transverse and longitudinal EM modes through matter. In the small-q limit, these tend towards the same value: [\lim_{q\rightarrow 0}\, \varepsilon_T({\bf q},\omega) = \lim_{q\rightarrow0}\, \varepsilon_L({\bf q},\omega) = \varepsilon(0,\omega).]As transverse dielectric functions are only used for wavevectors close to zero, the T and L indices can be omitted so that: [\varepsilon_L({\bf q},\omega) = \varepsilon({\bf q},\omega)\quad \hbox{and}\quad \varepsilon_T({\bf q},\omega)=\varepsilon(0,\omega).]The transverse solution corresponds to the normal propagation of EM waves in a medium of dielectric coefficient [\varepsilon(0,\omega)], i.e. to [{q^2c^2 \over \omega^2}- \varepsilon(0,\omega)=0. \eqno (4.3.4.18)]For longitudinal fields, the only solution is [\varepsilon({\bf q},\omega)=0], which is basically the dispersion relation for the bulk plasmon.

In the framework of the Maxwell description of wave propagation in matter, it has been shown by several authors [see, for instance, Ritchie (1957[link])] that the transfer of energy between the beam electron and the electrons in the solid is governed by the magnitude of the energy-loss function [-{\rm Im}[1/\varepsilon({\bf q}, \omega)]], so that [{{\rm d}^2\sigma \over {\rm d}(\Delta E)\,{\rm d}\Omega} = {1\over N(e\pi a_0)^2}\ {1 \over q^2}\,{\rm Im}\, \left(-{1\over \varepsilon({\bf q},\omega)}\right). \eqno (4.3.4.19)]One can deduce (4.3.4.14)[link] by introducing a δ function at energy loss [\omega_p] for the energy-loss function: [{\rm Im}\left(-{1 \over \varepsilon({\bf q}, \omega)}\right) = {\pi \over 2}\,\omega_p\delta(\omega-\omega_p). \eqno (4.3.4.20)]As a consequence of the causality principle, a knowledge of the energy-loss function [-{\rm Im}[1/\varepsilon(\omega)]] over the complete frequency (or energy-loss) range enables one to calculate [{\rm Re}[1/\varepsilon(\omega)]] by Kramers–Kronig analysis: [{\rm Re}{1\over \varepsilon(\omega)}=1-{2\over \pi}{\rm PP}\int\limits^\infty_0{\rm Im} \left(-\displaystyle{1\over \varepsilon(\omega')}\right) \displaystyle{\omega'\over \omega'^2-\omega^2}\,{\rm d}\omega', \eqno (4.3.4.21)]where PP denotes the principal part of the integral. For details of efficient practical evaluation of the above equation, see Johnson (1975[link]).

The dielectric functions can be easily calculated for simple descriptions of the electron gas. In the Drude model, i.e. for a free-electron plasma with a relaxation time τ, the dielectric function at long wavelengths [(q\rightarrow0)] is [\varepsilon(\omega)=\varepsilon_1(\omega) + i \varepsilon_2(\omega)=1-{\omega^2_p\over \omega^2} {1\over (1-{1/i\omega\tau})}, \eqno (4.3.4.22)]with [\omega^2_p=ne^2/m\varepsilon_0], as above. The behaviour of the different functions, the real and imaginary terms in [\varepsilon], and the energy-loss function are shown in Fig. 4.3.4.16[link] . The energy-loss term exhibits a sharp Lorentzian profile centred at [\omega=\omega_p] and of width 1/τ. The narrower and more intense this plasmon peak, the more the involved valence electrons behave like free electrons.

[Figure 4.3.4.16]

Figure 4.3.4.16| top | pdf |

Dielectric and optical functions calculated in the Drude model of a free-electron gas with ħωp = 16 eV and τ = 1.64 × 10−16 s. R is the optical reflection coefficient in normal incidence, i.e. R = [(n − 1)2 + k2]/(n + 1)2 + k2] with n and k the real and imaginary parts of [\sqrt{\epsilon}]. The effective numbers [n_{\rm eff}(\varepsilon_{2})] and [n_{\rm eff}[{\rm Im}(-1/\varepsilon)]] are defined in Subsection 4.3.4.5[link] [courtesy of Daniels et al. (1970[link])].

In the Lorentz model, i.e. for a gas of bound electrons with one or several excitation eigenfrequencies [\omega_i], the dielectric function is [\varepsilon(\omega)=1+\sum_i \displaystyle{n_i e^2\over m\varepsilon_0}\ {\displaystyle{1\over \omega^2_i-\omega^2+i\omega/\tau_i}}, \eqno (4.3.4.23)]where [n_i] denotes the density of electrons oscillating with the frequency [\omega_i] and [\tau_i] is the associated relaxation time. The characteristic [\varepsilon_1], [\varepsilon_2], and [-{\rm Im}(1/\varepsilon)] behaviours are displayed in Fig. 4.3.4.17[link] : a typical `interband' transition (in solid-state terminology) can be revealed as a maximum in the [\varepsilon_2] function, simultaneous with a `plasmon' mode associated with a maximum in the energy-loss function and slightly shifted to higher energies with respect to the annulation conditions of the [\varepsilon_1] function.

[Figure 4.3.4.17]

Figure 4.3.4.17| top | pdf |

Same as previous figure, but for a Lorentz model with an oscillator of eigenfrequency ħω0 = 10 eV and relaxation time τ0 = 6.6 × 10−16 s superposed on the free-electron term [courtesy of Daniels et al. (1970[link])].

In most practical situations, there coexist a family of [n_f] free electrons (with plasma frequency [\omega^2_p=n{_f}e^2/m\varepsilon_0)] and one or several families of [n_i] bound electrons (with eigenfrequencies [\omega_i)]. The influence of bound electrons is to shift the plasma frequency towards lower values if [\omega_i\gt\omega_p] and to higher values if [\omega_i\lt\omega_p]. As a special case, in an insulator, [n_f=0] and all the electrons [(n_i=n)] have a binding energy at least equal to the band gap [E_g\simeq\hbar\omega_i], giving [\omega^2_p=(E_g/\hbar){^2}+ne^2/m\varepsilon_0].

This description constitutes a satisfactory first step into the world of real solids with a complex system of valence and conduction bands between which there is a strong transition rate of individual electrons under the influence of photon or electron beams. In optical spectroscopy, for instance, this transition rate, which governs the absorption coefficient, can be deduced from the calculation of the factor [\varepsilon_2] as [\varepsilon_2(\omega)={A\over \omega^2}|M_{jj'}|^2J_{jj'}(\omega), \eqno (4.3.4.24)]where [M_{jj'}] is the matrix element for the transition from the occupied level j in the valence band to the unoccupied level [j'] in the conduction band, both with the same k value (which means for a vertical transition). [J_{jj'}(\omega)] is the joint density of states (JDOS) with the energy difference [\hbar\omega]. This formula is also valid for small-angle-scattering electron inelastic processes. When parabolic bands are used to represent, respectively, the upper part of the valence band and the lower part of the conduction band in a semiconductor, the dominant JDOS term close to the onset of the interband transitions takes the form [{\rm JDOS}\propto(E-E_g)^{1/2}, \eqno (4.3.4.25)]where [E_g] is the band-gap energy. This concept has been successfully used by Batson (1987[link]) for the detection of gap energy variations between the bulk and the vicinity of a single misfit dislocation in a GaAs specimen. The case of non-vertical transitions involving integration over k-space has also been considered (Fink et al., 1984[link]; Fink & Leising, 1986[link]).

4.3.4.3.3. Real solids

| top | pdf |

The dielectric constants of many solids have been deduced from a number of methods involving either primary photon or electron beams. In optical measurements, one obtains the values of [\varepsilon_1] and [\varepsilon_2] from a Krakers–Kronig analysis of the optical absorption and reflection curves, while in electron energy-loss measurements they are deduced from Kramers–Kronig analysis of energy-loss functions.

Fig. 4.3.4.18[link] shows typical behaviours of the dielectric and energy-loss functions.

  • (a) For a free-electron metal (Al), the Drude model is a satisfactory description with a well defined narrow and intense maximum of [{\rm Im}(-1/\varepsilon)] corresponding to the collective plasmon excitation together with typical conditions [\varepsilon_1\simeq\varepsilon_2\simeq 0] for this energy [\hbar\omega_p]. One also notices a weak interband transition below 2 eV.

    [Figure 4.3.4.18]

    Figure 4.3.4.18| top | pdf |

    Dielectric coefficients [\varepsilon_1], [\varepsilon_2] and [{\rm Im}(-1/\varepsilon)] from a collection of typical real solids: (a) aluminium [courtesy of Raether (1965[link])]; (b) gold [courtesy of Wehenkel (1975[link])]; (c) InSb [courtesy of Zimmermann (1976[link])]; (d) solid xenon at ca 5 K [courtesy of Keil (1968[link])].

  • (b) For transition and noble metals (such as Au), the results strongly deviate from the free-electron gas function as a consequence of intense interband transitions originating mostly from the partially or fully filled d band lying in the vicinity of, or just below, the Fermi level. There is no clear condition for satisfying the criterion of plasma excitation [(\varepsilon=0)] so that the collective modes are strongly damped. However, the higher-lying peak is more generally of a collective nature because it coincides with the exhaustion of all oscillator strengths for interband transitions.

  • (c) Similar arguments can be developed for a semiconductor (InSb) or an insulator (Xe solid). In the first case, one detects a few interband transitions at small energies that do not prevent the occurrence of a pronounced volume plasmon peak rather similar to the free-electron case. The difference between the gap and the plasma energy is so great that the valence electrons behave collectively as an assembly of free particles. In contrast, for wide gap insulators (alkali halides, oxides, solid rare gases), a number of peaks are seen, owing to different interband transitions and exciton peaks. Excitons are quasi-particles consisting of a conduction-band electron and a valence-band hole bound to each other by Coloumb interaction. One observes the existence of a band gap [no excitation either in [\varepsilon_2] or in [{\rm Im}(-1/\varepsilon)] below a given critical value [E_g]] and again the higher-lying peak is generally of a rather collective nature.

Čerenkov radiation is emitted when the velocity v of an electron travelling through a medium exceeds the speed of light for a particular frequency in this medium. The criterion for Čerenkov emission is [\varepsilon_1(\omega)\gt {c^2\over v^2}=\beta^{-2}. \eqno (4.3.4.26)]

In an insulator, [\varepsilon_1] is positive at low energies and can considerably exceed unity, so that a `radiation peak' can be detected in the corresponding energy-loss range (between 2 and 4 eV in Si, Ge, III–V compounds, diamond, [\ldots]); see Von Festenberg (1968[link]), Kröger (1970[link]), and Chen & Silcox (1971[link]). The associated scattering angle, [\theta\simeq\lambda_{\rm el}/\lambda_{\rm ph}\simeq10^{-5}\,{\rm rad}] for high-energy electrons, is very small and this contribution can only be detected using a limited forward-scattering angular acceptance.

In an anisotropic crystal, the dielectric function has the character of a tensor, so that the energy-loss function is expressed as [{\rm Im}\left(-{1 \over \sum\limits_i\sum\limits_j \varepsilon_{ij} q_i q_j}\right) . \eqno (4.3.4.27)]

If it is transformed to its orthogonal principal axes [(\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{33})], and if the q components in this system are [q_1,q_2,q_3], the above expression simplifies to [{\rm Im}\left(-{1 \over \sum\limits_i \varepsilon_{ii} q^2_i}\right) . \eqno (4.3.4.28)]

In a uniaxial crystal, such as a graphite, [\varepsilon_{11}=\varepsilon_{22}=\varepsilon_\perp] and [\varepsilon_{33}=\varepsilon_\|] (i.e. parallel to the c axis): [\varepsilon({\bf q}, \omega)=\varepsilon_\perp\sin^2\theta+\varepsilon_\|\cos^2\theta, \eqno (4.3.4.29)]where [\theta] is the angle between q and the c axis. The spectrum depends on the direction of q, either parallel or perpendicular to the c axis, as shown in Fig. 4.3.4.19[link] from Venghaus (1975[link]). These experimental conditions may be achieved by tilting the graphite layer at 45° with respect to the incident axis, and recording spectra in two directions at [\pm\theta_E] with respect to it (see Fig. 4.3.4.20[link] ).

[Figure 4.3.4.19]

Figure 4.3.4.19| top | pdf |

Dielectric functions in graphite derived from energy losses for Ec (i.e. the electric field vector being in the layer plane) and for E||c [from Daniels et al. (1970[link])]. The dashed line represents data extracted from optical reflectivity measurements [from Taft & Philipp (1965[link])].

[Figure 4.3.4.20]

Figure 4.3.4.20| top | pdf |

Geometric conditions for investigating the anisotropic energy-loss function.

4.3.4.3.4. Surface plasmons

| top | pdf |

Volume plasmons are longitudinal waves of charge density propagating through the bulk of the solid. Similarly, three exist longitudinal waves of charge density travelling along the surface between two media A and B (one may be a vacuum): these are the surface plasmons (Kliewer & Fuchs, 1974[link]). Boundary conditions imply that [\varepsilon_A(\omega)+\varepsilon_B(\omega)=0. \eqno (4.3.4.30)]The corresponding charge-density fluctuation is contained within the (x) boundary plane, z being normal to the surface: [\rho({\bf x}, z)\simeq\cos({\bf q}\cdot{\bf x}-\omega t)\delta(z), \eqno (4.3.4.31)]and the associated electrostatic potential oscillates in space and time as [\varphi({\bf x},z)\,\alpha\cos({\bf q}\cdot{\bf x}-\omega t)\exp(-q|z|). \eqno (4.3.4.32)]The characteristic energy [\omega_s] of this surface mode is estimated in the free electron case as:

In the planar interface case: [\left.\matrix{\omega_s = \displaystyle{\omega_p\over \sqrt 2}\hfill \cr \quad\raise2ex\hbox{(interface metal--vacuum)\semi}\hfill \cr \omega_s = \displaystyle{\omega_p \over (1+\varepsilon_d)^{1/2}}\hfill \cr \quad\hbox{(interface metal--dielectric of constant}\,\, \varepsilon_d); \hfill\cr \omega_s =\displaystyle\left({\omega^2_{p_A}\,+\,\omega^2_{p_B} \over2}\right)^{1/2}\hfill \cr \quad\raise2ex\hbox{(interface metal {\it A}--metal {\it B}).}\hfill} \right\} \eqno (4.3.4.33)]

In the spherical interface case: [(\omega_s)_l= {\omega_p\over[(2l+1)/l]^{1/2}} \eqno(4.3.4.34a)](metal sphere in vacuum – the modes are now quantified following the l quantum number in spherical geometry); [(\omega_s)_l={\omega_p\over [(2l+1)/(l+1)]^{1/2}} \eqno (4.3.4.34b)](spherical void within metal).

Thin-film geometry: [(\omega_s)^\pm={\omega_p\left[{1\pm\exp(-qt) \over 1+\varepsilon_d}\right]^{1/2}} \eqno (4.3.4.35)](metal layer of thickness t embedded in dielectric films of constant [\varepsilon_d]). The two solutions result from the coupling of the oscillations on the two surfaces, the electric field being symmetric for the [(\omega_s)^-] mode and antisymmetric for the [(\omega_s)^+].

In a real solid, the surface plasmon modes are determined by the roots of the equation [\varepsilon(\omega_s)=-1] for vacuum coating [or [\varepsilon(\omega_s)=-\varepsilon_d] for dielectric coating].

The probability of surface-loss excitation [P_s] is mostly governed by the [{\rm Im}\{-1/[1+\varepsilon(\omega)]\}] energy-loss function, which is analogous for surface modes to the bulk [{\rm Im}\{-1/[\varepsilon(\omega)]\}] energy-loss function. In normal incidence, the differential scattering cross section [{\rm d}P_s/\!{\rm d}\Omega] is zero in the forward direction, reaches a maximum for [\theta=\pm\theta_E/3^{1/2}], and decreases as [\theta^{-3}] at large angles. In non-normal incidence, the angular distribution is asymmetrical, goes through a zero value for momentum transfer [\hbar{\bf q}] in a direction perpendicular to the interface, and the total probability increases as [P_s(\varphi)=\,{P_s(O)\over\cos\varphi}, \eqno (4.3.4.36)]where [\varphi] is the incidence angle between the primary beam and the normal to the surface. As a consequence, the probability of producing one (and several) surface losses increases rapidly for grazing incidences.

4.3.4.4. Excitation spectrum of core electrons

| top | pdf |

4.3.4.4.1. Definition and classification of core edges

| top | pdf |

As for any core-electron spectroscopy, EELS spectroscopy at higher energy losses mostly deals with the excitation of well defined atomic electrons. When considering solid specimens, both initial and final states in the transition are actually eigenstates in the solid state. However, the initial wavefunction can be considered as purely atomic for core excitations. As a first consequence, one can classify these transitions as a function of the parameters of atomic physics: Z is the atomic number of the element; n, l, and j = l + s are the quantum numbers describing the subshells from which the electron has been excited. The spectroscopy notation used is shown in Fig. 4.3.4.21[link] . The list of major transitions is displayed as a function of Z and [E_c] in Fig. 4.3.4.22[link] .

[Figure 4.3.4.21]

Figure 4.3.4.21| top | pdf |

Definition of electron shells and transitions involved in core-loss spectroscopy [from Ahn & Krivanek (1982[link])].

[Figure 4.3.4.22]

Figure 4.3.4.22| top | pdf |

Chart of edges encountered in the 50 eV up to 3 keV energy-loss range with symbols identifying the types of shapes [see Ahn & Krivanek (1982[link]) for further comments].

Core excitations appear as edges superimposed, from the threshold energy [E_c] upwards, above a regularly decreasing background. As explained below, the basic matrix element governing the probability of transition is similar for optical absorption spectroscopy and for small-angle-scattering EELS spectroscopy. Consequently, selection rules for dipole transitions define the dominant transitions to be observed, i.e. [l'-l=\Delta l=\pm 1\quad {\rm and}\quad j'-j=\Delta j=0,\pm1. \eqno (4.3.4.37)]This major rule has important consequences for the edge shapes to be observed: approximate behaviours are also shown in Fig. 4.3.4.22[link]. A very useful library of core edges can be found in the EELS atlas (Ahn & Krivanek, 1982[link]), from which we have selected the family of edges gathered in Fig. 4.3.4.23[link] . They display the following typical profiles:

  • (i) K edges for low-Z elements [(3\le Z\le 14)]. The carbon K edge occurring at 284 eV is a nice example with a clear hydrogenic or saw-tooth profile and fine structures on threshold depending on the local environment (amorphous, graphite, diamond, organic molecules, [\ldots]); see Isaacson (1972a[link],b[link]).

    [Figure 4.3.4.23]

    Figure 4.3.4.23| top | pdf |

    A selection of typical profiles (K, L2,3, M4,5, and N2,3) illustrating the most important behaviours encountered on major edges through the Periodic Table. A few edges are displayed prior to and others after background stripping. [Data extracted from Ahn & Krivanek (1982[link]).]

  • (ii) [L_{\it 2,3}] edges for medium-Z elements [(11\,\lesssim\, Z\,\lesssim\,45)]. The [L_{2,3}] edges exhibit different shapes when the outer occupied shell changes in nature: a delayed profile is observed as long as the first vacant d states are located, along the energy scale, rather above the Fermi level (sulfur case). When these d states coincide with the first accessible levels, sharp peaks, generally known as `white lines', appear at threshold (this is the case for transition elements with the Fermi level inside the d band). These lines are generally split by the spin-orbit term on the initial level into [2p^{3/2}] and [2p^{1/2}] (or [L_3] and [L_2]) terms. For higher-Z elements, the bound d levels are fully occupied, and no longer contribute as host orbitals for the excited 2p electrons. One finds again a more traditional hydrogenic profile (such as for the germanium case).

  • (iii) [M_{\it 4,5}] edges for heavier-Z elements [(37\,\lesssim\, Z\, \lesssim\,83)]. A sequence of [M_{4,5}] edge profiles, rather similar to [L_{2,3}] edges, is observed, the difference being that one then investigates the density of the final f states. White lines can also be detected when the f levels lie in the neighbourhood of the Fermi level, e.g. for rare-earth elements.

    The deeper accessible signals, for incident electrons in the range of 100–400 kV primary voltage, lie between 2500 and 3000 eV, which corresponds roughly to the middle of the second row of transition elements (Mo–Ru) for the [L_{2,3}] edge and to the very heavy metals (Pb–Bi) for the [M_{4,5}] edge.

  • (iv) A final example in Fig. 4.3.4.23[link] concerns one of these resonant peaks associated with the excitation of levels just below the conduction band. These are features with high intensity of the same order or even superior to that of plasmons of conduction band electrons previously described in Subsection 4.3.4.3[link]. It occurs with the [M_{2,3}] level for the first transition series, with the [N_{2,3}] level for the second series (for example, strontium in Fig. 4.3.4.23[link]) or with the [O_{2,3}] level for the third series, including the rare-earth elements. The shape varies gradually from a plasmon-like peak with a short lifetime to an asymmetric Fano-type profile, a consequence of the coupling between discrete and continuum final states of the same energy (Fano, 1961[link]).

4.3.4.4.2. Bethe theory for inelastic scattering by an isolated atom (Bethe, 1930[link]; Inokuti, 1971[link]; Inokuti, Itikawa & Turner, 1978[link], 1979[link])

| top | pdf |

As a consequence of the atomic nature of the excited wavefunction in core-loss spectroscopy, the first step involves deriving a useful theoretical expression for inelastic scattering by an isolated atom. The differential cross section for an electron of wavevector k to be scattered into a final plane wave of vector k′, while promoting one atomic electron from [\psi_0] to [\psi_n], is given in a one-electron excitation description by [{{\rm d} \sigma_n \over {\rm d}\Omega\,{\rm d}(\Delta E)}=\left({m_0\over 2\pi\hbar^2}\right)^2\ {k'\over k}|\langle\psi_n{\bf k}'|V({\bf r})|\psi_0{\bf k}\rangle|^2; \eqno (4.3.4.38)]see, for instance, Landau & Lifchitz (1966[link]) and Mott & Massey (1952[link]). The potential V(r) corresponds to the Coulomb interaction with all charges (both in the nucleus and in the electron cloud) of the atom. The momentum change in the scattering event is [\hbar{\bf q}=\hbar({\bf k}-{\bf k}')]. The final-state wavefunction is normalized per unit energy range. The orthogonality between initial- and final-state wavefunctions restricts the inelastic scattering to the only interactions with atomic electrons: [{{\rm d}\sigma_n\over {\rm d}\Omega\,{\rm d}(\Delta E)} = {4\gamma^2 \over a^2_0q^4}\,{k'\over k}\,| {\scr E}_n({\bf q},\Delta E)|^2. \eqno (4.3.4.39)]

The first part of the above expression has the form of Rutherford scattering. γ is introduced to deal, to a first approximation, with relativistic effects. The ratio k′/k is generally assumed to be equal to unity. This kinematic scattering factor is modified by the second term, or matrix element, which describes the response of the atomic electrons: [{\scr E}_n({\bf q}, \Delta E)=\bigg\langle\psi_n\bigg|\textstyle\sum\limits_j\exp (i{\bf q}\cdot{\bf r}_j)\bigg|\psi_0\bigg\rangle, \eqno (4.3.4.40)]where the sum extends over all atomic electrons at positions [{\bf r}_j]. The dimensionless quantity is known as the inelastic form factor.

For a more direct comparison with photoabsorption measurements, one introduces the generalized oscillator strength (GOS) as [{{\rm d} f({\bf q},\Delta E)\over{\rm d}(\Delta E)}={\Delta E\over R}\ {|{\scr E}_n({\bf q}, \Delta E)|^2\over (qa_0)^2} \eqno (4.3.4.41)]for transitions towards final states [\psi_\varepsilon] in the continuum [ΔE is then the energy difference between the core level and the final state of kinetic energy [\varepsilon] above the Fermi level, scaled in energy to the Rydberg energy (R)]. Also, [f_n({\bf q}) = {E_n\over R}\ {|{\scr E}_n({\bf q})|^2 \over (qa_0)^2} \eqno (4.3.4.42)]for transition towards bound states. In this case, [E_n] is the energy difference between the two states involved.

The generalized oscillator strength is a function of both the energy ΔE and the momentum [\hbar{\bf q}] transferred to the atom. It is displayed as a three-dimensional surface known as the Bethe surface (Fig. 4.3.4.24[link] ), which embodies all information concerning the inelastic scattering of charged particles by atoms. The angular dependence of the cross section is proportional to [{1\over q^2}\ {{\rm d} f({\bf q}, \Delta E)\over {\rm d}(\Delta E)}]at a given energy loss ΔE.

[Figure 4.3.4.24]

Figure 4.3.4.24| top | pdf |

Bethe surface for K-shell ionization, calculated using a hydrogenic model. The generalized oscillator strength is zero for energy loss E below the threshold EK. The horizontal coordinate is related to scattering angle through q [from Egerton (1979[link])].

In the small-angle limit [(qr_c\ll1], where [r_c] is the average radius of the initial orbital), the GOS reduces to the optical oscillator strength [{{\rm d} f({\bf q},\Delta E)\over {\rm d}(\Delta E)} \,\rightarrow{{\rm d} f(0,\Delta E)\over {\rm d}(\Delta E)}]and [{\scr E}_n({\bf q}, \Delta E) \rightarrow {\scr E}_n(0,\Delta E) = q^2\bigg|\bigg\langle\psi_n\bigg|\textstyle\sum\limits_j{\bf u}\cdot {\bf r}_j\bigg|\psi_0\bigg\rangle\bigg|^2, \eqno (4.3.4.43)]where u is the unit vector in the q direction. When one is concerned with a given orbital excitation, the sum over [{\bf r}_j] reduces to a single term r for this electron. With some elementary calculations, the resulting cross section is [{{\rm d}^2\sigma\over {\rm d}\Omega\,{\rm d}(\Delta E)} = {4\gamma^2 R \over \Delta E\, k^2}\, {1\over \theta^2+\theta^2_E}\, {{\rm d} f(0,\Delta E) \over {\rm d}(\Delta E)}. \eqno (4.3.4.44)]

The major angular dependence is contained, as in the low-loss domain, in the Lorentzian factor [(\theta^2+\theta^2_E)^{-1}], with the characteristic inelastic angle [\theta_E] being again equal to [\Delta E/\gamma m_0v^2]. Over this reduced scattering-angle domain, known as the dipole region, the GOS is approximately constant and the inner-shell EELS spectrum is directly proportional to the photoabsorption cross section [\sigma_{\rm opt}], whose data can be used to test the results of single-atom calculations. For larger scattering angles, Fig. 4.3.4.24[link] exhibits two distinct behaviours for energy losses just above the edge (df/dΔE drops regularly to zero), and for energy losses much greater than the core-edge threshold. In the latter case, the oscillator strength is mostly concentrated in the Bethe ridge, the maximum of which occurs for: [\left. {\eqalign{ (qa_0)^2 &= {\Delta E\over R}\quad\hbox{(non-relativistic formula),} \cr(qa_0)^2 &= {\Delta E\over R\,}{(\Delta E)^2 \over 2m_0c^2R}\quad \hbox{(relativistic formula)}.}} \right\} \eqno (4.3.4.45)]

This contribution at large scattering angles is equivalent to direct knock-on collisions of free electrons, i.e. to the curve [\Delta E=\hbar^2q^2/2m_0] lying in the middle of the valence-electron–hole excitations continuum (see Fig. 4.3.4.13[link]). The non-zero width of the Bethe ridge can be used as an electron Compton profile to analyse the momentum distribution of the atomic electrons [see also §4.3.4.4.4(c)[link]].

The energy dependence of the cross section, responsible for the various edge shapes discussed in §4.3.4.4.1[link], is governed by [{1\over \Delta E}\ {{\rm d} f({\bf q}, \Delta E)\over {\rm d}(\Delta E)},]i.e. it corresponds to sections through the Bethe surface at constant q. Within the general theory described above, various models have been developed for practical calculations of energy differential cross sections.

The hydrogenic model due to Egerton (1979[link]) is an extension of the quantum-mechanical calculations for a hydrogen atom to inner-shell electron excitations in an atom Z by introduction of some useful parametrization (effective nuclear charge, effective threshold energy). It is applied in practice for K and [L_{2,3}] shells.

In the Hartree–Slater (or Dirac–Slater) description, one calculates the final continuum-state wavefunction in a self-consistent central field atomic potential (Leapman, Rez & Mayers, 1980[link]; Rez, 1989[link]). The radial dependence of these wavefunctions is given by the solution of a Schrödinger equation with an effective potential: [V_{\rm eff}(r)=V(r)+{l'(l'+1)\,\hbar^2\over 2m_0r^2}, \eqno (4.3.4.46)]where [[l'(l'+1)\hbar^2]/2m_0r^2] is the centrifugal potential, which is important for explaining the occurrence of delayed maxima in spectra involving final states of higher [l']. This approach is now useful for any major [K, L_{2,3}, M_{4,5}, \ldots] edge, as illustrated by Ahn & Rez (1985[link]) and more specifically in rare-earth elements by Manoubi, Rez & Colliex (1989[link]).

These differential cross sections can be integrated over the relevant angular and energy domains to provide data comparable with experimental measurements. In practice, one records the energy spectral distribution of electrons scattered into all angles up to the acceptance value β of the collection aperture. The integration has therefore to be made from [q_{\rm min}\simeq k\theta_E] for the zero scattering-angle limit, up to [q_{\rm max}\simeq k\beta]. Fig. 4.3.4.25[link] shows how such calculated profiles can be used for fitting experimental data.

[Figure 4.3.4.25]

Figure 4.3.4.25| top | pdf |

A novel technique for simulating an energy-loss spectrum with two distinct edges as a superposition of theoretical contributions (hydrogenic saw-tooth for O K, Lorentzian white lines and delayed continuum for Fe L2,3 calculated with the Hartree–Slater description). The best fit between the experimental and the simulated spectra is shown; it can be used to evaluate the relative concentration of the two elements [see Manoubi et al. (1990[link])].

Setting β = π [or equal to an effective upper limit [\theta_{\rm max}\simeq(\Delta E/E_0)^{1/2}] corresponding to the criterion [q_{\rm max} r\simeq1]], the integral cross section is the total cross section for the excitation of a given core level. These ionization cross sections are required for quantification in all analytical techniques using core-level excitations and de-excitations, such as EELS, Auger electron spectroscopy, and X-ray microanalysis (see Powell, 1976[link], 1984[link]). A convenient way of comparing total cross sections is to rewrite the Bethe asymptotic cross section as [\sigma_{nl} E^2_{nl}=6.51\times10^{-14}\,Z_{nl} b_{nl}{\log(C_{nl}U_{nl}) \over U_{nl}}, \eqno (4.3.4.47)]when the result is given in cm2, [\sigma_{nl}] is the total cross section per atom or molecule or ionization of the nl subshell with edge energy [E_{nl}], [Z_{nl}] is the number of electrons on the nl level, and [U_{nl}] is the overvoltage defined as [E_0/E_{nl}]. [b_{nl}] and [c_{nl}] are two parameters representing phenomenologically the average number of electrons involved in the excitation and their average energy loss (one finds for the major K and [L_{2,3}] edges [b_{nl}\simeq ] 0.6–0.9 and [c_{nl}\simeq] 0.5–0.7). These values are in practice estimated from plots of curves [\sigma_{nl}E^2_{nl}U_{nl}] as a function of [\log U_{nl}], known as Fano plots. From least-squares fits to linear regions, one can evaluate the values of [b_{nl}] (slope of the curves) and of [\log c_{nl}] (coordinate at the origin) for various elements and shells. However, it has been shown more recently (Powell, 1989[link]) that the interpretation of Fano plots is not always simple, since they typically display two linear regions. It is only in the linear region for the higher incident energies that the plots show the asymptotic Bethe dependence with the slope directly related to the optical data. At lower incident energies, another linear region is found with a slope typically 10–20% greater. Despite great progress over the last two decades, more cross-section data, either theoretical or experimental, are still required to improve to the 1% level the accuracy in all techniques using these signals.

4.3.4.4.3. Solid-state effects

| top | pdf |

The characteristic core edges recorded from solid specimens display complex structures different from those described in atomic terms. Moreover, their detailed spectral distributions depend on the type of compound in which the element is present (Leapman, Grunes & Fejes, 1982[link]; Grunes, Leapman, Wilker, Hoffmann & Kunz, 1982[link]; Colliex, Manoubi, Gasgnier & Brown, 1985[link]). Modifications induced by the local solid-state environment concern (see Fig. 4.3.4.26[link] ) the following:

  • (a) The threshold (or edge itself), which may vary in position, slope, and associated fine structures. From photoelectron spectroscopies (UPS, XPS), an edge displacement along the energy scale is known as a `chemical shift': it is due to a shift in the energy of the initial level as a consequence of the atomic potential modifications induced by valence-electron charge transfer (e.g. from metal to oxide). EELS is actually a two-level spectroscopy and the observed changes at edge onset concern both initial and final states. Consequently, measured shifts are due to a combination of core-level energy shift with bandgap and exciton creation. Some important shifts have been measured in EELS such as:

    • – carbon K: 284 to 288 eV from graphite to diamond;

      [Figure 4.3.4.26]

      Figure 4.3.4.26| top | pdf |

      Definition of the different fine structures visible on a core-loss edge.

    • – aluminium [L_{2,3}]: 73 to 77 eV from metal to Al2O3;

    • – silicon [L_{2,3}]: 99.5 to 106 eV from Si to SiO2.

    However, `chemical shift' constitutes a simplified description of the more complex changes that may occur at a given threshold in various compounds. It assumes a rigid translation of the edge, but in most cases the onset changes in shape and there are no simple features to correlate through the different spectra. This remark is more relevant with the increased energy resolution that is now available. With a sub-eV value, extra peaks or splittings can frequently be detected on edges that exhibit simple shapes when recorded at lower resolution. Among others, the [L_{32}] white lines in transition metals show different behaviours when involved in various environments:

    • – crystal-field-induced splitting for each line in the oxides Sc2O3, TiO2 when compared with the metal (see Fig. 4.3.4.27[link] ).

      [Figure 4.3.4.27]

      Figure 4.3.4.27| top | pdf |

      High-energy resolution spectra on the L2,3 titanium edge from two phases (rutile and anatase) of TiO2. Each atomic line L3 and L2 is split into two components A and B by crystal-field effects. The new level of splitting B1B2 that distinguishes the two spectra is not yet understood. In Ti metal, the L3 and L2 lines are not split by structural effects [courtesy of Brydson et al. (1989[link])].

    • – relative change in [L_3/L_2] intensity ratio between different ionic species [most important when the occupancy degree n for the d band is of the order of 5, i.e. around the middle of the transition series, e.g. Mn and Fe oxides; see for instance, Rask, Miner & Buseck (1987[link]) and Rao, Thomas, Williams & Sparrow (1984[link])].

    • – presence of a narrow white line instead of a hydrogenic profile when the electron transfer from the metal to its ligand induces the existence of vacant d states at the Fermi level (CuO compared with Cu, see Fig. 4.3.4.28[link] ).

      [Figure 4.3.4.28]

      Figure 4.3.4.28| top | pdf |

      The dramatic change in near-edge fine structures on the L3 and L2 lines of Cu, from Cu metal to CuO. The appearance of the intense narrow white lines is due to the existence of vacant d states close to the Fermi level [courtesy of Leapman et al. (1982[link])].

    .

  • (b) The near-edge fine structures (ELNES), which extend over the first 20 or 30 eV above threshold (Taftø & Zhu, 1982[link]; Colliex et al., 1985[link]). These are very similar to XANES structures in X-ray photoabsorption spectroscopy: they mostly reflect the spectral distribution of vacant accessible levels and are consequently very sensitive to site symmetry and charge transfer. Several approaches have been proposed to interpret them. A molecular-orbital description [e.g. Fischer (1970[link]) or Tossell, Vaughan & Johnson (1974[link])] classifies the energy levels, both occupied and unoccupied, for clusters comprising the central excited ion and its first shell of neighbours. Its major success lies in the interpretation of level splitting on edges.

    A one-electron band calculation constitutes a second step with noticeable successes in the case of metals (Müller, Jepsen & Wilkins, 1982[link]). Core-loss spectroscopy, however, imposes specific conditions on the accessible final state: the overlap with the initial core wavefunction involves a projection in space on the site of the core hole, and the dominant dipole selection rules are responsible for angular symmetry selection. When extending the band-structure calculations to energy states rather high above the Fermi level, more elaborate methods, combining the conceptual advantage of the tight-binding method with the accuracy of ab initio pseudopotential calculations, have been developed (Janssen & Sankey, 1987[link]). This self-consistent pseudo-atomic orbital band calculation has been used to describe ELNES structures on different covalent solids (Weng, Rez & Ma, 1989[link]; Weng, Rez & Sankey, 1989[link]).

    The most promising description at present is the multiple scattering method developed for X-ray absorption spectra by Durham, Pendry & Hodges (1981[link]) and Vvedensky, Saldin & Pendry (1985[link]). It interprets the spectral modulations, in the energy range 10 to 30 eV above the edge, as due to interference effects, on the excited site, between all waves back-scattered by the neighbouring atoms (see Fig. 4.3.4.29[link] ). This multiple scattering description in real space should in principle converge towards the local point of view in the solid-state band model, calculated in reciprocal space (Heine, 1980[link]). As an example investigated by EELS, the oxygen and magnesium K edges in MgO have been calculated by Lindner, Sauer, Engel & Kambe (1986[link]) and by Weng & Rez (1989[link]) for increased numbers of coordination shells and different potential models (representing variable ionicities). Fig. 4.3.4.30[link] shows the comparison of an experimental spectrum with such a calculation. Another useful idea emerging from this model is the simple relation, expressed by Bianconi, Fritsch, Calas & Petiau (1985[link]): [(E_r-E_b)\,d\,^2=C, \eqno (4.3.4.48)]where [E_r] is the energy position of a given resonance peak attributed to multiple scattering from a given shell of neighbours (d is the distance to this shell), and [E_b] is a reference energy close to the threshold energy. This simple law, advertised as the way of measuring `bond lengths with a ruler' (Stohr, Sette & Johnson, 1984[link]), seems to be quite useful when comparing similar structures (Lytle, Greegor & Panson, 1988[link]).

    [Figure 4.3.4.29]

    Figure 4.3.4.29| top | pdf |

    Illustration of the single and multiple scattering effects used to describe the final wavefunction on the excited site. This theory is very fruitful for understanding and interpreting EXELFS and ELNES features, respectively equivalent to EXAFS and XANES encountered in X-ray absorption spectra.

    [Figure 4.3.4.30]

    Figure 4.3.4.30| top | pdf |

    Comparison of the experimental O K edge (solid line) with calculated profiles in the multiple scattering approach [courtesy of Weng & Rez (1989[link])].

    Other effects, generally described as multi-electron contributions, cannot be systematically omitted. They all deal with the presence of a core hole on the excited atom and with its influence on the distribution of accessible electron states. Of particular importance are the intra-atomic configuration interactions for white lines, as explained by Zaanen, Sawatzky, Fink, Speier & Fuggle (1985[link]) for [L_3] and [L_2] lines in transition metals and by Thole, van der Laan, Fuggle, Sawatzky, Karnatak & Esteva (1985[link]) for [M_{4,5}] lines in rare-earth elements.

  • (c) The extended fine structures (EXELFS) are equivalent to the well known EXAFS oscillations in X-ray absorption spectroscopy (Sayers, Stern & Lytle, 1971[link]; Teo & Joy, 1981[link]). Within the previously described multiscattering theory, it corresponds to the first step, the single scattering regime (see Fig. 4.3.4.29a[link]). These extended oscillations are due to the interference on the excited atom between the outgoing excited electron wavefunction and its components reflected on the nearest-neighbour atoms. This interference is destructive or constructive depending on the ratio between the return path length [2r_i] (where [r_i] is the radial distance with the ith shell of backscattering atoms) and the wavelength of the excited electron. Fourier analysis of EXELFS structures, from 50 eV above the ionization threshold, gives the radial distribution function around this specific site. This is mostly a technique for measuring the local short-range order. Its accuracy has been established to be better than 0.1 Å on nearest-neighbour distances with test specimens, but such performance requires correction procedures for phase shifts. The method therefore seems more promising for measuring changes in interatomic distances in specimens of the same chemical composition. The major advantage of EXELFS is its applicability for small specimen volumes that can moreover be characterized by other high-resolution electron-microscopy modes. It is also possible to investigate bond lengths in different directions by selecting the scattering angle of the transmitted electron and the specimen orientation (Disko, Krivanek & Rez, 1982[link]). On the other hand, the major limitations of EXELFS are due to the dose requirements for sufficient SNR and to the fact that the accessible excitation range is limited to edges below ∼2–3 keV and to oscillation domains ∼200 or 300 eV at the maximum.

4.3.4.4.4. Applications for core-loss spectroscopy

| top | pdf |

  • (a) Quantitative microanalysis. The main field of application of core-loss EELS spectroscopy has been its use for local chemical analysis (Maher, 1979[link]; Colliex, 1984[link]; Egerton, 1978[link], 1986[link]). The occurrence of an edge superimposed on the regularly decreasing background of an EELS spectrum is an indication of the presence of the associated element within the analysed volume.

    Methods have been developed to extract quantitative composition information from these spectra. The basic idea lies in the linear relationship between the measured signal (S) and the number (N) of atoms responsible for it (this is valid in the single core-loss domain for specimen thickness, i.e. up to several micrometres): [S=I_0N\sigma, \eqno (4.3.4.49)]where [I_0] is the incident-beam intensity and σ the relevant excitation cross section in the experimental conditions used, and N is the number of atoms per unit area of specimen. As a satisfactory approximation for taking into account multiple scattering events (either elastic or inelastic in the low-loss region), Egerton (1978[link]) has proposed that equation (4.3.4.49)[link] be rewritten: [S(\beta,\Delta)=I_0(\beta,\Delta)N\sigma(\beta,\Delta),\eqno (4.3.4.50)]where all quantities correspond to a limited angle of collection β and to a limited integration window Δ (eV) above threshold for signal measurement.

    A major problem is the evaluation of the signal itself after background subtraction. The method generally used, demonstrated in Fig. 4.3.4.31[link] , involves extrapolating a modelized background profile below the core loss of interest. Following Egerton (1978[link]), the choice of a power law [B(\Delta E)=A\Delta E^{-R}] is satisfactory in many cases, and the signal is then defined as [S(\Delta)=\textstyle\int\limits^{E_c+\Delta}_{E_c}[I(\Delta E)-B(\Delta E)]\,{\rm d}(\Delta E). \eqno (4.3.4.51)]Numerical methods have been developed to perform this process with a well controlled analysis of statistical errors (Trebbia, 1988[link]).

    [Figure 4.3.4.31]

    Figure 4.3.4.31| top | pdf |

    The conventional method of background subtraction for the evaluation of the characteristic signals SO K and SFe L2,3 used for quantitative elemental analysis (to be compared with the approach described in Fig. 4.3.4.25[link]).

    In many cases, one is interested in elemental ratios; consequently, the useful formula becomes [{N_A\over N_B}= {S_A(\beta,\Delta) \over S_B(\beta,\Delta)} \, {\sigma_B(\beta,\Delta) \over \sigma_A(\beta,\Delta)}. \eqno (4.3.4.52)]This can be used to determine the [N_A/N_B] ratio without standards, if the cross-section ratio [\sigma_B/\sigma_A] (also called the [k_{AB}] factor) is previously known: accuracy at present is limited to ±5% for most edges. But it is also possible to extract from this formula the cross-section (or k factor) experimental values for comparison with the calculated ones, if the local stoichiometry of the specimen is satisfactorily known [Hofer, Golob & Brunegger (1988[link]) and Manoubi et al. (1989[link]) for the [M_{4,5}] edges].

    Improvements have recently been made in order to reduce the different sources of errors. For medium-thickness specimens (i.e. for [t\simeq\lambda_p] where [\lambda_P] is the mean free path for plasmon excitation), deconvolution techniques are introduced for a safer determination of the signal. When the background extrapolation method cannot be used, i.e. when edges overlap noticeably, new approaches (such as illustrated in Fig. 4.3.4.25[link]) try to determine the best simulated profile over the whole energy-loss range of interest. It requires several contributions, either deduced from previous measurements on standard (Shuman & Somlyo, 1987[link]; Leapman & Swyt, 1988[link]), or from reasonable mathematical models with different contributions for dealing with transitions towards bound states or continuum states (Manoubi, Tence, Walls & Colliex, 1990[link]).

  • (b) Detection limits. This method has been shown to be the most successful of all EM techniques in terms of ultimate mass sensitivity and associated spatial resolution. This is due to the strong probability of excitation for the signals of interest (primary ionization event) and to the good localization of the characteristic even within the irradiated volume of material. Variations in composition have been recorded at a subnanometre level (Scheinfein & Isaacson, 1986[link]; Colliex, 1985[link]; Colliex, Maurice & Ugarte, 1989[link]). In terms of ultimate sensitivity (minimum number of identified atoms), the range of a few tens of atoms (∼10−21 g) has been reached as early as about 15 years ago in the pioneering work of Isaacson & Johnson (1975[link]). Very recently, a level close to the single-atom identification has been demonstrated (Mory & Colliex, 1989[link]). A major obstacle is then often radiation damage, and consequent specimen modification induced by the very intense primary dose required for obtaining sufficient SNR values.

    On the other hand, the EELS technique has long been less fruitful for investigating low concentrations of impurities within a matrix. This is a consequence of the very high intrinsic background under the edges of interest: in most applications, the atomic concentration detection limit was in the range 10−3 to 10−2. The introduction of satisfactory methods for processing the systematic sources of noise in spectra acquired with parallel detection devices (Shuman & Kruit, 1985[link]) has greatly modified this situation. One can now take full benefit from the very high number of counts thus recorded within a reasonable time (106 to 107 counts per channel) and detection of calcium of the order of 10−5 atomic concentration in an organic matrix has been demonstrated by Shuman & Somlyo (1987[link]).

  • (c) Crystallographic information in EELS. Although not particularly suited to solving crystal-structure problems, EELS carries structural information at different levels:

    In a crystalline specimen, one detects orientation effects on the intensity of core-loss edges. This is a consequence of the channelling of the Bloch standing waves as a function of the crystal orientation This observation requires well collimated angular conditions and inelastic localization better than the lattice spacing responsible for elastic diffraction. When these criteria apply, the changes in core-loss excitations with crystallographic orientation can be used to determine the crystallographic site of specific atoms (Tafto & Krivanek, 1982[link]). An equivalent method, known as ALCHEMI (atom location by channelling enhanced microanalysis), which involves measuring the change of X-ray production as a function of crystal orientation, has been applied to the determination of the preferential site for substitutional impurities in many crystals (Spence & Tafto, 1983[link]).

    Energy-filtered electron-diffraction patterns of core-loss edges could reveal the symmetry of the local coordination of selected atomic species rather than the symmetry of the crystal as a whole. This type of information should be compared with ELNES data (Spence, 1981[link]).

    At large scattering angles, and for energy losses far beyond the excitation threshold, the Bethe ridge [or electron Compton profile (see §§4.3.4.3.3[link] and 4.3.4.4.2[link])] constitutes a major feature easily observable in energy-filtered diffraction patterns (Reimer & Rennekamp, 1989[link]). The width of this feature is associated with the momentum distribution of the excited electrons (Williams & Bourdillon, 1982[link]). Quantitative analysis of the data is similar to the Fourier method for EXELFS oscillations. After subtracting the background contribution, the spectrum is converted into momentum space and Fourier transformed to obtain the reciprocal form factor B(r): it is the autocorrelation of the ground-state wavefunction in a direction specified by the scattering vector q. This technique of data analysis to study electron momentum densities is directly developed from high-energy photon-scattering experiments (Williams, Sparrow & Egerton, 1984[link]).

4.3.4.5. Conclusions

| top | pdf |

Since the early work of Hillier & Baker (1944[link]), EELS spectroscopy has established itself as a prominent technique for investigating various aspects of the electronic structure of solids. As a fundamental application, it is now possible to construct a self-consistent set of data for a substance by combination of optical or energy-loss functions over a wide spectral range (Altarelli & Smith, 1974[link]; Shiles, Sazaki, Inokuti & Smith, 1980[link]: Hagemann, Gudat & Kunz, 1975[link]). Sum-rule tests provide useful guidance in selecting the best values from the available measurements. The Thomas–Reiche–Kuhn f-sum rule can be expressed in a number of equivalent forms, which all require the knowledge of a function [[\varepsilon_2,\kappa, {\rm Im}(-1/\varepsilon)]] describing dissipative processes over all frequencies: [\left. \eqalign{\int\limits^\infty_0\omega\varepsilon_2(\omega)\,{\rm d}\omega &= {\pi\over 2}\omega^2_p, \cr \int\limits^\infty_0\omega\kappa(\omega)\,{\rm d}\omega &= {\pi\over4}\omega^2_p, \cr \int\limits^\infty_0\omega\left(-\displaystyle{1\over\varepsilon(\omega)}\right){\rm d}\omega &={\pi\over 2}\omega^2_p.}\right\} \eqno (4.3.4.53)]One defines the effective number density [n_{\rm eff}] of electrons contributing to these various absorption processes at an energy [\hbar\omega] by the partial f sums: [\left. \eqalign{ n_{\rm eff}(\omega)|_{\varepsilon_2} &= {m_0\over 2\pi^2e^2} \int\limits^\omega_0\, \omega'\varepsilon_2(\omega')\,{\rm d}\omega', \cr n_{\rm eff}(\omega)|_\kappa &= {m_0\over \pi^2e^2}\int\limits^\omega_0\, \omega'\kappa(\omega')\,{\rm d}\omega', \cr n_{\rm eff}(\omega)|_{-1/\varepsilon} &={m_0 \over 2\pi^2e^2}\int\limits^\omega_0\, \omega'\left[-\displaystyle{1\over \varepsilon(\omega')}\right]{\rm d}\omega'.}\right\} \eqno (4.3.4.54)]As an example, the values of [n_{\rm eff}(\omega)] from the infrared to beyond the K-shell excitation energy for metallic aluminium are shown in Fig. 4.3.4.32[link] . In this case, the conduction and core-electron contributions are well separated. One sees that the excitation of conduction electrons is virtually completed above the plasmon resonance only, but the different behaviour of the integrands below this value is a consequence of the fact that they describe different properties of matter: [\varepsilon_2(\omega)] is a measure of the rate of energy dissipation from an electromagnetic wave, [\kappa(\omega)] describes the decrease in amplitude of the wave, and [{\rm Im}[-\varepsilon^{-1}(\omega)]] is related to the energy loss of a fast electron. The above curve shows some exchange of oscillator strength from core to valence electrons, arising from the Pauli principle, which forbids transitions to occupied states for the deeper electrons.

[Figure 4.3.4.32]

Figure 4.3.4.32| top | pdf |

Values of neff for metallic aluminium based on composite optical data [courtesy of Shiles et al. (1980[link])].

More practically, in the microanalytical domain, the combination of high performance attained by using EELS with parallel detection (i.e. energy resolution below 1 eV, spatial resolution below 1 nm, minimum concentration below 10−3 atom, time resolution below 10 ms) makes it a unique tool for studying local electronic properties in solid specimens.

4.3.5. Oriented texture patterns

| top | pdf |
B. B. Zvyaginn

4.3.5.1. Texture patterns

| top | pdf |

The formation of textures in specimens for diffraction experiments is a natural consequence of the tendency for crystals of a highly anisotropic shape to deposit with a preferred orientation. The corresponding diffraction patterns may present some special advantages for the solution of problems of phase and structure analysis. Lamellar textures composed of crystals with the most fully developed face parallel to a plane but randomly rotated about its normal are specially important. The ease of interpretation of patterns of such textures when oriented obliquely to the primary beam (OT patterns) is a valuable property of the electron-diffraction method (Pinsker, 1953[link]; Vainshtein, 1964[link]; Zvyagin, 1967[link]; Zvyagin, Vrublevskaya, Zhukhlistov, Sidorenko, Soboleva & Fedotov, 1979[link]). Texture patterns (T patterns) are also useful in X-ray diffraction (Krinary, 1975[link]; Mamy & Gaultier, 1976[link]; Plançon, Rousseaux, Tchoubar, Tchoubar, Krinari & Drits, 1982[link]).

4.3.5.2. Lattice plane oriented perpendicular to a direction (lamellar texture)

| top | pdf |

If in the plane of orientation (the texture basis) the crystal has a two-dimensional cell a, b, γ, the c* axis of the reciprocal cell will be the texture axis. Reciprocal-lattice rods parallel to c* intersect the plane normal to them (the ab plane of the direct lattice) in the positions hk of a two-dimensional net that has periods [1/a\sin\gamma] and [1/b\sin \gamma] with an angle γ′ = π − γ between them, whatever the direction of the c axis in the direct lattice. The latter is defined by the absolute value c and the normal projection [c_n] on the ab plane, with components [x_n], [y_n] along the axes a, b. In the triclinic case, [{x_n=(c/a)(\cos\beta-\cos\alpha\cos\gamma)/\sin^2\gamma} \eqno (4.3.5.1)][{y_n=(c/b)(\cos\alpha-\cos\beta\cos\gamma)/\sin^2\gamma} \eqno (4.3.5.2)](Zvyagin et al., 1979[link]). The lattice points of each rod with constant hk and integer l are at intervals of [c^*=1/d_{001}], but their real positions, described by their distances [D_{hkl}] from the plane ab, depend on the projections of the axes a* and b* on c* (see Fig. 4.3.5.1[link] ), the equations [{x_n=-a^*\cos\beta^*/c^*} \eqno (4.3.5.3)][{y_n=-b^*\cos\alpha^*/c^*} \eqno (4.3.5.4)]being satisfied.

[Figure 4.3.5.1]

Figure 4.3.5.1| top | pdf |

The relative orientations of the direct and the reciprocal axes and their projections on the plane ab, with indication of the distances Bhk and Dhkl that define the positions of reflections in lamellar texture patterns.

The reciprocal-space representation of a lamellar texture is formed by the rotation of the reciprocal lattice of a single crystal about the c* axis. The rods hk become cylinders and the lattice points become circles lying on the cylinders. In the case of high-energy electron diffraction (HEED), the wavelength of the electrons is very short, and the Ewald sphere, of radius 1/λ, is so great that it may be approximated by a plane passing through the origin of reciprocal space and normal to the incident beam. The patterns differ in their geometry, depending on the angle [\varphi] through which the specimen is tilted from perpendicularity to the primary beam. At [\varphi=0], the pattern consists of hk rings. When [\varphi\neq0] it contains a two-dimensional set of reflections hkl falling on hk ellipses formed by oblique sections of the hk cylinders. In the limiting case of [\varphi=\pi/2], the ellipses degenerate into pairs of parallel straight lines theoretically containing the maximum numbers of reflections. The reflection positions are defined by two kinds of distances: (1) between the straight lines hk (length of the short axes of the ellipses hk): [B_{hk}=(1/\sin\gamma)(h^2/a^2+k^2/b^2 - 2hk\cos\gamma/ab)^{1/2} \eqno (4.3.5.5)]and (2) from the reflection hkl to the line of the short axes: [\eqalignno{D_{hkl} &= (ha^*\cos\beta^*/c^*+kb^*\cos\alpha^*/c^*+l)c^* &(4.3.5.6)\cr &=(-hx_n-ky_n+l)/d_{001}. &(4.3.5.7)}%fd4.3.5.7]In patterns obtained under real conditions [(0\lt\varphi\lt\pi/2], accelerating voltage V proportional to [\lambda^{-2}], distance L between the specimen and the screen), these values are presented in the scale of [L\lambda], [D_{hkl}] also being proportional to [1/\sin\varphi] with maximum value [D_{\rm max}=B_{hk}\tan\varphi] for the registrable reflections. The values of [B_{hk}] and [D_{hkl}], determined by the unit cells and the indices hkl, are the objects of the geometrical analysis of the OT patterns. When the symmetry is higher than triclinic, the expression for [B_{hk}] and [D_{hkl}] are much simpler.

Such OT patterns are very informative, because the regular two-dimensional distribution of the hkl reflections permits definite indexing, cell determination, and intensity measurements. For low-symmetry and fine-grained substances, they present unique advantages for phase identification, polytypism studies, and structure analysis.

In the X-ray study of textures, it is impossible to neglect the curvature of the Ewald sphere and the number of reflections recorded is restricted to larger d values. However, there are advantages in that thicker specimens can be used and reflections with small values of [B_{hk}], especially the 00l reflections, can be recorded. Such patterns are obtained in usual powder cameras with the incident beam parallel to the platelets of the oriented aggregate and are recorded on photographic film in the form of hkl reflection sequences along hk lines, as was demonstrated by Mamy & Gaultier (1976[link]). The hk lines are no longer straight, but have the shapes described by Bernal (1926[link]) for rotation photographs. It is difficult, however, to prepare good specimens. Other arrangements have been developed recently with advantages for precise intensity measurements. The reflections are recorded consecutively by means of a powder diffractometer fitted with a goniometer head. The relation between the angle of tilt [\varphi] and the angle of diffraction (twice the Bragg angle) [2\theta] depends on the reciprocal-lattice point to be recorded. If the latter is defined by a vector of length [H=(2\sin\theta)/\lambda] and by the angle [\omega] between the vector and the plane of orientation (texture basis), the relation [\varphi=\theta-\omega] permits scanning of reciprocal space along any trajectory by proper choice of consecutive values of [\omega] or [\theta]. In particular, if [\omega] is constant, the trajectory is a straight line passing through the origin at an angle [\omega] to the plane of orientation (Krinary, 1975[link]). Using additional conditions [[\omega=\arctan(D/B)], [H=(B^2+D^2)^{1/2}]], Plançon et al. (1982[link]) realized the recording and the measurement of intensities along the cylinder-generating hk rods for different shapes of the misorientation function N(α).

In the course of development of electron diffractometry, a deflecting system has been developed that permits scanning the electron diffraction pattern across the fixed detector along any direction over any interval (Fig. 4.3.5.2[link] ). The intensities are measured point by point in steps of variable length. This system is applicable to any kind of two-dimensional intensity pattern, and in particular to texture patterns (Zvyagin, Zhukhlistov & Plotnikov, 1996[link]). Electron diffractometry provides very precise intensity measurements and very reliable structural data (Zhukhlistov et al., 1997[link]).

[Figure 4.3.5.2]

Figure 4.3.5.2| top | pdf |

(a) Part of the OTED pattern of the clay mineral kaolinite and (b) the intensity profile of a characteristic quadruplet of reflections recorded with the electron diffractometry system. The scanning direction is indicated in (a).

If the effective thickness of the lamellae is very small, of the order of the lattice parameter c, the diffraction pattern generates into a combination of broad but recognizably distinct 00l reflections and broad asymmetrical hk bands (Warren, 1941[link]). The classical treatments of the shape of the bands were given by Méring (1949[link]) and Wilson (1949[link]) [for an elementary introduction see Wilson (1962[link])].

4.3.5.3. Lattice direction oriented parallel to a direction (fibre texture)

| top | pdf |

A fibre texture occurs when the crystals forming the specimen have a single direction in common. Each point of the reciprocal lattice describes a circle lying in a plane normal to the texture axis. The pattern, considered as plane sections of the reciprocal-lattice representation, resembles rotation diagrams of single crystals and approximates to the patterns given by cylindrical lattices (characteristic, for example, of tubular crystals).

If the a axis is the texture axis, the hk rods are at distances [B_{hk}=(-h\cos\gamma/a+k/b)/\sin\gamma \eqno (4.3.5.8)]from the texture axis and [D_{hk}=h/a \eqno (4.3.5.9)]from the plane normal to the texture axis (the zero plane b*c*). On rotation, they intersect the plane normal to the incident beam and pass through the texture axis in layer lines at distances [D_{hk}] from the zero line, while the reflection positions along these lines are defined by their distances from the textures axis (see Fig. 4.3.5.3[link] ): [B_{hkl}=[B^2_{hk}+(-hx_n-ky_n+l)^2/d\,^2_{001}]^{1/2}. \eqno (4.3.5.10)]

[Figure 4.3.5.3]

Figure 4.3.5.3| top | pdf |

The projections of the reciprocal axes on the plane ab of the direct lattice, with indications of the distances B and D of the hk rows from the fibre-texture axes a or [hk].

If the texture axis forms an angle [\varepsilon] with the a axis and [\delta=\varepsilon-\gamma+\pi/2] with the projection of a* on the plane ab, then [\eqalignno{B_{hk} &=\{-h(\sin\delta)/a+k[\sin(\gamma'-\delta)]/b\}/\sin\gamma &(4.3.5.11) \cr &=\{-h[\cos(\gamma-\varepsilon)]/a+k\cos\varepsilon/b\}/\sin\gamma &(4.3.5.12) \cr D_{hk} &=\{h(\cos\delta)/a+k[\cos(\gamma'-\delta)]/b\}/\sin\gamma & (4.3.5.13) \cr&=\{h[\sin(\gamma-\varepsilon)]/a+k\sin\varepsilon/b\}/\sin\gamma.&(4.3.5.14)}%fd4.3.5.12fd4.3.5.13fd4.3.5.14]The relation between the angles δ, [\varepsilon], and the direction [hk] of the texture axis is given by the expression [\eqalignno{ \cos\delta &=\sin(\gamma-\varepsilon)\cr &=[h/a-k(\cos\gamma)/b] \cr&\quad\times[h^2a^{-2}+k^2b^{-2}-2hk(\cos\gamma)/ab]^{-1/2}. &(4.3.5.15)}]The layer lines with constant h that coincide when [\varepsilon=0] are split when [\varepsilon\neq0] according to the sign of k, since then [D_{hk}\neq D_{h\bar k}] and [B_{hk}] and [B_{hkl}] defining the reflection positions along the layer line take other values. Such peculiarities have been observed by means of selected-area electron diffraction for tabular particles and linear crystal aggregates of some phyllosilicates in the simple case of γ = π/2 (Gritsaenko, Zvyagin, Boyarskaya, Gorshkov, Samotoin & Frolova, 1969[link]).

When fibres or linear aggregates are deposited on a film (for example, in specimens for high-resolution electron diffraction) with one direction parallel to a plane, they form a texture that is intermediate between lamellar and fibre. The points of the reciprocal lattice are subject to two rotations: around the fibre axis and around the normal to the plane. The first rotation results in circles, the second in spherical bands of different widths, depending on the position of the initial point relative to the texture axis and the zero plane normal to it. The diffraction patterns correspond to oblique plane sections of reciprocal space, and consist of arcs having intensity maxima near their ends; in some cases, the arcs close to form complete circles. In particular, when the particle elongation is in the a direction, the angular range of the arcs decreases with h and increases with k (Zvyagin, 1967[link]).

4.3.5.4. Applications to metals and organic materials

| top | pdf |

The above treatment, though general, had layer silicates primarily in view. Texture studies are particularly important for metal specimens that have been subjected to cold work or other treatments; the phenomena and their interpretation occupy several chapters of the book by Barrett & Massalski (1980[link]). Similarly, Kakudo & Kasai (1972[link]) devote much space to texture in polymer specimens, and Guinier (1956[link]) gives a good treatment of the whole subject. The mathematical methods for describing and analysing textures of all types have been described by Bunge (1982[link]; the German edition of 1969 was revised in many places and a few errors were corrected for the English translation).

4.3.6. Computation of dynamical wave amplitudes

| top | pdf |

4.3.6.1. The multislice method

| top | pdf |
D. F. Lynchh

The calculation of very large numbers of diffracted orders, i.e. more than 100 and often several thousand, requires the multislice procedure. This occurs because, for N diffracted orders, the multislice procedure involves the manipulation of arrays of size N, whereas the scattering matrix or the eigenvalue procedures involve manipulation of arrays of size N by N.

The simplest form of the multislice procedure presumes that the specimen is a parallel-sided plate. The surface normal is usually taken to be the z axis and the crystal structure axes are often chosen or transformed such that the c axis is parallel to z and the a and b axes are in the xy plane. This can often lead to rather unconventional choices for the unit-cell parameters. The maximum tilt of the incident beam from the surface normal is restricted to be of the order of 0.1 rad. For the calculation of wave amplitudes for larger tilts, the structure must be reprojected down an axis close to the incident-beam direction. For simple calculations, other crystal shapes are generally treated by the column approximation, that is the crystal is presumed to consist of columns parallel to the z axis, each column of different height and tilt in order to approximate the desired shape and variation of orientation.

The numerical procedure involves calculation of the transmission function through a thin slice, calculation of the vacuum propagation between centres of neighbouring slices, followed by evaluation in a computer of the iterated equation [u_n(h,k)=p_n\{p_{n-1}\ldots p_3[\,p_2(p_1q_1*q_2)*q_3]*\ldots *q_n\}\eqno (4.3.6.1)]in order to obtain the scattered wavefunction, [u_n(h,k)], emitted from slice n, i.e. for crystal thickness [H=\Delta z_1+] [\Delta z_2+\ldots+\Delta z_n]; the symbol * indicates the operation `convolution' defined by [f_1(x)*f_2(x)=\textstyle\int\limits^\infty_{-\infty}f_1(w)f_2(x-w)\,{\rm d} w,]and [p_n=\exp\big(\!-i2\pi\Delta z_n(\lambda/2)\{[h(h-h'')/a^2]+[k(k-k'')/b^2]\}\big)]is the propagation function in the small-angle approximation between slice n − 1 and slice n over the slice spacing [\Delta z_n]. For simplicity, the equation is given for orthogonal axes and h′′, k′′ are the usually non-integral intercepts of the Laue circle on the reciprocal-space axes in units of (1/a), (1/b). The excitation errors, [\zeta(h,k)], can be evaluated using [\zeta(h,k)=-(\lambda/2)\{[h(h-h'')/a^2]+[k(k-k'')/b^2]\}. \eqno (4.3.6.2)]The transmission function for slice n is [q_n(h,k)=F\{\exp[i\sigma\varphi_n(x,y)\Delta z_n]\}, \eqno (4.3.6.3)]where F denotes Fourier transformation from real to reciprocal space, and [\varphi_n(x,y)\Delta z_n= {^p}\varphi(x,y)=\textstyle\int\limits^{z_{n-1}+\Delta z_n}_{z_{n-1}} \varphi(x,y,z)\,{\rm d} z]and [\sigma={\pi\over W\lambda}\,{2\over{1+(1-\beta^2)^{1/2}}}][\beta={v\over c},]where W is the beam voltage, v is the relativistic velocity of the electron, c is the velocity of light, and λ is the relativistic wavelength of the electron.

The operation * in (4.3.6.1)[link] is most effectively carried out for large N by the use of the convolution theorem of Fourier transformations. This efficiency presumes that there is available an efficient fast-Fourier-transform subroutine that is suitable for crystallographic computing, that is, that contains the usual crystallographic normalization factors and that can deal with a range of values for h, k that go from negative to positive. Then, [u_n(h,k)=F\{F^{-1}[u_{n-1}(h,k)]F^{-1}[q_n(h,k)]\}, \eqno (4.3.6.4)]where F denotes [u(h,k)={1\over n_x n_y}\; \sum^{n_x}_{x=1} \sum^{n_y}_{y=1} U(x,y)\exp\left\{2\pi i\left[\displaystyle{hx\over n_x},{ky\over n_y}\right]\right\}]and [F^{-1}] denotes [U(x,y) ={\sum^{n_h}_{h=-n_h}} \sum^{n_k}_{k=-n_k} u(h,k)\exp\left\{2\pi i\left[\displaystyle{hx\over n_x},{ky\over n_y}\right]\right\},]where [n_h=(n_x/2)-1], [n_k=(n_y/2)-1], and [n_x,n_y] are the sampling intervals in the unit cell. The array sizes used in the calculations of the Fourier transforms are commonly powers of 2 as is required by many fast Fourier subroutines. The array for [u_n(h,k)] is usually defined over the central portion of the reserved computer array space in order to avoid oscillation in the Fourier transforms (Gibbs instability). It is usual to carry out a [64\times64] beam calculation in an array of [128\times128], hence the critical timing interval in a multislice calculation is that interval taken by a fast Fourier transform for 4N coefficients. If the number of beams, N, is such that there is still appreciable intensity being scattered outside the calculation aperture, then it is usually necessary to impose a circular aperture on the calculation in order to prevent the symmetry of the calculation aperture imposing itself on the calculated wavefunction. This is most conveniently achieved by setting all p(h, k) coefficients outside the desired circular aperture to zero.

It is clear that the iterative procedure of (4.3.6.1)[link] means that care must be taken to avoid accumulation of error due to the precision of representation of numbers in the computer that is to be used. Practical experience indicates that a precision of nine significant figures (decimal) is more than adequate for most calculations. A precision of six to seven (decimal) figures (a common 32-bit floating-point representation) is only barely satisfactory. A computer that uses one of the common 64-bit representations (12 to 16 significant figures) is satisfactory even for the largest calculations currently contemplated.

The choice of slice thickness depends upon the maximum value of the projected potential within a slice and upon the validity of separation of the calculation into transmission function and propagation function. The second criterion is not severe and in practice sets an upper limit to slice thickness of about 10 Å. The first criterion depends upon the atomic number of atoms in the trial structure. In practice, the slice thickness will be too large if two atoms of medium to heavy atomic weight [(Z\ge30)] are projected onto one another. It is not necessary to take slices less than one atomic diameter for calculations for fast electron (acceleration voltages greater than 50 keV) diffraction or microscopy. If the trial structure is such that the symmetry of the diffraction pattern is not strongly dependent upon the structure of the crystal parallel to the slice normal, then the slices may be all identical and there is no requirement to have a slice thickness related to the periodicity of the structure parallel to the surface normal. This is called the `no upper-layer-line' approximation. If the upper-layer lines are important, then the slice thickness will need to be a discrete fraction of the c axis, and the contents of each slice will need to reflect the actual atomic contents of each slice. Hence, if there were four slices per unit cell, then there would need to be four distinct q(h, k), each taken in the appropriate order as the multislice operation proceeds in thickness.

The multislice procedure has two checks that can be readily performed during a calculation. The first is applied to the transmission function, q(h, k), and involves the evaluation of a unitarity test by calculation of [\textstyle\sum\limits_{h'} \sum\limits_{k'}\,q(h',k')q^*(h+h',k+k')=\delta(h,k) \eqno (4.3.6.5)]for all h, k, where q* denotes the complex conjugate of q, and δ(h,k) is the Kronecker delta function. The second test can be applied to any calculation for which no phenomenological absorption potential has been used in the evaluation of the q(h, k). In that case, the sum of intensities of all beams at the final thickness should be no less than 0.9, the incident intensity being taken as 1.0. A value of this sum that is less than 0.9 indicates that the number of beams, N, has been insufficient. In some rare cases, the sum can be greater than 1.0; this is usually an indication that the number of beams has been allowed to come very close to the array size used in the convolution procedure. This last result does not occur if the convolution is carried out directly rather than by use of fast-Fourier-transform methods.

A more complete discussion of the multislice procedure can be obtained from Cowley (1975[link]) and Goodman & Moodie (1974[link]). These references are not exhaustive, but rather an indication of particularly useful articles for the novice in this subject.

4.3.6.2. The Bloch-wave method

| top | pdf |
A. Howieg

Bloch waves, familiar in solid-state valence-band theory, arise as the basic wave solutions for a periodic structure. They are thus always implicit and often explicit in dynamical diffraction calculations, whether applied in perfect crystals, in almost perfect crystals with slowly varying defect strain fields or in more general structures that (see Subsection 4.3.6.1[link]) can always, for computations, be treated by periodic continuation.

The Schrödinger wave equation in a periodic structure, [\nabla^2\psi+4\pi^2\bigg[\chi^2+\textstyle\sum\limits_{\bf g} \,U_{\bf g} \exp (2\pi i{\bf g}\cdot{\bf r})\bigg]\psi=0, \eqno (4.3.6.6)]can be applied to high-energy, relativistic electron diffraction, taking [\chi=\lambda^{-1}] as the relativistically corrected electron wave number (see Subsection 4.3.1.4[link]). The Fourier coefficients in the expression for the periodic potential are defined at reciprocal-lattice points g by the expression [U_{\bf g}=U^*_{-{\bf g}}={m\over m_0} {\exp(-M_{\bf g}) \over\pi\Omega} \sum_j \, f_j[\sin(\theta_{\bf g})/\lambda]\exp(-2\pi i{\bf g}\cdot{\bf r}_j), \eqno (4.3.6.7)]where [f_j] is the Born scattering amplitude (see Subsection 4.3.1.2[link]) of the jth atom at position [{\bf r}_j] in the unit cell of volume [\Omega] and [M_{\bf g}] is the Debye–Waller factor.

The simplest solution to (4.3.6.6)[link] is a single Bloch wave, consisting of a linear combination of plane-wave beams coupled by Bragg reflection. [\psi({\bf r})=b({\bf k},{\bf r})=\textstyle\sum\limits_h C_{\bf h}\exp[2\pi i({\bf k}+{\bf h})\cdot{\bf r}]. \eqno (4.3.6.8)]In practice, only a limited number of terms N, corresponding to the most strongly excited Bragg beams, is included in (4.3.6.8)[link]. Substitution in (4.3.6.6)[link] then yields N simultaneous equations for the wave amplitudes [C_{\bf g}.][[\chi^2+U_0-({\bf k}+{\bf g})^2]C_{\bf g}+\textstyle\sum\limits_{\bf g'\ne0}U_{\bf g'}C_{\bf g-{\bf g}'}=0. \eqno (4.3.6.9)]Usually, χ and the two tangential components [k_x] and [k_y] are fixed by matching to the incident wave at the crystal entrance surface. [k_z] then emerges as a root of the determinant of coefficients appearing in (4.3.6.9)[link].

Numerical solution of (4.3.6.9)[link] is considerably simplified (Hirsch, Howie, Nicholson, Pashley & Whelan, 1977a[link]) in cases of transmission high-energy electron diffraction where all the important reciprocal-lattice points lie in the zero-order Laue zone [g_z=0] and [\chi^2\gg |U_{\bf g}|]. The equations then reduce to a standard matrix eigenvalue problem (for which efficient subroutines are widely available): [\textstyle\sum\limits_{\bf h} M_{\bf gh}C_{\bf h}=\gamma C_{\bf g}, \eqno (4.3.6.10)]where [M_{\bf gh}=U_{\bf g-h}/2\chi+s_{\bf g}\delta_{\bf gh}] and [s_{\bf g}=[k^2-({\bf k}+{\bf g})^2]/2\chi] is the distance, measured in the z direction, of the reciprocal-lattice point g from the Ewald sphere.

There will in general be N distinct eigenvalues [\gamma=k_z-\chi_z] corresponding to N possible values [k^{(\,j)}_z], [j=1,2,\cdots N], each with its eigenfunction defined by N wave amplitudes [C^{(\,j)}_0, C^{(\,j)}_{\bf g},\ldots, C^{(\,j)}_{\bf h}]. The waves are normalized and orthogonal so that [\textstyle\sum\limits_{\bf g} C^{(\,j)}_{\bf g}{^*} C^{(l)}_{\bf g}=\delta_{jl};\quad\textstyle \sum\limits_jC_{\bf g}^{(\,j)*}C^{(l)}_{\bf h}=\delta_{\bf gh}. \eqno (4.3.6.11)]In simple transmission geometry, the complete solution for the total coherent wavefunction [\psi({\bf r})] is [\psi({\bf r})=\textstyle\sum\limits_j \psi^{(\,j)}\exp[-2\pi q^{(\,j)}z]\sum\limits_{\bf g}C^{(\,j)}_{\bf g}\exp [2\pi i(\chi+{\bf g})\cdot {\bf r}]. \eqno (4.3.6.12)]Inelastic and thermal-diffuse-scattering processes cause anomalous absorption effects whereby the amplitude of each component Bloch wave decays with depth z in the crystal from its initial value [\psi^{(\,j)}=C^{(\,j)*}_0]. The decay constant is computed using an imaginary optical potential [iU'({\bf r})] with Fourier coefficients [iU'_{\bf g}=iU'^{*}_{-{\bf g}}] (for further details of these see Humphreys & Hirsch, 1968[link], and Subsection 4.3.1.5[link] and Section 4.3.2[link]). [q^{(\,j)} = {m\over h^2\chi_z} \sum_{\bf g,h} C^{(\,j)*}_{\bf g} U'_{\bf h}C^{(\,j)}_{\bf g-h}. \eqno (4.3.6.13)]The Bloch-wave, matrix-diagonalization method has been extended to include reciprocal-lattice points in higher-order Laue zones (Jones, Rackham & Steeds, 1977[link]) and, using pseudopotential scattering amplitudes, to the case of low-energy electrons (Pendry, 1974[link]).

The Bloch-wave picture may be compared with other variants of dynamical diffraction theory, which, like the multislice method (Subsection 4.3.6.1[link]), for example, employ plane waves whose amplitudes vary with position in real space and are determined by numerical integration of first-order coupled differential equations. For cases with [N\lt50] beams in perfect crystals or in crystals containing localized defects such as stacking faults or small point-defect clusters, the Bloch-wave method offers many advantages, particularly in thicker crystals with t > 1000 Å. For high-resolution image calculations in thin crystals where the periodic continuation process may lead to several hundred diffracted beams, the multislice method is more efficient. For cases of defects with extended strain fields or crystals illuminated at oblique incidence, coupled plane-wave integrations along columns in real space (Howie & Basinski, 1968[link]) can be the most efficient method.

The general advantage of the Bloch-wave method, however, is the picture it affords of wave propagation and scattering in both perfect and imperfect crystals. For this purpose, solutions of equations (4.3.6.9)[link] allow dispersion surfaces to be plotted in k space, covering with several sheets j all the wave points [{\bf k}^{(\,j)}] for a given energy E. Thickness fringes and other interference effects then arise because of interference between waves excited at different points [{\bf k}^{(\,j)}]. The average current flow at each point is normal to the dispersion surface and anomalous-absorption effects can be understood in terms of the distribution of Bloch-wave current within the unit cell. Detailed study of these effects, and the behaviour of dispersion surfaces as a function of energy, yields accurate data on scattering amplitudes via the critical-voltage effect (see Section 4.3.7[link]). Static crystal defects induce elastic scattering transitions [{\bf k}^{(\,j)}\rightarrow{\bf k}^{(l)}] on sheets of the same dispersion surface. Transitions between points on dispersion surfaces of different energies occur because of thermal diffuse scattering, generation of electronic excitations or the emission of radiation by the fast electron. The Bloch-wave picture and the dispersion surface are central to any description of these phenomena. For further information and references, the reader may find it helpful to consult Section 5.2.10[link] of Volume B (IT B, 2001[link]).

4.3.7. Measurement of structure factors and determination of crystal thickness by electron diffraction

| top | pdf |
J. Gjønnese and J. W. Steedsm

Current advances in quantitative electron diffraction are connected with improved experimental facilities, notably the combination of convergent-beam electron diffraction (CBED) with new detection systems. This is reflected in extended applications of electron diffraction intensities to problems in crystallography, ranging from valence-electron distributions in crystals with small unit cells to structure determination of biological molecules in membranes. The experimental procedures can be seen in relation to the two main principles for measurement of diffracted intensities from crystals:

  • rocking curves, i.e. intensity profiles measured as function of deviation, sg, from the Bragg condition, and

  • integrated intensities, which form the well known basis for X-ray and neutron diffraction determination of crystal structure.

Integrated intensities are not easily defined in the most common type of electron-diffraction pattern, viz the selected-area (SAD) spot pattern. This is due to the combination of dynamical scattering and the orientation and thickness variations usually present within the typically micrometre-size illuminated area. This combination leads to spot pattern intensities that are poorly defined averages over complicated scattering functions of many structure factors. Convergent-beam electron diffraction is a better alternative for intensity measurements, especially for inorganic structures with small-to-moderate unit cells. In CBED, a fine beam is focused within an area of a few hundred ångströms, with a divergence of the order of a tenth of a degree. The diffraction pattern then appears in the form of discs, which are essentially two-dimensional rocking curves from a small illuminated area, within which thickness and orientation can be regarded as constant. These intensity distributions are obtained under well defined conditions and are well suited for comparison with theoretical calculations. The intensity can be recorded either photographically, or with other parallel recording systems, viz YAG screen/CCD camera (Krivanek, Mooney, Fan, Leber & Meyer, 1991[link]) or image plates (Mori, Oikawa & Harada, 1990[link]) – or sequentially by a scanning system. The inelastic background can be removed by an energy filter (Krahl, Pätzold & Swoboda, 1990[link]; Krivanek, Gubbens, Dellby & Meyer, 1991[link]). Detailed intensity profiles in one or two dimensions can then be measured with high precision for low-order reflections from simple structures. But there are limitations also with the CBED technique: the crystal should be fairly perfect within the illuminated area and the unit cell relatively small, so that overlap between discs can be avoided. The current development of electron diffraction is therefore characterized by a wide range of techniques, which extend from the traditional spot pattern to two-dimensional, filtered rocking curves, adapted to the structure problems under study and the specimens that are available.

Spot-pattern intensities are best for thin samples of crystals with light atoms, especially organic and biological materials. Dorset and co-workers (Dorset, Jap, Ho & Glaeser, 1979[link]; Dorset, 1991[link]) have shown how conventional crystallographic techniques (`direct phasing') can be applied in ab initio structure determination of thin organic crystals from spot intensities in projections. Two main complications were treated by them: bending of the crystal and dynamical scattering. Thin crystals will frequently be bent; this will give some integration of the reflection, but may also produce a slight distortion of the structure, as pointed out by Cowley (1961[link]), who proposed a correction formula. The thickness range for which a kinematical approach to intensities is valid was estimated theoretically by Dorset et al. (1979[link]). For organic crystals, they quoted a few hundred ångströms as a limit for kinematical scattering in dense projections at 100 kV.

Radiation damage is a problem, but with low-dose and cryo-techniques, electron-microscopy methods can be applied to many organic crystals, as shown by several recent investigations. Voigt-Martin, Yan, Gilmore, Shankland & Bricogne (1994[link]) collected electron-diffraction intensities from a beam-sensitive dione and constructed a 1.4 Å Fourier map by a direct method based on maximum entropy. Large numbers of electron-diffraction intensities have been collected from biological molecules crystallized in membranes. The structure amplitudes can be combined with phases extracted from high-resolution micrographs, following Henderson Unwin's (1975[link]) early work. Kühlbrandt, Wang & Fujiyoshi (1994[link]) collected about 18 000 amplitudes and 15 000 phases for a protein complex in an electron cryomicroscope operating at 4.2 K (Fujiyoshi et al., 1991[link]). Using these data, they determined the structure from a three-dimensional Fourier map calculated to 3.4 Å resolution. The assumption of kinematical scattering in such studies has been investigated by Spargo (1994[link]), who found the amplitudes to be kinematic within 4% but with somewhat larger deviations for phases.

For inorganic structures, spot-pattern intensities are less useful because of the stronger dynamical interactions, especially in dense zones. Nevertheless, it may be possible to derive a structure and refine parameters from spot-pattern intensities. Andersson (1975[link]) used experimental intensities from selected projections for comparison with dynamical calculations, including an empirical correction factor for orientation spread, in a structure determination of V14O8. Recently, Zou, Sukharev & Hovmöller (1993[link]) combined spot-pattern intensities read from film by the program ELD with image processing of high-resolution micrographs for structure determination of a complex perovskite.

A considerable improvement over the spot pattern has been obtained by the elegant double-precession technique devised by Vincent & Midgley (1994[link]). They programmed scanning coils above and below the specimen in the electron microscope so as to achieve simultaneous precession of the focused incident beam and the diffraction pattern around the optical axis. The net effect is equivalent to a precession of the specimen with a stationary incident beam. Integrated intensities can be obtained from reflections out to a Bragg angle [\theta] equal to the precession angle [\varphi] for the zeroth Laue zone. In addition, reflections in the first and second Laue zones appear as broad concentric rings. Dynamical effects are reduced appreciably by this procedure, especially in the non-zero Laue zones. The experimental integrated intensities, Ig, must be multiplied with a geometrical factor analogous to the Lorentz factor in X-ray diffraction, viz [I_g=I_G^{\rm exp}\sin \varepsilon; \quad \cos \varepsilon ={{(g^2 -2nkh)}\over {2k\phi g}}, \eqno (4.3.7.1)]where nh is the reciprocal spacing between the zeroth and nth layers. The intensities can be used for structure determination by procedures taken over from X-ray crystallography, e.g. the conditional Patterson projections that are used by the Bristol group (Vincent, Bird & Steeds, 1984[link]). The precession method may be seen as intermediate between the spot pattern and the CBED technique. Another intermediate approach was proposed by Goodman (1976[link]) and used later by Olsen, Goodman & Whitfield (1985[link]) in the structure determination of a series of selenides. CBED patterns from thin crystals were taken in dense zones; intensities were measured at corresponding points in the discs, e.g. at the zone-axis position. Structure parameters were determined by fitting the observed intensities to dynamical calculations.

Higher precision and more direct comparisons with dynamical scattering calculations are achieved by measurements of intensity distributions within the CBED discs, i.e. one- or two-dimensional rocking curves. An up-to-date review of these techniques is found in the recent book by Spence & Zuo (1992[link]), where all aspects of the CBED technique, theory and applications are covered, including determination of lattice constants and strains, crystal symmetry, and fault vectors of defects. Refinement of structure factors in crystals with small unit cells are treated in detail. For determination of bond charges, the structure factors (Fourier potentials) should be determined to an accuracy of a few tenths of a percent; calculations must then be based on many-beam dynamical scattering theory, see Chapter 8.8[link] . Removal of the inelastic background by an energy filter will improve the data considerably; analytical expressions for the inelastic background including multiple-scattering contributions may be an alternative (Marthinsen, Holmestad & Høier, 1994[link]).

Early CBED applications to the determination of structure factors were based on features that can be related to dynamical effects in the two-beam case. Although insufficient for most accurate analyses, the two-beam expression for the intensity profile may be a useful guide. In its standard form, [I_g(s)={{(U_g/k)^2}\over {s_g^2+(U_g/k)^2}}\;\sin ^2\left [\pi t\sqrt {s_g^2+(U_g/k)^2}\right] ,\eqno (4.3.7.2)]where Ug and sg are Fourier potential and excitation error for the reflection g, k wave number and t thickness. The expression can be rewritten in terms of the eigenvalues γ(i, j) that correspond to the two Bloch-wave branches, i, j: [I_g^{i,\,j}(s_g)={{(U_g/k)^2}\over {(\gamma ^{(i)}-\gamma ^{(\,j)})}^2}\,\sin ^2[\pi t(\gamma ^{(i)}-\gamma ^{(\,j)})],\eqno (4.3.7.3)]where [\gamma ^{i,\,j}=\textstyle {1\over 2}\left [s_g^2\pm \sqrt {s_g^2+(U_g/k)^2}\;\right] .]Note that the minimum separation between the branches i, j or the gap at the dispersion surface is [(\gamma ^{(\,j)}-\gamma ^{(i)})_{\rm min}=U_g/k=1/\xi _g,\eqno (4.3.7.4)]where [\xi]g is an extinction distance. The two-beam form is often found to be a good approximation to an intensity profile Ig(sg) even when other beams are excited, provided an effective potential [U_g^{\rm eff}], which corresponds to the gap at the dispersion surface, is substituted for Ug. This is suggested by many features in CBED and Kikuchi patterns and borne out by detailed calculations, see e.g. Høier (1972[link]). Approximate expressions for [U_g^{\rm eff}] have been developed along different lines; the best known is the Bethe potential [U_g^{\rm eff} =U_g - \sum _h {{U_{g-h}U_h}\over {2ks_h}}.\eqno (4.3.7.5)]Other perturbation approaches are based on scattering between Bloch waves, in analogy with the `interband scattering' introduced by Howie (1963[link]) for diffuse scattering; the term `Bloch-wave hybridization' was introduced by Buxton (1976[link]). Exact treatment of symmetrical few-beam cases is possible (see Fukuhara, 1966[link]; Kogiso & Takahashi, 1977[link]). The three-beam case (Kambe, 1957[link]; Gjønnes & Høier, 1971[link]) is described in detail in the book by Spence & Zuo (1992[link]).

Many intensity features can be related to the structure of the dispersion surface, as represented by the function γ(kx, ky). The gap [equation (4.3.7.4)[link]] is an important parameter, as in the four-beam symmetrical case in Fig. 4.3.7.1[link] . Intensity measurements along one dimension can then be referred to three groups, according to the width of the gap, viz:

  • small gap – integrated intensity;

    [Figure 4.3.7.1]

    Figure 4.3.7.1| top | pdf |

    (a) Dispersion-surface section for the symmetric four-beam case (0, g, g + h, m), γk is a function of kx, referred to (b), where kx = ky = 0 corresponds to the exact Bragg condition for all three reflections. The two gaps appear at sg = ±(UhUm)/k with widths (Ug ± Ug + h)/k.

  • large gap – rocking curve, thickness fringes;

  • zero gap – critical effects.

A small gap at the dispersion surface implies that the two-beam-like rocking curve above approaches a kinematical form and can be represented by an integrated intensity. Within a certain thickness range, this intensity may be proportional to [|U^{\rm eff}_g|^2], with an angular width inversely proportional to gt. Several schemes have been proposed for measurement of relative integrated intensities for reflections in the outer, high-angle region, where the lines are narrow and can be easily separated from the background. Steeds (1984[link]) proposed use of the HOLZ (high-order Laue-zone) lines, which appear in CBED patterns taken with the central disc at the zone-axis position. Along a ring that defines the first-order Laue zone (FOLZ), reflections appear as segments that can be associated with scattering from strongly excited Bloch waves in the central ZOLZ part into the FOLZ reflections. Vincent, Bird & Steeds (1984[link]) proposed an intensity expression [I_g^{(\,j)}\propto |\varepsilon ^{(\,j)}\beta _g^{(\,j)}|^2\exp (-2\mu t){{1 - \exp [-2(\mu ^{(\,j)}-\mu)t]}\over {2(\mu ^{(\,j)}-\mu)}}\eqno (4.3.7.6)]for integrated intensity for a line segment associated with scattering from (or into) the ZOLZ Bloch wave j. [\varepsilon^{(\,j)}] is here the excitation coefficient and β(j) the matrix element for scattering between the Bloch wave j and the plane wave g. μ(j) and μ are absorption coefficients for the Bloch wave and plane wave, respectively; t is the thickness. From measurements of a number of such FOLZ (or SOLZ) reflections, they were able to carry out ab initio structure determinations using so-called conditional Patterson projections and coordinate refinement. Tanaka & Tsuda (1990[link]) have refined atomic positions from zone-axis HOLZ intensities. Ratios between HOLZ intensities have been used for determination of the Debye–Waller factor (Holmestad, Weickenmeier, Zuo, Spence & Horita, 1993[link]).

Another CBED approach to integrated intensities is due to Taftø & Metzger (1985[link]). They measured a set of high-order reflections along a systematic row with a wide-aperture CBED tilted off symmetrical incidence. A number of high-order reflections are then simultaneously excited in a range where the reflections are narrow and do not overlap. Gjønnes & Bøe (1994[link]) and Ma, Rømming, Lebech & Gjønnes (1992[link]) applied the technique to the refinement of coordinates and thermal parameters in high-Tc superconductors and intermetallic compounds. The validity and limitation of the kinematical approximation and dynamic potentials in this case has been discussed by Gjønnes & Bøe (1994[link]).

Zero gap at the dispersion surface corresponds to zero effective Fourier potential or, to be more exact, an accidental degeneracy, γ(i) = γ(j), in the Bloch-wave solution. This is the basis for the critical-voltage method first shown by Watanabe, Uyeda & Fukuhara (1969[link]). From vanishing contrast of the Kikuchi line corresponding to a second-order reflection 2g, they determined a relation between the structure factors Ug and U2g. Gjønnes & Høier (1971[link]) derived the condition for the accidental degeneracy in the general centrosymmetrical three-beam case 0,g,h, expressed in terms of the excitation errors sg,h and Fourier potentials Ug,h,g−h, viz [2ks_g={{U_g(U_h^2 - U_{g-h}^2)m}\over {U_hU_{g-h}m_0}}; \quad 2ks_h={{U_h(U_g^2 - U_{g-h}^2)m}\over {U_gU_{g-h}m_0}};\eqno (4.3.7.7)]where m and m0 are the relativistic and rest mass of the incident electron. Experimentally, this condition is obtained at a particular voltage and diffraction condition as vanishing line contrast of a Kikuchi or Kossel line – or as a reversal of a contrast feature. The second-order critical-voltage effect is then obtained as a special case, e.g. by the mass ratio: [(m/m_0)_{\rm crit}={{U_{2h}h^2}\over {U_h^2 - U_{2h}^2}}. \eqno (4.3.7.8)]Measurements have been carried out for a number of elements and alloy phases; see the review by Fox & Fisher (1988[link]) and later work on alloys by Fox & Tabbernor (1991[link]). Zone-axis critical voltages have been used by Matsuhata & Steeds (1987[link]). For analytical expressions and experimental determination of non-systematic critical voltages, see Matsuhata & Gjønnes (1994[link]).

Large gaps at the dispersion surface are associated with strong inner reflections – and a strong dynamical effect of two-beam-like character. The absolute magnitude of the gap – or its inverse, the extinction distance – can be obtained in different ways. Early measurements were based on the split of diffraction spots from a wedge, see Lehmpfuhl (1974[link]), or the corresponding fringe periods measured in bright- and dark-field micrographs (Ando, Ichimiya & Uyeda, 1974[link]). The most precise and applicable large-gap methods are based on the refinement of the fringe pattern in CBED discs from strong reflections, as developed by Goodman & Lehmpfuhl (1967[link]) and Voss, Lehmpfuhl & Smith (1980[link]). In recent years, this technique has been developed to high perfection by means of filtered CBED patterns, see Spence & Zuo (1992[link]) and papers referred to therein. See also Chapter 8.8[link] .

The gap at the dispersion surface can also be obtained directly from the split observed at the crossing of a weak Kikuchi line with a strong band. Gjønnes & Høier (1971[link]) showed how this can be used to determine strong low-order reflections. High voltage may improve the accuracy (Terasaki, Watanabe & Gjønnes, 1979[link]). The sensitivity of the intersecting Kikuchi-line (IKL) method was further increased by the use of CBED instead of Kikuchi patterns (Matsuhata, Tomokiyo, Watanabe & Eguchi, 1984[link]; Taftø & Gjønnes, 1985[link]). In a recent development, Høier, Bakken, Marthinsen & Holmestad (1993[link]) have measured the intensity distribution in the CBED discs around such intersections and have refined the main structure factors involved.

Two-dimensional rocking curves collected by CBED patterns around the axis of a dense zone are complicated by extensive many-beam dynamical interactions. The Bristol–Bath group (Saunders, Bird, Midgley & Vincent, 1994[link]) claim that the strong dynamic effects can be exploited to yield high sensitivity in refinement of low-order structure factors. They have also developed procedures for ab initio structure determination based on zone-axis patterns (Bird & Saunders, 1992[link]), see Chapter 8.8[link] .

Determination of phase invariants. It has been known for some time (e.g. Kambe, 1957[link]) that the dynamical three-beam case contains information about phase. As in the X-ray case, measurement of dynamical effects can be used to determine the value of triplets (Zuo, Høier & Spence, 1989[link]) and to determine phase angles to better than one tenth of a degree (Zuo, Spence, Downs & Mayer, 1993[link]) which is far better than any X-ray method. Bird (1990[link]) has pointed out that the phase of the absorption potential may differ from the phase of the real potential.

Thickness is an important parameter in electron-diffraction experiments. In structure-factor determination based on CBED patterns, thickness is often included in the refinement. Thickness can also be determined directly from profiles connected with large gaps at the dispersion surface (Goodman & Lehmpfuhl, 1967[link]; Blake, Jostsons, Kelly & Napier, 1978[link]; Glazer, Ramesh, Hilton, & Sarikaya, 1985[link]). The method is based on the outer part of the fringe profile, which is not so sensitive to the structure factor. The intensity minimum of the ith fringe in the diffracted disc occurs at a position corresponding to the excitation error si and expressed as [(s_i^2+1/\varepsilon _g^2)t^2=n_i^2,\eqno (4.3.7.9)]where ni is a small integer describing the order of the minimum. This equation can be arranged in two ways for graphic determination of thickness. The commonest method appears to be to plot (si/ni)2 against 1/ni2and then determine the thickness from the intersection with the ordinate axis (Kelly, Jostsons, Blake & Napier, 1975[link]). Glazer et al. (1985[link]) claim that the method originally proposed by Ackermann (1948[link]), where [s_i^2] is plotted against ni and the thickness is taken from the slope, is more accurate. In both cases, the outer part of the rocking curve is emphasized; exact knowledge of the gap is not necessary for a good determination of thickness, provided the assumption of a two-beam-like rocking curve is valid.

4.3.8. Crystal structure determination by high-resolution electron microscopy

| top | pdf |
J. C. H. Spencel and J. M. Cowleyb

4.3.8.1. Introduction

| top | pdf |

For the crystallographic study of real materials, high-resolution electron microscopy (HREM) can provide a great deal of information that is complementary to that obtainable by X-ray and neutron diffraction methods. In contrast to the statistically averaged information that these other methods provide, the great power of HREM lies in its ability to elucidate the detailed atomic arrangements of individual defects and the microcrystalline structure in real crystals. The defects and inhomogeneities of real crystals frequently exert a controlling influence on phase-transition mechanisms and more generally on all the electrical, mechanical, and thermal properties of solids. The real-space images that HREM provides (such as that shown in Fig. 4.3.8.1[link] ) can give an immediate and dramatic impression of chemical crystallography processes, unobtainable by other methods. Their atomic structure is of the utmost importance for an understanding of the properties of real materials. The HREM method has proven powerful for the determination of the structure of such defects and of the submicrometre-sized microcrystals that constitute many polyphase materials.

[Figure 4.3.8.1]

Figure 4.3.8.1| top | pdf |

Atomic resolution image of a tantalum-doped tungsten trioxide crystal (pseudo-cubic structure) showing extended crystallographic shear-plane defects (C), pentagonal-column hexagonal-tunnel (PCHT) defects (T), and metallization of the surface due to oxygen desorption (JEOL 4000EX, crystal thickness less than 200 Å, 400 kV, Cs = 1 mm). Atomic columns are black. [Smith, Bursill & Wood (1985[link]).]

In summary, HREM should be considered the technique of choice where a knowledge of microcrystal size, shape or morphology is required. In addition, it can be used to reveal the presence of line and planar defects, inclusions, grain boundaries and phase boundaries, and, in favourable cases, to determine atomic structure. Surface atomic structure and reconstruction have also been studied by HREM. However, meaningful results in this field require accurately controlled ultra-high-vacuum conditions. The determination of the atomic structure of point defects by HREM so far has proven extremely difficult, but this situation is likely to change in the near future.

The following sections are not intended to review the applications of HREM, but rather to provide a summary of the main theoretical results of proven usefulness in the field, a selected bibliography, and recommendations for good experimental practice. At the time of writing (1997), the point resolution of HREM machines lies between 1 and 2 Å.

The function of the objective lens in an electron microscope is to perform a Fourier synthesis of the Bragg-diffracted electron beams scattered (in transmission) by a thin crystal, in order to produce a real-space electron image in the plane r. This electron image intensity can be written [|\psi({\bf r})|{}^2=\big|\textstyle\int\Psi({\bf u})\exp\{2\pi i {\bf u\cdot r}\}P({\bf u})\exp\{i\chi({\bf u})\}\,{\rm d}{\bf u}\big|^2, \eqno (4.3.8.1)]where [\Psi({\bf u})] represents the complex amplitude of the diffracted wave after diffraction in the crystal as a function of the reciprocal-lattice vector u [magnitude [(2\sin\theta)/\lambda]] in the plane perpendicular to the beam, so that the wavevector of an incident plane wave is written [{\bf K}_0={\bf k}_z+2\pi{\bf u}]. Following the convention of Section 2.5.2[link] in IT B (2001[link]), we write [|{\bf K}_0|=2\pi\lambda^{-1}]. The function χ(u) is the phase factor for the objective-lens transfer function and P(u) describes the effect of the objective aperture: [P({\bf u}) =\cases{1 \quad\hbox{for }|{\bf u}|\lt u_0 \cr0 \quad\hbox{for }|{\bf u}|\ge u_0.}]

For a periodic object, the image wavefunction is given by summing the contributions from the set of reciprocal-lattice points, g, so that [|\psi({\bf r})|{}^2=\bigg|\textstyle\sum\limits_{\bf g}\Psi_{\bf g}\exp\{2\pi i{\bf g\cdot r}\}P({\bf g})\exp\{i\chi({\bf g})\}\bigg|^2. \eqno (4.3.8.2)]For atomic resolution, with [u_0\approx] 1 Å−1, it is apparent that, for all but the simplest structures and smallest unit cells, this synthesis will involve many hundreds of Bragg beams. A scattering calculation must involve an even larger number of beams than those that contribute resolvable detail to the image, since, as described in Section 2.5.2[link] in IT B (2001[link]), all beams interact strongly through multiple coherent scattering. The theoretical basis for HREM image interpretation is therefore the dynamical theory of electron diffraction in the transmission (or Laue) geometry [see Chapter 5.2[link] in IT B (2001[link])]. The resolution of HREM images is limited by the aberrations of the objective electron lens (notably spherical aberration) and by electronic instabilities. An intuitive understanding of the complicated effect of these factors on image formation from multiply scattered Bragg beams is generally not possible. To provide a basis for understanding, therefore, the following section treats the simplified case of few-beam `lattice-fringe' images, in order to expose the relationship between the crystal potential, its structure factors, electron-lens aberrations, and the electron image.

Image formation in the transmission electron microscope is conventionally treated by analogy with the Abbe theory of coherent optical imaging. The overall process is subdivided as follows. (a) The problem of beam–specimen interaction for a collimated kilovolt electron beam traversing a thin parallel-sided slab of crystal in a given orientation. The solution to this problem gives the elastically scattered dynamical electron wavefunction [\psi({\bf r})], where r is a two-dimensional vector lying in the downstream surface of the slab. Computer algorithms for dynamical scattering are described in Section 4.3.6[link]. (b) The effects of the objective lens are incorporated by multiplying the Fourier transform of [\psi({\bf r})] by a function T(u), which describes both the wavefront aberration of the lens and the diffraction-limiting effects of any apertures. The dominant aberrations are spherical aberration, astigmatism, and defect of focus. The image intensity is then formed from the modulus squared of the Fourier transform of this product. (c) All partial coherence effects may be incorporated by repeating this procedure for each of the component energies and directions that make up the illumination from an extended electron source, and summing the resulting intensities. Because this procedure requires a separate dynamical calculation for each component direction of the incident beam, a number of useful approximations of restricted validity have been developed; these are described in Subsection 4.3.8.4[link]. This treatment of partial coherence assumes that a perfectly incoherent effective source can be identified. For field-emission HREM instruments, a coherent sum (over directions) of complex image wavefunctions may be required.

General treatments of the subject of HREM can be found in the texts by Cowley (1981[link]) and Spence (1988b[link]). The sign conventions used throughout the following are consistent with the standard crystallographic convention of Section 2.5.2[link] of IT B (2001[link]), which assumes a plane wave of form [\exp\{-i({\bf k\cdot r}-\omega t)\}] and so is consistent with X-ray usage.

4.3.8.2. Lattice-fringe images

| top | pdf |

We consider few-beam lattice images, in order to understand the effects of instrumental factors on electron images, and to expose the conditions under which they faithfully represent the scattering object. The case of two-beam lattice images is instructive and contains, in simplified form, most of the features seen in more complicated many-beam images. These fringes were first observed by Menter (1956[link]) and further studied in the pioneering work of Komoda (1964[link]) and others [see Spence (1988b[link]) for references to early work]. The electron-microscope optic-axis orientation, the electron beam, and the crystal setting are indicated in Fig. 4.3.8.2[link] . If an objective aperture is used that excludes all but the two beams shown from contributing to the image, equation (4.3.8.2)[link] gives the image intensity along direction g for a centrosymmetric crystal of thickness t as [\eqalignno{ I(x,t) &=|\Psi_0(t)|^2+|\Psi_{\bf g}(t)|^2 \cr &\quad +2|\Psi_0||\Psi_{\bf g}|\cos\{2\pi x/d_{\bf g}+\chi(u_{\bf g})\eta_{\bf g}(t)-\eta_0(t)\}. & (4.3.8.3)}]

[Figure 4.3.8.2]

Figure 4.3.8.2| top | pdf |

Imaging conditions for few-beam lattice images. For three-beam axial imaging shown in (c), the formation of half-period fringes is also shown.

The Bragg-diffracted beams have complex amplitudes [\Psi_{\bf g}(t)=|\Psi_{\bf g}(t)|\exp\{i\eta_{\bf g}(t)\}]. The lattice-plane period is [d_{\bf g}] in direction g [Miller indices (hkl)]. The lens-aberration phase function, including only the effects of defocus Δf and spherical aberration (coefficient [C_s]), is given by [\chi(u_{\bf g})=(2\pi/\lambda)\{(\Delta f\lambda^2u^2_{\bf g}/2)+C_s\lambda^4u^4_{\bf g}/4\}. \eqno (4.3.8.4)]The effects of astigmatism and higher-order aberrations have been ignored. The defocus, Δf, is negative for the objective lens weakened (i.e. the focal length increased, giving a bright first Fresnel-edge fringe). The magnitude of the reciprocal-lattice vector [u_g=d_g^{-1}=(2\sin\theta_B)/\lambda], where [\theta_B] is the Bragg angle. If these two Bragg beams were the only beams excited in the crystal (a poor approximation for quantitative work), their amplitudes would be given by the `two-beam' dynamical theory of electron diffraction as [\eqalignno{ \Psi_0(t) &=\{\cos[\pi t(1+w^2)^{1/2}/\xi_{\bf g}]+iw(1+w^2)^{-1/2} \cr &\quad \times\sin[\pi t(1+w^2)^{1/2}/\xi_{\bf g}]\}\exp(-i\pi s_{\bf g} t) \cr \Psi_{\bf g}(t) &= i(1+w^2)^{-1/2}\sin[\pi t(1+w^2)^{1/2}/\xi_{\bf g}] \cr&\quad\times \exp(-\pi is_{\bf g} t), &(4.3.8.5)}]where [\xi_{\bf g}] is the two-beam extinction distance, [V_{\bf g}=\pi/(\sigma\xi_{\bf g})] is a Fourier coefficient of crystal potential, [s_{\bf g}] is the excitation error (see Fig. 4.3.8.2[link]), [w=s_{\bf g}\xi_{\bf g}], and the interaction parameter σ is defined in Section 2.5.2[link] of IT B (2001[link]).

The two-beam image intensity given by equation (4.3.8.3)[link] therefore depends on the parameters of crystal thickness (t), orientation [(s_{\bf g})], structure factor [(V_{\bf g})], objective-lens defocus Δf, and spherical-aberration constant [C_s]. We consider first the variation of lattice fringes with crystal thickness in the two-beam approximation (Cowley, 1959[link]; Hashimoto, Mannami & Naiki, 1961[link]). At the exact Bragg condition [(s_{\bf g}=0)], equations (4.3.8.5)[link] and (4.3.8.3)[link] give [I(x,t)=1-\sin(2\pi t/\xi_{\bf g})\sin[2\pi x/d+\chi(u_{\bf g})]. \eqno (4.3.8.6)]If we consider a wedge-shaped crystal with the electron beam approximately normal to the wedge surface and edge, and take x and g parallel to the edge, this equation shows that sinusoidal lattice fringes are expected whose contrast falls to zero (and reverses sign) at thicknesses of [t_n=n\xi_{\bf g}/2]. This apparent abrupt translation of fringes (by d/2 in the direction x) at particular thicknesses is also seen in some experimental many-beam images. The effect of changes in focus (due perhaps to variations in lens current) is seen to result in a translation of the fringes (in direction x), while time-dependent variations in the accelerating voltage have a similar effect. Hence, time-dependent variations of the lens focal length or the accelerating voltage result in reduced image contrast (see below). If the illumination makes a small angle [\alpha=\lambda u'] with the optic axis, the intensity becomes [\eqalign{ I(x,\alpha)&=|\Psi_0|^2+|\Psi_{\bf g}|^2+2|\Psi_{\bf g}||\Psi_0| \cr &\quad\times\cos[\chi(-u_{\bf g}-u')-\chi(u')+2\pi x/d+\eta_{\bf g}(t)-\eta_0(t)].}]For a uniformly intense line source subtending a semiangle [\theta_c], the total lattice-fringe intensity is [I(x)=(1/\theta_c)\textstyle\int I(x,\alpha)\,{\rm d}\alpha.]The resulting fringe visibility [C=(I_{\rm max}-I_{\rm min})/(I_{\rm max}+I_{\rm min})] is proportional to [C=(\sin\beta)/\beta], where [\beta=2\pi\Delta f\theta_c/d]. The contrast falls to zero for β = π, so that the range of focus over which fringes are expected is [\Delta z=d/\theta_c]. This is the approximate depth of field for lattice images due to the effects of the finite source size alone.

The case of three-beam fringes in the axial orientation is of more practical importance [see Fig. 4.3.8.2(b)[link]]. The image intensity for [\Psi_{\bf g}=\Psi _{-{\bf g}}] and [s_{\bf g}=s_{-{\bf g}}] is [\eqalignno{ I(x,t)&=|\Psi_0|^2+2|\Psi_{\bf g}|^2+2|\Psi_{\bf g}|^2\cos(4\pi x/d) \cr &\quad+4|\Psi_0||\Psi_{\bf g}|\cos(2\pi x/d) \cr &\quad\times\cos[\chi(u_{\bf g})+\eta_{\bf g}(t)-\eta_0(t)]. &(4.3.8.7)}]The lattice image is seen to consist of a constant background plus cosine fringes with the lattice spacing, together with cosine fringes of half this spacing. The contribution of the half-spacing fringes is independent of instrumental parameters (and therefore of electronic instabilities if [\theta_c=0]). These fringes constitute an important HREM image artifact. For kinematic scattering, [\eta_{\bf g}(t)-\eta_0(t)=-\pi/2] and only the half-period fringes will then be seen if [\chi(u_{\bf g})=n\pi], or for focus settings [\Delta f=n\lambda^{-1}u^{-2}_{\bf g}-C_s\lambda^2u^2_{\bf g}/2. \eqno (4.3.8.8)]Fig. 4.3.8.2(c)[link] indicates the form of the fringes expected for two focus settings with differing half-period contributions. As in the case of two-beam fringes, dynamical scattering may cause [\Psi_0] to be severely attenuated at certain thicknesses, resulting also in a strong half-period contribution to the image.

Changes of 2π in [\chi(u_{\bf g})] in equation (4.3.8.7)[link] leave I(x, t) unchanged. Thus, changes of defocus by amounts [\Delta f_f=2n/(\lambda u^2_{\bf g}) \eqno (4.3.8.9)]or changes in [C_s] by [\Delta C_s=4n/(\lambda^3u^4_{\bf g}) \eqno (4.3.8.10)]yield identical images. The images are thus periodic in both Δf and [C_s]. This is a restricted example of the more general phenomenon of n-beam Fourier imaging discussed in Subsection 4.3.8.3[link].

We note that only a single Fourier period will be seen if [\Delta f_f] is less than the depth of field Δz. This leads to the approximate condition [\Theta_c\gt\lambda/d], which, when combined with the Bragg law, indicates that a single period only of images will be seen when adjacent diffraction discs just overlap.

The axial three-beam fringes will coincide with the lattice planes, and show atom positions as dark if [\chi(u_{\bf g})=(2n-1/2)\pi] and [\eta_0(t)-\eta_{\bf g}(t)=-\pi/2]. This total phase shift of −π between [\Psi_0] and the scattered beams is the desirable imaging condition for phase contrast, giving rise to dark atom positions on a bright background. This requires [C_s=(4n-1)/(\lambda^3u^4_{\bf g})-2\Delta f/(\lambda^2u^2_{\bf g})]as a condition for identical axial three-beam lattice images for [n=0,1,2,\ldots]. This family of lines has been plotted in Fig. 4.3.8.3[link] for the (111) planes of silicon. Dashed lines denote the locus of `white-atom' images (reversed contrast fringes), while the dotted lines indicate half-period images. In practice, the depth of field is limited by the finite illumination aperture [\theta_c], and few-beam lattice-image contrast will be a maximum at the stationary-phase focus setting, given by [\Delta f_0=-C_s\lambda^2u^2_{\bf g}. \eqno (4.3.8.11)]

[Figure 4.3.8.3]

Figure 4.3.8.3| top | pdf |

A summary of three- (or five-) beam axial imaging conditions. Here, Δff is the Fourier image period, Δ f0 the stationary-phase focus, Cs(0) the image period in Cs, and a scattering phase of −π/2 is assumed. The lines are drawn for the (111) planes of silicon at 100 kV with θc = 1.4 mrad.

This choice of focus ensures [\nabla\chi(u)=0] for [u=u_{\bf g}], and thus ensures the most favourable trade-off between increasing [\theta_c] and loss of fringe contrast for lattice planes g. Note that [\Delta f_0] is not equal to the Scherzer focus [\Delta f_s] (see below). This focus setting is also indicated on Fig. 4.3.8.3[link], and indicates the instrumental conditions which produce the most intense (111) three- (or five-) beam axial fringes in silicon. For three-beam axial fringes of spacing d, it can be shown that the depth of field [\Delta z] is approximately [\Delta z=(\ln2)^{1/2}d/\theta_c\pi. \eqno (4.3.8.12)]This depth of field, within which strong fringes will be seen, is indicated as a boundary on Fig. 4.3.8.3[link]. Thus, the finer the image detail, the smaller is the focal range over which it may be observed, for a given illumination aperture [\theta_c].

Fig. 4.3.8.4[link] shows an exact dynamical calculation for the contrast of three-beam axial fringes as a function of Δf in the neighbourhood of [\Delta f_0]. Both reversed contrast and half-period fringes are noted. The effects of electronic instabilities on lattice images are discussed in Subsection 4.3.8.3[link]. It is assumed above that [\theta_c] is sufficiently small to allow the neglect of any changes in diffraction conditions (Ewald-sphere orientation) within [\Theta_c]. Under a similar approximation but without the approximations of transfer theory, Desseaux, Renault & Bourret (1977[link]) have analysed the effect of beam divergence on two-dimensional five-beam axial lattice fringes.

[Figure 4.3.8.4]

Figure 4.3.8.4| top | pdf |

The contrast of few-beam lattice images as a function of focus in the neighbourhood of the stationary-phase focus [see Olsen & Spence (1981[link])].

When two-dimensional patterns of fringes are considered, the Fourier imaging conditions become more complex (see Subsection 4.3.8.3[link]), but half-period fringe systems and reversed-contrast images are still seen. For example, in a cubic projection, a focus change of [\Delta f_f/2] results in an image shifted by half a unit cell along the cell diagonal. It is readily shown that [\exp[i\chi(\Delta\,f)]=\exp[i\chi(\Delta\, f+\Delta\, f_f)]]if [\Delta f_f=2na^2/\lambda+2mb^2/\lambda] when n, m are integers and a and b are the two dimensions of any orthogonal unit cell that can be chosen for [\Psi_p(x,y)]. Thus, changes in focus by [\Delta f_f(n,m)] produce identical images in crystals for which such a cell can be chosen, regardless of the number of beams contributing (Cowley & Moodie, 1960[link]).

For closed-form expressions for the few-beam (up to 10 beams) two-dimensional dynamical Bragg-beam amplitudes [\Psi_{\bf g}] in orientations of high symmetry, the reader is referred to the work of Fukuhara (1966[link]).

4.3.8.3. Crystal structure images

| top | pdf |

We define a crystal structure image as a high-resolution electron micrograph that faithfully represents a projection of a crystal structure to some limited resolution, and which was obtained using instrumental conditions that are independent of the structure, and so require no a priori knowledge of the structure. The resolution of these images is discussed in Subsection 4.3.8.6[link], and their variation with instrumental parameters in Subsection 4.3.8.4[link].

Equation (4.3.8.2)[link] must now be modified to take account of the finite electron source size used and of the effects of the range of energies present in the electron beam. For a perfect crystal we may write, as in equation (2.5.2.36)[link] in IT B (2001[link]), [I_T({\bf r})=\textstyle\int\!\!\int|\psi({\bf u}',\Delta f,{\bf r})|^2 G({\bf u}') B(\Delta f,{\bf u}')\,{\rm d}{\bf u}'{\rm d}\Delta f \eqno (4.3.8.13a)]for the total image intensity due to an electron source whose normalized distribution of wavevectors is [G({\bf u}')], where [{\bf u}'] has components [u_1,v_1], and which extends over a range of energies corresponding to the distribution of focus [B(\Delta f,{\bf u})]. If χ is also assumed to vary linearly across [\theta_c] and changes in the diffraction conditions over this range are assumed to make only negligible changes in the diffracted-beam amplitude [\Psi_{\bf g}], the expression for a Fourier coefficient of the total image intensity [I_T({\bf r})] becomes [\eqalignno{ I_{\bf g} &=\textstyle\sum\limits_{\bf h} \Psi_{\bf h}\exp\{-i\chi({\bf h})\}\gamma\{\nabla\chi({\bf h})-\nabla\chi({\bf h-g})\} \cr &\quad\times\psi^*_{\bf h-g}\exp\{i\chi({\bf h-g})\}\beta\{\textstyle{1\over2}({\bf h}^2-|{\bf h}-{\bf g}|^2)^2\}, \cr&&(4.3.8.13b)}]where γ(h) and β(g) are the Fourier transforms of [G({\bf u}')] and [B(\Delta f,{\bf u}')], respectively.

For the imaging of very thin crystals, and particularly for the case of defects in crystals, which are frequently the objects of particular interest, we give here some useful approximations for HREM structure images in terms of the continuous projected crystal potential [\varphi(x,y)=(1/t)\textstyle\int\limits^t_0 \varphi(x,y,z)\,{\rm d} z,]where the projection is taken in the electron-beam direction. A brief summary of the use of these approximations is included in Section 2.5.2[link] of IT B (2001[link]) and computing methods are discussed in Subsection 4.3.8.5[link] and Section 4.3.4[link].

The projected-charge-density (PCD) approximation (Cowley & Moodie, 1960[link]) gives the HREM image intensity (for the simplified case where [C_s=0]) as [I(x,y)=1+(\Delta f\lambda\sigma/2\pi \varepsilon_0\varepsilon)\rho_p(x,y), \eqno (4.3.8.13c)]where [\rho_p(x,y)] is the projected charge density for the specimen (including the nuclear contribution) and is related to [\varphi_p(x,y)] through Poisson's equation. Here, [\varepsilon_0\varepsilon] is the specimen dielectric constant. This approximation, unlike the weak-phase-object approximation (WPO), includes multiple scattering to all orders of the Born series, within the approximation that the component of the scattering vector is zero in the beam direction (a `flat' Ewald sphere). Contrast is found to be proportional to defocus and to [\rho_p(x,y)]. The failure conditions of this approximation are discussed by Lynch, Moodie & O'Keefe (1975[link]); briefly, it fails for [\chi(u_0)\gt\pi/2] (and hence if [C_s], Δf or [u_0] becomes large) or for large thicknesses t (t [\lt] 7 nm is suggested for specimens of medium atomic weight and λ = 0.037 Å). The PCD result becomes increasingly accurate with increasing accelerating voltage for small [C_s].

The WPO approximation has been used extensively in combination with the Scherzer-focus condition (Scherzer, 1949[link]) for the interpretation of structure images (Cowley & Iijima, 1972[link]). This approximation neglects multiple scattering of the beam electron and thereby allows the application of the methods of linear transfer theory from optics. The image intensity is then given, for plane-wave illumination, by [\eqalignno{ I(x,y) &=1+2\sigma\varphi_p(x,y)*{\cal F}\{\sin\chi(u,v)P(u,v)\} \cr &=1+2\sigma\varphi_p(x,y)* S(x,y), & (4.3.8.14)}]where [\cal F] denotes Fourier transform, * denotes convolution, and u and v are orthogonal components of the two-dimensional scattering vector u. The function S(x, y) is sharply peaked and negative at the `Scherzer focus'[\Delta f = \Delta f_s=1.2(C_s\lambda)^{1/2} \eqno (4.3.8.15a)]and the optimum objective aperture size [\theta_0=1.5(\lambda/C_s)^{1/4}. \eqno (4.3.8.15b)]It forms the impulse response of an electron microscope for phase contrast. Contrast is found to be proportional to [\varphi_p] and to the interaction parameter σ, which increases very slowly with accelerating voltage above about 500 keV. The point resolution [see Subsection 2.5.2.9[link] of IT B (2001[link]) and Subsection 4.3.8.6[link]] is conventionally defined from equation (4.3.8.15b) as [\lambda/\theta_0], or [d_p=0.66 \, C^{1/4}_s \lambda^{3/4}. \eqno (4.3.8.16)]

The occurrence of appreciable multiple scattering, and therefore of the failure of the WPO approximation, depends on specimen thickness, orientation, and accelerating voltage. Detailed comparisons between accurate multiple-scattering calculations, the PCD approximation, and the WPO approximation can be found in Lynch, Moodie & O'Keefe (1975[link]) and Jap & Glaeser (1978[link]). As a very rough guide, equation (4.3.8.14)[link] can be expected to fail for light elements at 100 keV and thicknesses greater than about 5.0 nm. Multiple-scattering effects have been predicted within single atoms of gold at 100 keV.

The WPO approximation may be extended to include the effects of an extended source (partial spatial coherence) and a range of incident electron-beam energies (temporal coherence). General methods for incorporating these effects in the presence of multiple scattering are described in Subsection 4.3.8.5[link]. Under the approximations of linear imaging outlined below, it can be shown (Wade & Frank, 1977[link]; Fejes, 1977[link]) that [\sin\chi(u,v)P(u,v)] in equation (4.3.8.14)[link] may be replaced by [\eqalignno{\quad A'({\bf u}) &=P({\bf u})\exp[i\chi({\bf u})]\exp(-\pi^2\Delta^2\lambda^2{\bf u}^4/2)\gamma(\nabla\chi/2\pi) \cr &=P({\bf u})\exp[i\chi({\bf u})]\exp(i\pi^2\Delta^2\lambda^2{\bf u}^4/2) \exp(-\pi^2u^2_0q)\cr & &(4.3.8.17)}]if astigmatism is absent. Here, [{\bf u}=u{\bf i}+v{\bf j}] and [|{\bf u}|=2\theta/\lambda=(u^2+v^2)^{1/2}]. In addition, [\gamma({\bf u}')] is the Fourier transform of the source intensity distribution (assumed Gaussian), so that [\gamma(\nabla\chi/2\pi)] is small in regions where the slope of [\chi({\bf u}')] is large, resulting in severe attenuation of these spatial frequencies. If the illuminating beam divergence [\Theta_c] is chosen as the angular half width for which the distribution of source intensity falls to half its maximum value, then [\theta_c=\lambda u_0(\ln2)^{1/2}. \eqno (4.3.8.18)]The quantity q is defined by [q=(C_s\lambda^3{\bf u}^3+\Delta f\lambda{\bf u})^2+T2,]where T2 expresses a coupling between the effects of partial spatial coherence and temporal coherence. This term can frequently be neglected under HREM conditions [see Wade & Frank (1977[link]) for details]. The damping envelope due to chromatic effects is described by the parameter [\eqalignno{ \Delta= C_cQ &=C_c\left\{[\sigma^2(V_0)]/V^2_0+[4\sigma^{2}(I_0)]/I{^2_0}\right. \cr &\left.\quad+[\sigma^2(E_0)]/E{^2_0} \right\}^{1/2}, & (4.3.8.19)}]where [\sigma^2(V_0)] and [\sigma^2(I_0)] are the variances in the statistically independent fluctuations of accelerating voltage [V_0] and objective-lens current [I_0]. The r.m.s. value of the high voltage fluctuation is equal to the standard deviation [\sigma(V_0)=[\sigma^2(V_0)]^{1/2}]. The full width at half-maximum height of the energy distribution of electrons leaving the filament is [\Delta E=2(2\ln2)^{1/2}\sigma(E_0)=2.355[\sigma^2(E_0)]^{1/2}. \eqno (4.3.8.20)]Here, [C_c] is the chromatic aberration constant of the objective lens.

Equations (4.3.8.14)[link] and (4.3.8.17)[link] indicate that under linear imaging conditions the transfer function for HREM contains a chromatic damping envelope more severely attenuating than a Gaussian of width [U_0(\Delta)=[2/\pi\lambda\Delta]^{1/2},]which is present in the absence of any objective aperture P(u). The resulting resolution limit [d_i=[\pi\lambda\Delta/2]^{1/2} \eqno (4.3.8.21)]is known as the information resolution limit (see Subsection 4.3.8.6[link]) and depends on electronic instabilities and the thermal-energy spread of electrons leaving the filament. The reduction in the contribution of particular diffracted beams to the image due to limited spatial coherence is minimized over those extended regions for which [\nabla\chi({\bf u})] is small, called passbands, which occur when [\Delta f_n=[C_s\lambda(8n+3)/2]^{1/2}. \eqno (4.3.8.22)]The Scherzer focus [\Delta f_s] corresponds to n = 0. These passbands become narrower and move to higher u values with increasing n, but are subject also to chromatic damping effects. The passbands occur between spatial frequencies [U_1] and [U_2], where [U_{1,2}=C_s^{-1/4}\lambda^{-3/4}\{[(8n+2)/2]^{1/2}\pm1\}^{1/2}. \eqno (4.3.8.23)]Their use for extracting information beyond the point resolution of an electron microscope is further discussed in Subsection 4.3.8.6[link].

Fig. 4.3.8.5[link] shows transfer functions for a modern instrument for n = 0 and 1. Equations (4.3.8.14)[link] and (4.3.8.17)[link] provide a simple, useful, and popular approach to the interpretation of HREM images and valuable insights into resolution-limiting factors. However, it must be emphasized that these results apply only (amongst other conditions) for [\Phi_0\gg\Phi_{\bf g}] (in crystals) and therefore do not apply to the usual case of strong multiple electron scattering. Equation (4.3.8.13b)[link] does not make this approximation. In real space, for crystals, the alignment of columns of atoms in the beam direction rapidly leads to phase changes in the electron wavefunction that exceed π/2, leading to the failure of equation (4.3.8.14)[link]. Accurate quantitative comparisons of experimental and simulated HREM images must be based on equation (4.3.8.13a)[link], or possibly (4.3.8.13b)[link], with [\psi({\bf u}',\Delta f,{\bf r})] obtained from many-beam dynamical calculations of the type described in Subsection 4.3.8.5[link].

[Figure 4.3.8.5]

Figure 4.3.8.5| top | pdf |

(a) The transfer function for a 400 kV electron microscope with a point resolution of 1.7 Å at the Scherzer focus; the curve is based on equation (4.3.8.17)[link]. In (b) is shown a transfer function for similar conditions at the first `passband' focus [n = 1 in equation (4.3.8.22)[link]].

For the structure imaging of specific types of defects and materials, the following references are relevant. (i) For line defects viewed parallel to the line, d'Anterroches & Bourret (1984[link]); viewed normal to the line, Alexander, Spence, Shindo, Gottschalk & Long (1986[link]). (ii) For problems of variable lattice spacing (e.g. spinodal decomposition), Cockayne & Gronsky (1981[link]). (iii) For point defects and their ordering, in tunnel structures, Yagi & Cowley (1978[link]); in semiconductors, Zakharov, Pasemann & Rozhanski (1982[link]); in metals, Fields & Cowley (1978[link]). (iv) For interfaces, see the proceedings reported in Ultramicroscopy (1992), Vol. 40, No. 3. (v) For metals, Lovey, Coene, Van Dyck, Van Tendeloo, Van Landuyt & Amelinckx (1984[link]). (vi) For organic crystals, Kobayashi, Fujiyoshi & Uyeda (1982[link]). (vii) For a general review of applications in solid-state chemistry, see the collection of papers reported in Ultramicroscopy (1985), Vol. 18, Nos. 1–4. (viii) Radiation-damage effects are observed at atomic resolution by Horiuchi (1982[link]).

4.3.8.4. Parameters affecting HREM images

| top | pdf |

The instrumental parameters that affect HREM images include accelerating voltage, astigmatism, optic-axis alignment, focus setting Δf, spherical-aberration constant [C_s], beam divergence [\theta_c], and chromatic aberration constant [C_c]. Crystal parameters influencing HREM images include thickness, absorption, ionicity, and the alignment of the crystal zone axis with the beam, in addition to the structure factors and atom positions of the sample. The accurate measurement of electron wavelength or accelerating voltage has been discussed by many workers, including Uyeda, Hoier and others [see Fitzgerald & Johnson (1984[link]) for references]. The measurement of Kikuchi-line spacings from crystals of known structure appears to be the most accurate and convenient method for HREM work, and allows an overall accuracy of better than 0.2% in accelerating voltage. Fluctuations in accelerating voltage contribute to the chromatic damping term Δ in equation (4.3.8.19)[link] through the variance [\sigma^2(V_0)]. With the trend toward the use of higher accelerating voltages for HREM work, this term has become especially significant for the consideration of the information resolution limit [equation (4.3.8.21)[link]].

Techniques for the accurate measurement of astigmatism and chromatic aberration are described by Spence (1988b[link]). The displacement of images of small crystals with beam tilt may be used to measure [C_s]; alternatively, the curvature of higher-order Laue-zone lines in CBED patterns has been used. The method of Budinger & Glaeser (1976[link]) uses a similar dark-field image-displacement method to provide values for both Δf and [C_s], and appears to be the most convenient and accurate for HREM work. The analysis of optical diffractograms initiated by Thon and co-workers from HREM images of thin amorphous films provides an invaluable diagnostic aid for HREM work; however, the determination of [C_s] by this method is prone to large errors, especially at small defocus. Diffractograms provide a rapid method for the determination of focus setting (see Krivanek, 1976[link]) and in addition provide a sensitive indicator of specimen movement, astigmatism, and the damping-envelope constants Δ and [\Theta_c].

Misalignment of the electron beam , optic axis, and crystal axis in bright-field HREM work becomes increasingly important with increasing resolution and specimen thickness. The first-order effects of optical misalignment are an artifactual translation of spatial frequencies in the direction of misalignment by an amount proportional to the misalignment and to the square of spatial frequency. The corresponding phase shift is not observable in diffractograms. The effects of astigmatism on transfer functions for inclined illumination are discussed in Saxton (1978[link]).

The effects of misalignment of the beam with respect to the optic axis are discussed in detail by Smith, Saxton, O'Keefe, Wood & Stobbs (1983[link]), where it is found that all symmetry elements (except a mirror plane along the tilt direction) may be destroyed by misalignment. The maximum allowable misalignment for a given resolution δ in a specimen of thickness t is proportional to [\alpha=\delta/8 t. \eqno (4.3.8.24)]Misalignment of a crystalline specimen with respect to the beam may be distinguished from misalignment of the optic axis with respect to the beam by the fact that, in very thin crystals, the former does not destroy centres of symmetry in the image.

The use of known defect point-group symmetry (for example in stacking faults) to identify a point in a HREM image with a point in the structure and so to resolve the black or white atomic contrast ambiguity has been described (Olsen & Spence, 1981[link]). Structures containing screw or glide elements normal to the beam are particularly sensitive to misalignment, and errors as small as 0.2 mrad may substantially alter the image appearance.

A rapid comparison of images of amorphous material with the beam electronically tilted into several directions appears to be the best current method of aligning the beam with the optic axis, while switching to convergent-beam mode appears to be the most effective method of aligning the beam with the crystal axis. However, there is evidence that the angle of incidence of the incident beam is altered by this switching procedure.

The effects of misalignment and choice of beam divergence [\Theta_c] on HREM images of crystals containing dynamically forbidden reflections are reviewed by Nagakura, Nakamura & Suzuki (1982[link]) and Smith, Bursill & Wood (1985[link]). Here the dramatic example of rutile in the [001] orientation is used to demonstrate how a misalignment of less than 0.2 mrad of the electron beam with respect to the crystal axis can bring up a coarse set of fringes (4.6 Å), which produce an image of incorrect symmetry, since these correspond to structure factors that are forbidden both dynamically and kinematically.

Crystal thickness is most accurately determined from images of planar faults in known orientations, or from crystal morphology for small particles. It must otherwise be treated as a refinement parameter. Since small crystals (such as MgO smoke particles, which form as perfect cubes) provide such an independent method of thickness determination, they provide the most convincing test of dynamical imaging theory. The ability to match the contrast reversals and other detailed changes in HREM images as a function of either thickness or focus (or both) where these parameters have been measured by an independent method gives the greatest confidence in image interpretation. This approach, which has been applied in rather few cases [see, for example, O'Keefe, Spence, Hutchinson & Waddington (1985[link])] is strongly recommended. The tendency for n-beam dynamical HREM images to repeat with increasing thickness in cases where the wavefunction is dominated by just two Bloch waves has been analysed by several workers (Kambe, 1982[link]).

Since electron scattering factors are proportional to the difference between atomic number and X-ray scattering factors, and inversely proportional to the square of the scattering angle (see Section 4.3.1[link]), it has been known for many years that the low-order reflections that contribute to HREM images are extremely sensitive to the distribution of bonding electrons and so to the degree of ionicity of the species imaged. This observation has formed the basis of several charge-density-map determinations by convergent-beam electron diffraction [see, for example, Zuo, Spence & O'Keefe (1988[link])]. Studies of ionicity effects on HREM imaging can be found in Anstis, Lynch, Moodie & O'Keefe (1973[link]) and Fujiyoshi, Ishizuka, Tsuji, Kobayashi & Uyeda (1983[link]).

The depletion of the elastic portion of the dynamical electron wavefunction by inelastic crystal excitations (chiefly phonons, single-electron excitations, and plasmons) may have dramatic effects on the HREM images of thicker crystals (Pirouz, 1974[link]). For image formation by the elastic component, these effects may be described through the use of a complex `optical' potential and the appropriate Debye–Waller factor (see Section 2.5.1[link] ). However, existing calculations for the absorption coefficients derived from the imaginary part of this potential are frequently not applicable to lattice images because of the large objective apertures used in HREM work. It has been suggested that HREM images formed from electrons that suffer small energy losses (and so remain `in focus') but large-angle scattering events (within the objective aperture) due to phonon excitation may contribute high-resolution detail to images (Cowley, 1988[link]). For measurements of the imaginary part of the optical potential by electron diffraction, the reader is referred to the work of Voss, Lehmpfuhl & Smith (1980[link]), and references therein. All evidence suggests, however, that for the crystal thicknesses generally used for HREM work ([t\lt] 200 Å) the effects of `absorption' are small.

In summary, the general approach to the matching of computed and experimental HREM images proceeds as follows (Wilson, Spargo & Smith, 1982[link]). (i) Values of Δ, [\Theta_c], and [C_s] are determined by careful measurements under well defined conditions (electron-gun bias setting, illumination aperture size, specimen height as measured by focusing-lens currents, electron-source size, etc). These parameters are then taken as constants for all subsequent work under these instrumental conditions (assuming also continuous monitoring of electronic instabilities). (ii) For a particular structure refinement, the parameters of thickness and focus are then varied, together with the choice of atomic model, in dynamical computer simulations until agreement is obtained. Every effort should be made to match images as a function of thickness and focus. (iii) If agreement cannot be obtained, the effects of small misalignments must be investigated (Smith et al., 1985[link]). Crystals most sensitive to these include those containing reflections that are absent due to the presence of screw or glide elements normal to the beam.

4.3.8.5. Computing methods

| top | pdf |

The general formulations for the dynamical theory of electron diffraction in crystals have been described in Chapter 5.2[link] of IT B (2001[link]). In Section 4.3.6[link], the computing methods used for calculating diffraction-beam amplitudes have been outlined.

Given the diffracted-beam amplitudes, [\Psi_{\bf g}], the image is calculated by use of equations (4.3.8.2)[link], including, when appropriate, the modifications of (4.3.8.13b)[link].

The numerical methods that can be employed in relation to crystal-structure imaging make use of algorithms based on (i) matrix diagonalization, (ii) fast Fourier transforms, (iii) real-space convolution (Van Dyck, 1980[link]), (iv) Runge-Kutta (or similar) methods, or (v) power-series evaluation. Two other solutions, the Cowley–Moodie polynomial solution and the Feynman path-integral solution, have not been used extensively for numerical work. Methods (i) and (ii) have proven the most popular, with (ii) (the multislice method) being used most extensively for HREM image simulations. The availability of inexpensive array processors has made this technique highly efficient. A comparison of these two N-beam methods is given by Self, O'Keefe, Buseck & Spargo (1983[link]), who find the multislice method to be faster (time proportional to [N\log_2N]) than the diagonalization method (time proportional to [N^2]) for N [\gt] 16. Computing space increases roughly as [N^2] for the diagonalization method, and as N for the multislice. The problem of steeply inclined boundary conditions for multislice computations has been discussed by Ishizuka (1982[link]).

In the Bloch-wave formulation, the lattice image is given by [\eqalignno{ I({\bf r}) &=\textstyle\sum\limits_{i,\,j}\sum\limits_{\bf h,g}\,C^{(i)}_0 C^{(\,j)}_0 C^{(i)}_{\bf g} C^{(\,j)}_{\bf h}\exp \left\{i[2\pi(\gamma^{( i)}-\gamma^{(\,j)})t \right. \cr& \left. \quad +\,2\pi({\bf g-h})\cdot{\bf r}-\chi(\Delta f, C_s, {\bf g})+\chi(\Delta f, C_s,{\bf h})] \right\}, \cr&&(4.3.8.25)}]where [C^{(i)}_{\bf g}] and [\gamma^{(i)}] are the eigenvector elements and eigenvalues of the structure matrix [see Hirsch, Howie, Nicholson, Pashley & Whelan (1977a[link]) and Section 4.3.4[link]].

Using modern personal computers or workstations, it is now possible to build efficient single-user systems that allow interactive dynamical structure-image calculations. Either an image intensifier or a cooled scientific grade charge-coupled device and single-crystal scintillator screen may be used to record the images, which are then transferred into a computer (Daberkow, Herrmann, Liu & Rau, 1991[link]). This then allows for the possibility of automated alignment, stigmation and focusing to the level of accuracy needed at 0.1 nm point resolution (Krivanek & Mooney, 1993[link]). An image-matching search through trial structures, thickness and focus parameters can then be completed rapidly. Where large numbers of pixels, large dynamic range and high sensitivity are required, the Image Plate has definite advantages and so should find application in electron holography and biology (Shindo, Hiraga, Oikawa & Mori, 1990[link]).

For the calculation of images of defects, the method of periodic continuation has been used extensively (Grinton & Cowley, 1971[link]). Since, for kilovolt electrons traversing thin crystals, the transverse spreading of the dynamical wavefunction is limited (Cowley, 1981[link]), the complex image amplitude at a particular point on the specimen exit face depends only on the crystal potential within a cylinder a few ångströms in diameter, erected about that point (Spence, O'Keefe & Iijima, 1978[link]). The width of this cylinder depends on accelerating voltage, specimen thickness, and focus setting (see above references). Thus, small overlapping `patches' of exit-face wavefunction may be calculated in successive computations, and the results combined to form a larger area of image. The size of the `artificial superlattice' used should be increased until no change is found in the wavefunction over the central region of interest. For most defects, the positions of only a few atoms are important and, since the electron wavefunction is locally determined (for thin specimens at Scherzer focus), it appears that very large calculations are rarely needed for HREM work. The simulation of profile images of crystal surfaces at large defocus settings will, however, frequently be found to require large amounts of storage.

A new program should be tested to ensure that (a) under approximate two-beam conditions the calculated extinction distances for small-unit-cell crystals agree roughly with tabulated values (Hirsch et al., 1977b[link]), (b) the simulated dynamical images have the correct symmetry, (c) for small thickness, the Scherzer-focus images agree with the projected potential, and (d) images and beam intensities agree with those of a program known to be correct. The damping envelope (product representation) [equation (4.3.8.17)[link]] should only be used in a thin crystal with [\Phi_0\gt\Phi_{\bf g}]; in general, the effects of partial spatial and temporal coherence must be incorporated using equation (4.3.8.13a)[link] or (4.3.8.13b)[link], depending on whether variations in diffraction conditions over [\theta_c] are important. Thus, a separate multislice dynamical-image calculation for each component plane wave in the incident cone of illumination may be required, followed by an incoherent sum of all resulting images.

The outlook for obtaining higher resolution at the time of writing (1997) is broadly as follows. (1) The highest point resolution currently obtainable is close to 0.1 nm, and this has been obtained by taking advantage of the reduction in electron wavelength that occurs at high voltage [equation (4.3.8.16)[link]]. A summary of results from these machines can be found in Ultramicroscopy (1994), Vol. 56, Nos. 1–3, where applications to fullerenes, glasses, quasicrystals, interfaces, ceramics, semiconductors, metals and oxides and other systems may be found. Fig. 4.2.8.6[link] shows a typical result. High cost, and the effects of radiation damage (particularly at larger thickness where defects with higher free energies are likely to be found), may limit these machines to a few specialized laboratories in the future. The attainment of higher resolution through this approach depends on advances in high-voltage engineering. (2) Aberration coefficients may be reduced if higher magnetic fields can be produced in the pole piece, beyond the saturation flux of the specialized iron alloys currently used. Research into superconducting lenses has therefore continued for many years in a few laboratories. Fluctuations in lens current are also eliminated by this method. (3) Electron holography was originally developed for the purpose of improving electron-microscope resolution, and this approach is reviewed in the following section. (4) Electron–optical correction of aberrations has been under study for many years in work by Scherzer, Crewe, Beck, Krivanek, Lanio, Rose and others – results of recent experimental tests are described in Haider & Zach (1995[link]) and Krivanek, Dellby, Spence, Camps & Brown (1997[link]). The attainment of 0.1 nm point resolution is considered feasible. Aberration correctors will also provide benefits other than increased resolution, including greater space in the pole piece for increased sample tilt and access to X-ray detectors, etc.

[Figure 4.3.8.6]

Figure 4.3.8.6| top | pdf |

Structure image of a thin lamella of the 6H polytype of SiC projected along [110] and recorded at 1.2 MeV. Every atomic column (darker dots) is separately resolved at 0.109 nm spacing. The central horizontal strip contains a computer-simulated image; the structure is sketched at the left. [Courtesy of H. Ichinose (1994).]

The need for resolution improvement beyond 0.1 nm has been questioned – the structural information retrievable by a single HREM image is always limited by the fact that a projection is obtained. (This problem is particularly acute for glasses.) Methods for combining different projected images (particularly of defects) from the same region (Downing, Meisheng, Wenk & O'Keefe, 1990[link]) may now be as important as the search for higher resolution.

4.3.8.6. Resolution and hyper-resolution

| top | pdf |

Since the resolution of an instrument is a property of the instrument alone, whereas the ability to distinguish HREM image features due to adjacent atoms depends on the scattering properties of the atoms, the resolution of an electron microscope cannot easily be defined [see Subsection 2.5.2.9[link] in IT B (2001[link])]. The Rayleigh criterion was developed for the incoherent imaging of point sources and cannot be applied to coherent phase contrast. Only for very thin specimens of light elements for which it can be assumed that the scattering phase is −π/2 can the straightforward definition of point resolution [d_p] [equation (4.3.8.16)[link]] be applied. In general, the dynamical wavefunction across the exit face of a crystalline sample bears no simple relationship to the crystal structure, other than to preserve its symmetry and to be determined by the `local' crystal potential. The use of a dynamical `R factor' between computed and experimental images of a known structure has been suggested by several workers as the basis for a more general resolution definition.

For weakly scattering specimens, the most satisfactory method of measuring either the point resolution [d_p] or the information limit [d_i] [see equation (4.3.8.21)[link]] appears to be that of Frank (1975[link]). Here two successive micrographs of a thin amorphous film are recorded (under identical conditions) and the superimposed pair used to obtain a coherent optical diffractogram crossed by fringes. The fringes, which result from small displacements of the micrographs, extend only to the band limit [d^{-1}_i] of information common to both micrographs, and cannot be extended by photographic processing, noise, or increased exposure. By plotting this band limit against defocus, it is possible to determine both Δ and [\theta_c]. As an alternative, for thin crystalline samples of large-unit-cell materials, the param­eters Δ, [\theta_c], and [C_s] can be determined by matching computed and experimental images of crystals of known structure. It is the specification of these parameters (for a given electron intensity and wavelength) that is important in describing the performance of high-resolution electron microscopes. We note that certain conditions of focus or thickness may give a spurious impression of ultra-high resolution [see equations (4.3.8.7)[link] and (4.3.8.8)[link]].

Within the domain of linear imaging, implying, for the most part, the validity of the WPO approximation, many forms of image processing have been employed. These have been of particular importance for crystalline and non-crystalline biological materials and include image reconstruction [see Section 2.5.5[link] in IT B (2001[link])] and the derivation of three-dimensional structures from two-dimensional projections [see Section 2.5.6[link] in IT B (2001[link])]. For reviews, see also Saxton (1980a[link]), Frank (1980[link]), and Schiske (1975[link]). Several software packages now exist that are designed for image manipulation, Fourier analysis, and cross correlation; for details of these, see Saxton (1980a[link]) and Frank (1980[link]). The theoretical basis for the WPO approximation closely parallels that of axial holography in coherent optics, thus much of that literature can be applied to HREM image processing. Gabor's original proposal for holography was intended for electron microscopy [see Cowley (1981[link]) for a review].

The aim of image-processing schemes is the restoration of the exit-face wavefunction, given in equation (4.3.8.13a)[link]. The reconstruction of the crystal potential [\varphi_p({\bf r})] from this is a separate problem, since these are only simply related under the approximation of Subsection 4.3.8.3[link]. For a non-linear method that allows the reconstruction of the dynamical image wavefunction, based on equation (4.3.8.13b)[link], which thus includes the effects of multiple scattering, see Saxton (1980b[link]).

The concept of holographic reconstruction was introduced by Gabor (1948[link], 1949[link]) as a means of enhancing the resolution of electron microscopes. Gabor proposed that, if the information on relative phases of the image wave could be recorded by observing interference with a known reference wave, the phase modification due to the objective-lens aberrations could be removed. Of the many possible forms of electron holography (Cowley, 1994[link]), two show particular promise of useful improvements of resolution. In what may be called in-line TEM holography, a through-focus series of bright-field images is obtained with near-coherent illumination. With reference to the relatively strong transmitted beam, the relative phase and amplitude changes due to the specimen are derived from the variations of image intensity (see Van Dyck, Op de Beeck & Coene, 1994[link]). The tilt-series reconstruction method also shows considerable promise (Kirkland, Saxton, Chau, Tsuno & Kawasaki, 1995[link]).

In the alternative off-axis approach, the reference wave is that which passes by the specimen area in vacuum, and which is made to interfere with the wave transmitted through the specimen by use of an electrostatic biprism (Möllenstedt & Düker, 1956[link]). The hologram consists of a modulated pattern of interference fringes. The image wavefunction amplitude and phase are deduced from the contrast and lateral displacements of the fringes (Lichte, 1991[link]; Tonomura, 1992[link]). The process of reconstruction from the hologram to give the image wavefunction may be performed by optical-analogue or digital methods and can include the correction of the phase function to remove the effects of lens aberrations and the attendant limitation of resolution. The point resolution of electron microscopes has recently been exceeded by this method (Orchowski, Rau & Lichte, 1995[link]).

The aim of the holographic reconstructions is the restoration of the wavefunction at the exit face of the specimen as given by equation (4.3.8.13a)[link]. The reconstruction of the crystal potential [\varphi({\bf r})] from this is a separate problem, since the exit-face wavefunction and [\varphi({\bf r})] are simply related only under the WPO approximations of Subsection 4.3.8.3[link]. The possibility of deriving reconstructions from wavefunctions strongly affected by dynamical diffraction has been considered by a number of authors (for example, Van Dyck et al., 1994[link]). The problem does not appear to be solvable in general, but for special cases, such as perfect thin single crystals in exact axial orientations, considerable progress may be possible.

Since a single atom, or a column of atoms, acts as a lens with negative spherical aberration, methods for obtaining super-resolution using atoms as lenses have recently been proposed (Cowley, Spence & Smirnov, 1997[link]).

4.3.8.7. Alternative methods

| top | pdf |

A number of non-conventional imaging modes have been found useful in electron microscopy for particular applications. In scanning transmission electron microscopy (STEM), powerful electron lenses are used to focus the beam from a very small bright source, formed by a field-emission gun, to form a small probe that is scanned across the specimen. Some selected part of the transmitted electron beam (part of the coherent convergent-beam electron diffraction pattern produced) is detected to provide the image signal that is displayed or recorded in synchronism with the incident-beam scan. The principle of reciprocity suggests that, for equivalent lenses, apertures and column geometry, the resolution and contrast of STEM and TEM images will be identical (Cowley, 1969[link]). Practical considerations of instrumental convenience distinguish particularly useful STEM modes.

Crewe & Wall (1970[link]) showed that, if an annular detector is used to detect all electrons scattered outside the incident-beam cone, dark-field images could be obtained with high efficiency and with a resolution better than that of the bright-field mode by a factor of about 1.4. If the inner radius of the annular detector is made large (of the order of 10−1 rad for 100 kV electrons), the strong diffracted beams occurring for lower angles do not contribute to the resulting high-angle annular dark-field (HAADF) image (Howie, 1979[link]), which is produced mainly by thermal diffuse scattering. The HAADF mode has important advantages for particular purposes because the contrast is strongly dependent on the atomic number, Z, of the atoms present but is not strongly affected by dynamical diffraction effects and so shows near-linear variation with Z and with the atom-number density in the sample. Applications have been made to the imaging of small high-Z particles in low-Z supports, such as in supported metal catalysts (Treacy & Rice, 1989[link]) and to the high-resolution imaging of individual atomic rows in semiconductor crystals, showing the variations of composition across planar interfaces (Pennycook & Jesson, 1991[link]).

The STEM imaging modes may be readily correlated with microchemical analysis of selected specimen areas having lateral dimensions in the nanometre range, by application of the techniques of electron energy-loss spectroscopy or X-ray energy-dispersive analysis (Williams & Carter, 1996[link]; Section 4.3.4[link]). Also, diffraction patterns (coherent convergent-beam electron diffraction patterns) may be obtained from any chosen region having dimensions equal to those of the incident-beam diameter and as small as about 0.2 nm (Cowley, 1992[link]). The coherent interference between diffracted beams within such a pattern may provide information on the symmetries, and, ultimately, the atomic arrangement, within the illuminated area, which may be smaller than the projection of the crystal unit cell in the beam direction. This geometry has been used to extend resolution for crystalline samples beyond even the information resolution limit, di (Nellist, McCallum & Rodenburg, 1995[link]), and is the basis for an exact, non-perturbative inversion scheme for dynamical electron diffraction (Spence, 1998[link]).

The detection of secondary radiations (light, X-rays, low-energy `secondary' electrons, etc.) in STEM or the detection of energy losses of the incident electrons, resulting from particular elementary excitations of the atoms in a crystal, in TEM or STEM, may be used to form images showing the distributions in a crystal structure of particular atomic species. In principle, this may be extended to the chemical identification of individual atom types in the projection of crystal structures, but only limited success has been achieved in this direction because of the relatively low level of the signals available. The formation of atomic resolution images using inner-shell excitations, for example, is complicated by the Bragg scattering of these inelastically scattered electrons (Endoh, Hashimoto & Makita, 1994[link]; Spence & Lynch, 1982[link]).

Reflection electron microscopy (REM) has been shown to be a powerful technique for the study of the structures and defects of crystal surfaces with moderately high spatial resolution (Larsen & Dobson, 1988[link]), especially when performed in a specially built electron microscope having an ultra-high-vacuum specimen environment (Yagi, 1993[link]). Images are formed by detecting strong diffracted beams in the RHEED patterns produced when kilovolt electron beams are incident on flat crystal surfaces at grazing incidence angles of a few degrees. The images suffer from severe foreshortening in the beam direction, but, in directions at right angles to the beam, resolutions approaching 0.3 nm have been achieved (Koike, Kobayashi, Ozawa & Yagi, 1989[link]). Single-atom-high surface steps are imaged with high contrast, surface reconstructions involving only one or two monolayers are readily seen and phase transitions of surface superstructures may be followed.

The study of surface structure by use of high-resolution transmission electron microscopes has also been productive in particular cases. Images showing the structures of surface layers with near-atomic resolution have been obtained by the use of `forbidden' or `termination' reflections (Cherns, 1974[link]; Takayanagi, 1984[link]) and by phase-contrast imaging (Moodie & Warble, 1967[link]; Iijima, 1977[link]). The imaging of the profiles of the edges of thin or small crystals with clear resolution of the surface atomic layers has also been effective (Marks, 1986[link]). The introduction of the scanning tunnelling microscope (Binnig, Rohrer, Gerber & Weibel, 1983[link]) and other scanning probe microscopies has broadened the field of high-resolution surface structure imaging considerably.

4.3.8.8. Combined use of HREM and electron diffraction

| top | pdf |

For many materials of organic or biological origin, it is possible to obtain very thin crystals, only one or a few molecules thick, extending laterally over micrometre-size areas. These may give selected-area electron-diffraction patterns in electron microscopes with diffraction spots extending out to angles corresponding to d spacings as low as 0.1 nm. Because the materials are highly sensitive to electron irradiation, conventional bright-field images cannot be obtained with resolutions better than several nanometres. However, if images are obtained with very low electron doses and then a process of averaging over the content of a very large number of unit cells of the image is carried out, images showing detail down to the scale of 1 nm or less may be derived for the periodically repeated unit. From such images, it is possible to derive both the magnitudes and phases of the Fourier coefficients, the structure factors, out to some limit of d spacings, say [d_m]. From the diffraction patterns, the magnitudes of the structure factors may be deduced, with greater accuracy, out to a much smaller limit, [d_d]. By combination of the information from these two sources, it may be possible to obtain a greatly improved resolution for an enhanced image of the structure. This concept was first introduced by Unwin & Henderson (1975[link]), who derived images of the purple membrane from Halobacterium halobium, with greatly improved resolution, revealing its essential molecular configuration.

Recently, several methods of phase extension have been developed whereby the knowledge of the relative phases may be extended from the region of the diffraction pattern covered by the electron-microscope image transform to the outer parts. These include methods based on the use of the tangent formula or Sayre's equation (Dorset, 1994[link]; Dorset, McCourt, Fryer, Tivol & Turner, 1994[link]) and on the use of maximum-entropy concepts (Fryer & Gilmore, 1992[link]). Such methods have also been applied, with considerable success, to the case of some thin inorganic crystals (Fu et al., 1994[link]). In this case, the limitation on the resolution set by the electron-microscope images may be that due to the transfer function of the microscope, since radiation-damage effects are not so limiting. Then, the resolution achieved by the combined application of the electron diffraction data may represent an advance beyond that of normal HREM imaging. Difficulties may well arise, however, because the theoretical basis for the phase-extension methods is currently limited to the WPO approximation. A summary of the present situation is given in the book by Dorset (1995[link]).

Acknowledgements

The authors of Section 4.3.3[link] acknowledge with gratitude the contributions of Kenneth and Lise Hedberg, who made many helpful suggestions regarding the manuscript and carefully checked the numerical results for smoothness and consistency.

References

First citation Ackermann, I. (1948). Observations on the dynamical interference phenomena in convergent electron beams. II. Ann. Phys. (Leipzig), 2, 41–54.Google Scholar
First citation Ahn, C. C. & Krivanek, O. L. (1982). An EELS atlas. Available from Center for Solid State Science, Arizona State University, Tempe, Arizona 85287, USA.Google Scholar
First citation Ahn, C. C. & Rez, P. (1985). Inner shell edge profiles in electron energy loss spectroscopy. Ultramicroscopy, 17, 105–116.Google Scholar
First citation Alexander, H., Spence, J. C. H., Shindo, D., Gottschalk, H. & Long, N. (1986). Forbidden reflection lattice imaging for the determination of kink densities on partial dislocations. Philos. Mag. A53, 627–643.Google Scholar
First citation Altarelli, M. & Smith, S. Y. (1974). Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment and generalization. Phys. Rev. B, 9, 1290–1298.Google Scholar
First citation Andersson, B. (1975). Structure analysis of the γ-phase in the vanadium oxide system by electron diffraction studies. Acta Cryst. A31, 63–70.Google Scholar
First citation Ando, Y., Ichimiya, A. & Uyeda, R. (1974). A determination of values and signs of the 111 and 222 structure factors of silicon. Acta Cryst. A30, 600–601.Google Scholar
First citation Anstis, G. R., Lynch, D. F., Moodie, A. F. & O'Keefe, M. A. (1973). n-Beam lattice images. III. Upper limits of ionicity in W4Nb26P77. Acta Cryst. A29, 138–147.Google Scholar
First citation d'Anterroches, C. & Bourret, A. (1984). Atomic structure of [011] and [001] near-coincident tilt boundaries in germanium and silicon. Philos. Mag. A49, 783–807.Google Scholar
First citation Arnesen, S. P. & Seip, H. M. (1966). Studies on the failure of the first Born approximation in electron diffraction. V. Molybdenum- and tungsten hexacarbonyl. Acta Chem. Scand. 20, 2711–2727.Google Scholar
First citation Barrett, C. S. & Massalski, T. B. (1980). Structure of metals, 3rd revised ed. Oxford: Pergamon Press.Google Scholar
First citation Bartell, L. S. (1975). Modification of Glauber theory for dynamic scattering of electrons by polyatomic molecules. J. Chem. Phys. 63, 3750–3755.Google Scholar
First citation Bartell, L. S. & Brockway, L. O. (1953). The investigation of electron distribution in atoms by electron diffraction. Phys. Rev. 90, 833–838.Google Scholar
First citation Bartell, L. S. & Gavin, R. M. Jr (1964). Effects of electron correlation in X-ray and electron diffraction. J. Am. Chem. Soc. 86, 3493–3498.Google Scholar
First citation Bartell, L. S. & Miller, B. (1980). Extension of Glauber theory to account for intratarget diffraction in multicenter scattering. J. Chem. Phys. 72, 800–807.Google Scholar
First citation Bartell, L. S. & Wong, T. C. (1972). Three-atom scattering in gas-phase electron diffraction: a tractable limiting case. J. Chem. Phys. 56, 2364–2367.Google Scholar
First citation Batson, P. E. (1986). High energy resolution electron spectrometer for a 1 nm spatial analysis. Rev. Sci. Instrum. 57, 43–48.Google Scholar
First citation Batson, P. E. (1987). Spatially resolved interband spectroscopy. Physical aspects of microscopic characterization of materials, edited by J. Kirschner, K. Murata & J. A. Venables, pp. 189–195. Scanning Microscopy, Suppl. I.Google Scholar
First citation Batson, P. E. (1989). High resolution energy-loss spectroscopy. Ultramicroscopy, 28, 32–39.Google Scholar
First citation Batson, P. E. & Silcox, J. (1983). Experimental energy loss function, [Im[-1/\varepsilon(q,\omega)]], for aluminium. Phys. Rev. B, 27, 5224–5239.Google Scholar
First citation Berger, S. D. & McMullan, D. (1989). Parallel recording for an electron spectrometer on a scanning transmission electron microscope. Ultramicroscopy, 28, 122–125.Google Scholar
First citation Bernal, J. D. (1926). On the interpretation of X-ray single-crystal rotation photographs. Proc. R. Soc. London Ser. A, 113, 117–160.Google Scholar
First citation Bethe, H. A. (1928). Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. Leipzig, 87, 55–129.Google Scholar
First citation Bethe, H. A. (1930). Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. (Leipzig), 5, 325–400.Google Scholar
First citation Bianconi, A., Fritsch, E., Calas, G. & Petiau, J. (1985). X-ray absorption near edge structure of 3d transition elements in tetrahedral coordination: the effect of bond length variation. Phys. Rev. B, 32, 4292–4295.Google Scholar
First citation Biggs, F., Mendelsohn, L. B. & Mann, J. B. (1975). Hartree–Fock Compton profiles for the elements. At. Data Nucl. Data Tables, 16, 210–309.Google Scholar
First citation Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. (1983). Direct imaging of semiconductor surfaces. Phys. Rev. Lett. 50, 120–123.Google Scholar
First citation Bird, D. M. (1990). Absorption in high-energy electron diffraction from non-centrosymmetrical crystals. Acta Cryst. A46, 208–214.Google Scholar
First citation Bird, D. M. & King, Q. A. (1990). Absorptive form factors for high-energy electron diffraction. Acta Cryst. A46, 202–208.Google Scholar
First citation Bird, D. M. & Saunders, M. (1992). Inversion of convergent-beam electron diffraction patterns. Acta Cryst. A48, 555–562.Google Scholar
First citation Blackman, M. (1939). On the intensities of electron diffraction rings. Proc. R. Soc. London Ser. A, 173, 68–82.Google Scholar
First citation Blake, R. G., Jostsons, A., Kelly, P. M. & Napier, J. G. (1978). The determination of extinction distances and anomalous absorption coefficients by scanning electron microscopy. Philos. Mag. A37, 1–16.Google Scholar
First citation Boersch, H. (1954). Experimentelle Bestimmung der Energieverteilung in thermisch ausgelosten Elektronenstrahlen. Z. Phys. 139, 115–146.Google Scholar
First citation Bonham. R. A. (1965a). Multiple elastic intramolecular scattering in gas electron diffraction. J. Chem. Phys. 43, 1103–1109.Google Scholar
First citation Bonham, R. A. (1965b). Corrections to the incoherent scattering factor for electrons and X-rays. J. Chem. Phys. 43, 1460–1464.Google Scholar
First citation Bonham, R. A. (1966). Dynamic effects in gas electron diffraction. Trans. Am. Crystallogr. Assoc. 2, 165–172.Google Scholar
First citation Bonham, R. A. (1967). Some new relations connecting molecular properties and electron and X-ray diffraction intensities. J. Phys. Chem. 71, 856–862.Google Scholar
First citation Bonham, R. A. & Cox, H. L. Jr (1967). 40-kV electron scattering fom Ne, Ar, Kr, and Xe measured by the sector-microphotometer electron-diffraction method. J. Chem. Phys. 47, 3508–3517.Google Scholar
First citation Bonham, R. A. & Fink, M. (1974). High energy electron scattering, Chaps. 5 and 6. New York: Van Nostrand Reinhold.Google Scholar
First citation Bonham. R. A. & Iijima, T. (1965). Preliminary electron-diffraction study of H2 at small scattering angles. J. Chem. Phys. 42, 2612–2614.Google Scholar
First citation Bonham, R. A. & Su, L. S. (1966). Use of Hellman–Feynman and hyperviral theorems to obtain anharmonic vibration–rotation expectation values and their application to gas diffraction. J. Chem. Phys. 45, 2827–2831.Google Scholar
First citation Breitenstein, M., Endesfelder, A., Meyer, H. & Schweig, A. (1984). CI calculations of electron-scattering cross sections for some linear molecules. Chem. Phys. Lett. 108, 430–434.Google Scholar
First citation Breitenstein, M., Endesfelder, A., Meyer, H., Schweig, A. & Zittlau, W. (1983). Electron correlation effects in electron scattering cross-section calculations of N2. Chem. Phys. Lett. 97, 403–409.Google Scholar
First citation Breitenstein, M., Mawhorter, R. J., Meyer, H. & Schweig, A. (1984). Theoretical study of potential-energy differences from high-energy electron scattering cross sections of CO2. Phys. Rev. Lett. 53, 2398–2401.Google Scholar
First citation Breitenstein, M., Mawhorter, R. J., Meyer, H. & Schweig, A. (1986). Vibrational effects on electron–molecule scattering for polyatom in the first Born approximation: H2O. Mol. Phys. 57, 81–88.Google Scholar
First citation Bross, H. (1978a). Anisotropy of plasmon dispersion in Al. Phys. Lett. A, 64, 418–420.Google Scholar
First citation Bross, H. (1978b). Pseudopotential theory of the dielectric function of Al – the volume plasmon dispersion. J. Phys. F, 8, 2631–2649.Google Scholar
First citation Brydson, R., Sauer, H., Engle, W., Thomas, J. M., Zeitler, E., Kosugi, N. & Kuroda, H. (1989). Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: a test of structural sensitivity. J. Phys. Condens. Matter, 1, 797–812.Google Scholar
First citation Budinger, T. F. & Glaeser, R. M. (1976). Measurement of focus and spherical aberration of an electron microscope objective lens. Ultramicroscopy, 2, 31–41.Google Scholar
First citation Bunge, C. F., Barrientos, J. & Bunge, A. V. (1993). Roothaan–Hartree–Fock ground-state atomic wave functions: Slater-type orbital expansions and expectation values. At. Data Nucl. Data Tables, 53, 113–162.Google Scholar
First citation Bunge, H.-J. (1982). Texture analysis in materials science. London: Butterworth.Google Scholar
First citation Bunyan, P. J. (1963). The effect of multiple elastic scattering in gas electron diffraction. Proc. Phys. Soc. 82, 1051–1057.Google Scholar
First citation Buxton, B. F. (1976). Bloch waves in high order Laue zone effects in high energy electron diffraction. Proc. R. Soc. London Ser. A, 300, 335–361.Google Scholar
First citation Castaing, R. & Henry, L. (1962). Filtrage magnétique des vitesses en microscopie électronique. C. R. Acad. Sci. Paris Sér. B, 255, 76–78.Google Scholar
First citation Chen, C. H. & Silcox, J. (1971). Detection of optical surface guided modes in thin graphite films by high energy electron scattering. Phys. Rev. Lett. 35, 390–393.Google Scholar
First citation Cherns, D. (1974). Direct resolution of surface steps by transmission electron microscopy. Philos. Mag. 30, 549–557.Google Scholar
First citation Cockayne, D. J. H. & Gronsky, R. (1981). Lattice fringe imaging of modulated structures. Philos. Mag. A44, 159–175.Google Scholar
First citation Coffman, D., Fink, M. & Wellenstein, H. (1985). Elastic small-angle electron scattering by He, Ne, and Ar at 35 keV. Phys. Rev. Lett. 55, 1392–1394.Google Scholar
First citation Colliex, C. (1984). Electron energy loss spectroscopy in the electron microscope. Advances in optical and electron microscopy, Vol. 9, edited by V. E. Cosslett & R. Barer, pp. 65–177. London: Academic Press.Google Scholar
First citation Colliex, C. (1985). An illustrated review on various factors governing the high spatial resolution capabilities in EELS microanalysis. Ultramicroscopy, 18, 131–150.Google Scholar
First citation Colliex, C., Gasgnier, M. & Trebbia, P. (1976). Analysis of the electron excitation spectra in heavy rare earch metals, hydrides and oxides. J. Phys. (Paris), 27, 397–406.Google Scholar
First citation Colliex, C., Manoubi, T., Gasgnier, M. & Brown, L. M. (1985). Near edge structures on EELS core-loss edges. Scanning Electron Microsc. 2, 489–512.Google Scholar
First citation Colliex, C., Maurice, J. L. & Ugarte, D. (1989). Frontiers of analytical electron microscopy with special reference to cluster and interface problems. Ultramicroscopy, 29, 31–43.Google Scholar
First citation Coulthard, M. A. (1967). A relativistic Hartree–Fock atomic field calculation. Proc. Phys. Soc. 91, 44–49.Google Scholar
First citation Cowley, J. M. (1959). The electron-optical imaging of crystal lattices. Acta Cryst. 12, 367–375.Google Scholar
First citation Cowley, J. M. (1961). Diffraction intensities from bent crystals. Acta Cryst. 14, 920–926.Google Scholar
First citation Cowley, J. M. (1969). Image contrast in transmission scanning electron microscope. Appl. Phys. Lett. 15, 58–59.Google Scholar
First citation Cowley, J. M. (1975). Diffraction physics. New York: North-Holland.Google Scholar
First citation Cowley, J. M. (1981). Diffraction physics, 2nd ed. New York: North-Holland.Google Scholar
First citation Cowley, J. M. (1988). Electron microscopy of crystals with time-dependent perturbations. Acta Cryst. A44, 847–853.Google Scholar
First citation Cowley, J. M. (1992). Coherent convergent beam diffraction. Electron diffraction techniques, Vol. 1, edited by J. M. Cowley, pp. 439–464. Oxford University Press.Google Scholar
First citation Cowley, J. M. (1994). Applications of electron holography. In Handbook of advanced materials testing, edited by N. P. Cheremisinoff & P. N. Cheremisinoff. New York: Marcel Dekker, Inc.Google Scholar
First citation Cowley, J. M. & Iijima, S. (1972). Electron microscope image contrast for thin crystals. Z. Naturforsch. Teil A, 27, 445–451.Google Scholar
First citation Cowley, J. M. & Moodie, A. F. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 10, 609–619.Google Scholar
First citation Cowley, J. M. & Moodie. A. F. (1960). Fourier images IV: the phase grating. Proc. Phys. Soc. (London), 76, 378–384.Google Scholar
First citation Cowley, J. M., Spence, J. C. & Smirnov, V. V. (1997). The enhancement of electron microscope resolution by the use of atomic focusers. Ultramicroscopy, 68, 135–148.Google Scholar
First citation Craven, A. J. & Buggy, T. W. (1981). Design considerations and performance of an analytical STEM. Ultramicroscopy, 7, 27–37.Google Scholar
First citation Crewe, A. V. (1977a). Post specimen optics in the STEM. I. General information. Optik (Stuttgart), 47, 299–312.Google Scholar
First citation Crewe, A. V. (1977b). Post specimen optics in the STEM. II. Optik (Stuttgart), 47, 371–380.Google Scholar
First citation Crewe, A. V. & Wall, J. (1970). A scanning microscope with 5 Å resolution. J. Mol. Biol. 48, 375–393.Google Scholar
First citation Cromer, D. T. & Waber, J. T. (1974). Atomic scattering factors for X-rays. In International tables for X-ray crystallography, Vol. IV, Section 2.2. Birmingham: Kynoch Press.Google Scholar
First citation Daberkow, I., Herrmann, K.-H., Liu, L. & Rau, W. (1991). Performance of electron image converters with YAG and CCD. Ultramicroscopy, 38, 215–224.Google Scholar
First citation Daniels, J., Festenberg, C. V., Raether, H. & Zeppenfeld, K. (1970). Optical constants of solids by electron spectroscopy. Springer tracts in modern physics, Vol. 54, pp. 78–135. New York: Springer-Verlag.Google Scholar
First citation Desseaux, J., Renault, A. & Bourret, A. (1977). Multibeam lattice images from germanium oriented in (001). Philos. Mag. 35, 357–363.Google Scholar
First citation Disko, M. M., Krivanek, O. L. & Rez, P. (1982). Orientation dependent extended fine structure in EELS. Phys. Rev. B, 25, 4252–4255.Google Scholar
First citation Dorset, D. L. (1991). Is electron crystallography possible? The direct determination of organic crystal structures. Ultramicroscopy, 38, 23–40.Google Scholar
First citation Dorset, D. L. (1994). Electron crystallography of organic molecules. Adv. Electron. Electron Phys. 88, 111–197.Google Scholar
First citation Dorset, D. L. (1995). Editor. Structural electron crystallography. New York/London: Plenum Press.Google Scholar
First citation Dorset, D. L., Jap, B. K., Ho, M. M. & Glaeser, R. M. (1979). Direct phasing of electron diffraction data from organic crystals: the effect of n-beam dynamical scattering. Acta Cryst. A35, 1001–1009.Google Scholar
First citation Dorset, D. L., McCourt, M. P., Fryer, J. R., Tivol, W. F. & Turner, J. N. (1994). The tangent formula in electron crystallography. Phase determination of copper perchlorophthalocyanine. Microsc. Soc. Am. Bull. 24, 398–404.Google Scholar
First citation Downing, K. H., Meisheng, H., Wenk, H. R. & O'Keefe, M. A. (1990). Resolution of oxygen atoms in staurolite by three dimensional transmission electron microscopy. Nature (London), 348, 525.Google Scholar
First citation Doyle, P. A. & Turner, P. S. (1968). Relativistic Hartree–Fock X-ray and electron scattering factors. Acta Cryst. A24, 390–397.Google Scholar
First citation Durham, J. P., Pendry, J. B. & Hodges, C. H. (1981). XANES: Determination of bond angles and multi-atom correlations in ordered and disordered systems. Solid State Commun. 8, 159–162.Google Scholar
First citation Egerton, R. F. (1978). Formulae for light element analysis by electron energy loss spectrometry. Ultramicroscopy, 3, 243–351.Google Scholar
First citation Egerton, R. F. (1979). K-shell ionization cross sections for use in microanalysis. Ultramicroscopy, 4, 169–179.Google Scholar
First citation Egerton, R. F. (1980a). The use of electron lenses between a TEM specimen and an electron spectrometer. Optik (Stuttgart), 56, 363–376.Google Scholar
First citation Egerton, R. F. (1980b). Design of an aberration-corrected electron spectrometer for the TEM. Optik (Stuttgart), 57, 229–242.Google Scholar
First citation Egerton, R. F. (1986). Electron energy loss spectroscopy in the electron microscope. New York/London: Plenum.Google Scholar
First citation Egerton, R. F. & Crozier, P. A. (1987). A compact parallel recording. J. Microsc. 148, 157.Google Scholar
First citation Endoh, H., Hashimoto, H. & Makita, Y. (1994). Theoretical and observed images of impurity atoms formed by L-shell ionization. Ultramicroscopy, 56, 108–120.Google Scholar
First citation Enge, H. A. (1967). Deflecting magnets. Focusing of charged particles, Vol. 2, edited by A. Septier, pp. 203–264. New York: Academic Press.Google Scholar
First citation Engel, W., Sauer, H., Zeitler, E., Brydson, R., Williams, B. G. & Thomas, J. M. (1988). Electron energy loss spectroscopy and the crystal chemistry of rhodizite. J. Chem. Soc. Faraday Trans. 1, 84, 617–629.Google Scholar
First citation Epstein, J. & Stewart, R. F. (1977). X-ray and electron scattering from diatomic molecules in the first Born approximation. J. Chem. Phys. 66, 4057–4064.Google Scholar
First citation Fano, U. (1961). Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1966–1978.Google Scholar
First citation Fejes, P. L. (1977). Approximations for the calculation of high-resolution electron-microscope images of thin films. Acta Cryst. A33, 109–113.Google Scholar
First citation Fields, P. M. & Cowley, J. M. (1978). Computed electron microscope images of atomic defects in f.c.c. metals. Acta Cryst. A34, 103–112.Google Scholar
First citation Fink, J. & Kisker, E. (1980). A method for rapid calculation of electron trajectories in multielement electrostatic cylinder lenses. Rev. Sci. Instrum. 51, 918–920.Google Scholar
First citation Fink, J. & Leising, G. (1986). Momentum-dependent dielectric functions of oriented trans-polyacetylene. Phys. Rev. B, 34, 5320–5328.Google Scholar
First citation Fink, J., Müller-Heinzerling, T., Pflüger, J., Scheerer, B., Dischler, B., Koidl, P., Bubenzer, A. & Sah, R. E. (1984). Investigation of hydrocarbon-plasma-generated carbon films by EELS. Phys. Rev. B, 30, 4713–4718.Google Scholar
First citation Fink, M., Bonham, R. A., Lee, J. S. & Ng, E. W. (1969). Large angle scattering from N2 with 40 keV electrons. Chem. Phys. Lett. 4, 347–351.Google Scholar
First citation Fink, M. & Kessler, J. (1966). Absolute Wirkungsquerschnitte für Elektronenstreuung um Kleine Winkel. Experimente sum Gültigkeitsbereich der Ersten Bornschen Näherung. Z. Phys. 196, 1–15.Google Scholar
First citation Fischer, D. W. (1970). Molecular orbital interpretation of the soft X-ray L23 emission and absorption spectra from some titanium and vanadium compounds. J. Appl. Phys. 41, 3561–3569.Google Scholar
First citation Fitzgerald, J. D. & Johnson, A. W. S. (1984). A simplified method of electron microscope voltage measurement. Ultramicroscopy, 12, 231–236.Google Scholar
First citation Fox, A. G. & Fisher, R. M. (1988). A summary of low-angle X-ray atomic scattering factors measured by the critical voltage effect in high energy electron diffraction. Aust. J. Phys. 41, 461–468.Google Scholar
First citation Fox, A. G., O'Keefe, M. A. & Tabbernor, M. A. (1989). Relativistic Hartree–Fock X-ray and electron atomic scattering factors at high angles. Acta Cryst. A45, 786–793.Google Scholar
First citation Fox, A. G. & Tabbernor, M. A. (1991). The bonding charge density of [\beta]′NiAl′′. Acta Metall. 39, 669–678.Google Scholar
First citation Frank, J. (1975). A practical resolution criterion in optics and electron microscopy. Optik (Stuttgart), 43, 25–34.Google Scholar
First citation Frank, J. (1980). The role of correlation techniques in computer image processing. Computer processing of electron microscope images. Topics in current physics, Vol. 13, edited by P. W. Hawkes, p. 187. Berlin/Heidelberg/New York: Springer.Google Scholar
First citation Fryer, J. R. & Gilmore, C. J. (1992). Structure determination by electron crystallography. Trans. Am. Crystallogr. Assoc. 28, 57–75.Google Scholar
First citation Fu, Z. Q., Huang, D. X., Li, F. H., Li, J. Q., Zhao, Z. X., Cheng, T. Z. & Fan, H. F. (1994). Incommensurate modulation in minute crystals revealed by combining high-resolution electron microscopy and electron diffraction. Ultramicroscopy, 54, 229–236.Google Scholar
First citation Fujiwara, K. (1959). Application of higher-order Born approximation to multiple elastic scattering of electrons in crystals. J. Phys. Soc. Jpn, 14, 1513–1524.Google Scholar
First citation Fujiwara, K. (1961). Relativistic dynamical theory of electron diffraction. J. Phys. Soc. Jpn, 16, 2226–2238.Google Scholar
First citation Fujiyoshi, Y., Ishizuka, K., Tsuji, M., Kobayashi, T. & Uyeda, N. (1983). Charge density distribution from high resolution molecular images. Proceedings of the 17th International Conference on High Voltage Electron Microscopy, p. 21.Google Scholar
First citation Fujiyoshi, Y., Mizusaki, T., Morikawa, K., Yamagishi, H., Aoki, Y., Kihara, H. & Harada, Y. (1991). Development of a superfluid helium stage for high-resolution electron microscopy. Ultramicroscopy, 38, 241–251.Google Scholar
First citation Fukuhara, A. (1966). Many-ray approximation in the dynamical theory of electron diffraction. J. Phys. Soc. Jpn, 21, 2645–2662.Google Scholar
First citation Gabor, D. (1948). A new microscope principle. Nature (London), 161, 777–778.Google Scholar
First citation Gabor, D. (1949). Microscopy of reconstructed wavefronts. Proc. R. Soc. London Ser. A, 197, 454–487.Google Scholar
First citation Geiger, J. (1964). Streuung von 25 keV-Elektronen an Gasen. II. Streuung an Neon, Argon, Krypton und Xenon. Z. Phys. 177, 138–145.Google Scholar
First citation Gibbons, P. C., Ritsko, J. J. & Schnatterly, S. E. (1975). Inelastic electron scattering spectrometer. Rev. Sci. Instrum. 46, 1546–1554.Google Scholar
First citation Gjønnes, J. (1964). A dynamic effect in electron diffraction by molecules. Acta Cryst. 17, 1075–1076.Google Scholar
First citation Gjønnes, J. & Høier, R. (1971). The application of non-systematic many-beam dynamic effects to structure-factor determination. Acta Cryst. A27, 313–316.Google Scholar
First citation Gjønnes, K. & Bøe, N. (1994). Refinement of temperature factors and charge distributions in YBa2Cu3O7 and YBa2(Cu,Co)3O7 from CBED intensities. Micron Microsc. Acta, 25, 29–44.Google Scholar
First citation Glauber, R. & Schomaker, V. (1953). The theory of electron diffraction. Phys. Rev. 89, 667–671.Google Scholar
First citation Glazer, J., Ramesh, R., Hilton, M. R. & Sarikaya, M. (1985). Comparison of convergent beam electron diffraction methods for determination of foil thickness. Philos. Mag. A52, 59–63.Google Scholar
First citation Goodman, P. (1976). Examination of the graphite structure using convergent-beam electron diffraction. Acta Cryst. A32, 793–798.Google Scholar
First citation Goodman, P. & Lehmpfuhl, G. (1967). Electron diffraction study of MgO h00 systematic interactions. Acta Cryst. 22, 14–24.Google Scholar
First citation Goodman, P. & Moodie, A. F. (1974). Numerical evaluation of N-beam wave-functions in electron scattering by the multislice method. Acta Cryst. A30, 280–290.Google Scholar
First citation Grinton, G. R. & Cowley, J. M. (1971). Phase and amplitude contrast in electron micrographs of biological materials. Optik (Stuttgart), 34, 221–233.Google Scholar
First citation Gritsaenko, G. S., Zvyagin, B. B., Boyarskaya, R. V., Gorshkov, A. I., Samotoin, N. D. & Frolova, K. E. (1969). Methods of electron microscopy of minerals. Moscow: Nauka.Google Scholar
First citation Grunes, L. A., Leapman, R. D., Wilker, C. N., Hoffmann, R. & Kunz, A. B. (1982). Oxygen K near-edge fine structure: an electron energy-loss investigation with comparisons to new theory for selected 3d transition-metal oxides. Phys. Rev. B, 25, 7157–7173.Google Scholar
First citation Guinier, A. (1956). Théorie et technique de la radiocristallographie, 2nd ed. Paris: Dunod.Google Scholar
First citation Hagemann, H. J., Gudat, W. & Kunz, C. (1975). Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am. 65, 742–748.Google Scholar
First citation Haider, M. & Zach, J. (1995). Multipole correctors. Proceedings of Microscopy and Microanalysis, edited by G. Bailey, pp. 596–567. New York: Jones and Bigell.Google Scholar
First citation Hanson, H. P. (1962). Experimental f values and electron diffraction amplitudes for bromine. J. Chem. Phys. 36, 1043–1049.Google Scholar
First citation Hartl, W. A. M. (1966). Die Filterlinse als Monochromator für schnelle Elektronen. Z. Phys. 191, 487–502.Google Scholar
First citation Hashimoto, H., Mannami, M. & Naiki, T. (1961). Theory of lattice images. Philos. Trans. R. Soc. London, 253, 459–489.Google Scholar
First citation Heine, V. (1980). Electronic structure from the point of view of the local atomic environment. Solid State Phys. 35, 1–127.Google Scholar
First citation Heisenberg, W. (1931). Über die Inkohärente Streuung von Röntgenstrahlen. Phys. Z. 32, 737–740.Google Scholar
First citation Henderson, R. & Unwin, P. N. T. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature, 257, 28–32.Google Scholar
First citation Hilderbrandt, R. L. & Kohl, D. A. (1981). A variational treatment of the effects of vibrational anharmonicity on gas-phase electron diffraction intensities. Part I. Molecular scattering function. J. Mol. Struct. Theochem. 85, 25–36.Google Scholar
First citation Hillier, J. & Baker, R. F. (1944). Microanalysis by means of electrons. J. Appl. Phys. 15, 663–675.Google Scholar
First citation Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan, M. J. (1977a). Electron microscopy of thin crystals. New York: Krieger.Google Scholar
First citation Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan, M. J. (1977b). Electron microscopy of thin crystals, p. 190. London: Butterworth.Google Scholar
First citation Hitchcock, A. P. (1982). Bibliography of atomic and molecular inner-shell excitation studies. J. Electron Spectrosc. Relat. Phenom. 25, 245–275. [Updated copies of this bibliography are available from the author on request.]Google Scholar
First citation Hoerni, J. A. (1956). Multiple elastic scattering in electron diffraction by molecules. Phys. Rev. 102, 1530–1533.Google Scholar
First citation Hofer, F., Golob, P. & Brunegger, A. (1988). EELS quantification of the elements Sr to W by means of M45 edges. Ultramicroscopy, 25, 81–84.Google Scholar
First citation Höhberger, H. J., Otto, A. & Petri, E. (1975). Plasmon resonance in Al, deviations from quadratic dispersion observed. Solid State Commun. 16, 175–179.Google Scholar
First citation Høier, R. (1972). Displaced lines in Kikuchi patterns. Phys. Status Solidi A, 11, 597–610.Google Scholar
First citation Høier, R., Bakken, L. N., Marthinsen, K. & Holmestad, R. (1993). Structure factor determination in non-centrosymmetrical crystals by a two-dimensional CBED-based multi-parameter refinement method. Ultramicroscopy, 49, 159–170.Google Scholar
First citation Holmestad, R., Weickenmeier, A. L., Zuo, J. M., Spence, J. C. H. & Horita, Z. (1993). Debye–Waller factor measurement in TiAl from HOLZ reflections. Electron microscopy and analysis 1993, pp. 141–144. Bristol: IOP Publishing.Google Scholar
First citation Horiuchi, S. (1982). Reduction in a niobium tungsten bronze. J. Appl. Cryst. 15, 323–329.Google Scholar
First citation Horota, F., Kakuta, N. & Shibata, S. (1981). High energy electron scattering by diborane. J. Phys. B, 14, 3299–3304.Google Scholar
First citation Howie, A. (1963). Inelastic scattering of electrons by crystals. I. The theory of small angle inelastic scattering. Proc. R. Soc. London Ser. A, 271, 268–287.Google Scholar
First citation Howie, A. (1979). Image contrast and localized signal selection techniques. J. Micros. (Oxford), 117, 11–23.Google Scholar
First citation Howie, A. & Basinski, Z. S. (1968). Approximations of the dynamical theory of diffraction contrast. Philos. Mag. 17, 1039–1063.Google Scholar
First citation Humphreys, C. J. & Hirsch, P. B. (1968). Absorption parameters in electron diffraction theory. Philos. Mag. 18, 115–122.Google Scholar
First citation Ibach, H. & Mills, D. L. (1982). Electron energy-loss spectroscopy and surface vibrations. New York: Academic Press.Google Scholar
First citation Ibers, J. A. (1958). Atomic scattering amplitudes for electrons. Acta Cryst. 11, 178–183.Google Scholar
First citation Iijima, S. (1977). High resolution electron microscopy of phase objects: observation of small holes and steps on graphite crystals. Optik (Stuttgart), 47, 437–452.Google Scholar
First citation Iijima, T., Bonham, R. A. & Ando, T. (1963). The theory of electron scattering from molecules. I. Theoretical development. J. Phys. Chem. 67, 1472–1474.Google Scholar
First citation Inokuti, M. (1971). Inelastic collisions of fast charged particles with atoms and molecules. The Bethe theory revisited. Rev. Mod. Phys. 43, 297–344.Google Scholar
First citation Inokuti, M., Itikawa, Y. & Turner, J. E. (1978). Addenda: Inelastic collisions of fast charged particles with atoms and molecules. The Bethe theory revisited. Rev. Mod. Phys. 50, 23–26.Google Scholar
First citation Inokuti, M. (1979). Electron scattering cross sections pertinent to electron microscopy. Ultramicroscopy, 3, 423–427.Google Scholar
First citation International Tables for Crystallography (2001). Vol. B, 2nd ed. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.Google Scholar
First citation Isaacson, M. (1972a). Interaction of 24 keV electrons with the nucleic acid bases, adenine, thymine and uracil. I. Outer shell excitation. J. Chem. Phys. 56, 1803–1812.Google Scholar
First citation Isaacson, M. (1972b). Interaction of 25 keV electrons with the nucleic acid bases, adenine, thymine and uracil. II. Inner shell excitation and inelastic scattering cross section. J. Chem. Phys. 56, 1813–1818.Google Scholar
First citation Isaacson, M. & Johnson, D. (1975). The microanalysis of light elements using transmitted energy-loss electrons. Ultramicroscopy, 1, 33–52.Google Scholar
First citation Ishizuka, K. (1982). Multislice formula for inclined illumination. Acta Cryst. A38, 773–779.Google Scholar
First citation Janssen, R. W. & Sankey, O. F. (1987). Ab initio linear combination of pseudo-atomic orbital scheme for the electronic properties of semiconductors. Results for ten materials. Phys. Rev. B, 36, 6520–6531.Google Scholar
First citation Jap, B. K. & Glaeser, R. M. (1978). The scattering of high energy electrons. Acta Cryst. A34, 94–102.Google Scholar
First citation Johnson, D. E. (1979). Basic aspects of energy-loss spectrometer systems. Ultramicroscopy, 3, 361–365.Google Scholar
First citation Johnson, D. E. (1980). Post specimen optics for energy loss spectrometry. Scanning Electron. Microsc. 1, 33–40.Google Scholar
First citation Johnson, D. W. (1975). A Fourier method for numerical Kramers–Kronig analysis. J. Phys. A, 8, 490–495.Google Scholar
First citation Johnson, D. W. & Spence, J. C. H. (1974). Determination of the single scattering probability distribution from plural scattering data. J. Phys. D, 7, 771–780.Google Scholar
First citation Jones, P. M., Rackham, G. M. & Steeds, J. W. (1977). High-order Laue zone electron diffraction. Proc. R. Soc. London Ser. A, 354, 192–222.Google Scholar
First citation Jouffrey, B., Sevely, J., Zanchi, G. & Kihn, Y. (1985). Characteristic energy losses with high energy electrons up to 2.5 MeV. Scanning Electron Microsc. 3, 1063–1070.Google Scholar
First citation Kakudo, M. & Kasai, N. (1972). X-ray diffraction by polymers. Tokyo: Kodanska; Amsterdam: Elsevier.Google Scholar
First citation Kambe, K. (1957). Study of simultaneous reflections in electron diffraction by crystals. J. Phys. Soc. Jpn, 12, 13–36.Google Scholar
First citation Kambe, K. (1982). Visualization of Bloch waves of high energy electrons in high resolution electron microscopy. Ultramicroscopy, 10, 223–228.Google Scholar
First citation Karle, I. L. & Karle, J. (1950). Internal motion and molecular structure studies by electron diffraction. III. Structure of CH2CF2 and CF2CF2. J. Chem. Phys. 18, 963–971.Google Scholar
First citation Keil, P. (1968). Elektronen-Energieverlustmessungen und Berechnung optischer Konstanten. I. Festes Xenon. Z. Phys. 214, 251–265.Google Scholar
First citation Kelley, M. H. & Fink, M. (1982a). The molecular structure of dimolybdenum tetraacetate. J. Chem. Phys. 76, 1407–1416.Google Scholar
First citation Kelley, M. H. & Fink, M. (1982b). The temperature dependence of the molecular structure parameters in SF6. J. Chem. Phys. 77, 1813–1817.Google Scholar
First citation Kelly, P. M., Jostsons, A., Blake, R. G. & Napier, J. G. (1975). The determination of foil thickness by scanning transmission electron microscopy. Phys. Status Solidi A, 31, 771–780.Google Scholar
First citation Kessler, J. (1959). Einzelstreuung Mittelschneller Elektronen an Schweren Atomkernen. Z. Phys. 155, 350–367.Google Scholar
First citation Ketkar, S. N. & Fink, M. (1985). Structure of dichromium tetraacetate by gas-phase electron diffraction. J. Am. Chem. Soc. 107, 338–340.Google Scholar
First citation Killat, U. (1974). Optical properties of C6H12, C6H10, C6H8, C6H6, C7H8, C6H5Cl and C5H5N in the solid and gaseous state derived from electron energy losses. J. Phys. C, 7, 2396–2408.Google Scholar
First citation Kimura, M., Schomaker, V., Smith, D. & Weinstock, B. (1968). Electron-diffraction investigation of the hexafluorides of tungsten, osmium, iridium, uranium, neptunium, and plutonium. J. Chem. Phys. 48, 4001–4012.Google Scholar
First citation Kirkland, A., Saxton, W., Chau, K., Tsuno, K. & Kawasaki, M. (1995). Super-resolution by aperture synthesis. Ultramicroscopy, 57, 355–374.Google Scholar
First citation Klemperer, O. (1965). Electron beam spectroscopy. Rev. Prog. Phys. 28, 77–111.Google Scholar
First citation Kliewer, K. & Fuchs, R. (1974). Theory of dynamical properties of dielectric surfaces. Adv. Chem. Phys. 27, 355–541.Google Scholar
First citation Kobayashi, T., Fujiyoshi, Y. & Uyeda, N. (1982). The observation of molecular orientations in crystal defects and the growth mechanism of thin phthalocyanine films. Acta Cryst. A38, 356–362.Google Scholar
First citation Kogiso, M. & Takahashi, H. (1977). Group-theoretical method in the many-beam theory in electron diffraction. J. Phys. Soc. Jpn, 42, 223–229.Google Scholar
First citation Kohl, D. A. & Arvedson, M. (1980). Elastic electron scattering from molecular potentials. J. Chem. Phys. 73, 3818–3822.Google Scholar
First citation Kohl, D. A. & Bartell, L. S. (1969). Electron densities from gas-phase electron diffraction intensities. II. Molecular Hartree–Fock cross sections. J. Chem. Phys. 51, 2896–2904.Google Scholar
First citation Kohl, D. A. & Bonham, R. A. (1967). Effect of bond formation on electron scattering cross sections for molecules. J. Chem. Phys. 47, 1634–1646.Google Scholar
First citation Kohl, D. A. & Hilderbrandt, R. L. (1981). A variational treatment of the effects of vibrational anharmonicity on gas-phase electron diffraction intensities. Part II. Temperature dependence. J. Mol. Struct. Theochem. 85, 325–335.Google Scholar
First citation Koike, H., Kobayashi, K., Ozawa, S. & Yagi, K. (1989). High resolution reflection electron microscopy of Si(111) 7 × 7 surfaces using a high voltage electron microscope. Jpn. J. Appl. Phys. 28, 861–865.Google Scholar
First citation Komoda, T. (1964). On the resolution of the lattice image in the electron microscope. Optik (Stuttgart), 21, 94–110.Google Scholar
First citation Krahl, D. & Herrmann, K.-H. (1980). Experiments with an imaging energy filter in the CTEM. Micron, 11, 287–289.Google Scholar
First citation Krahl, D., Pätzold, H. & Swoboda, M. (1990). An aberration-minimized imaging energy filter of simple design. Proceedings of 12th International Conference on Electron Microscopy 1990, Vol. 2, pp. 60–61.Google Scholar
First citation Krinary, G. A. (1975). On the possibilities to use oriented specimens for recording of non-basal X-ray reflexions of fine-grained layer silicates. Crystal chemistry of minerals and geological problems, pp. 132–138. Moscow: Nauka.Google Scholar
First citation Krivanek, O. L. (1976). A method for determining the coefficient of spherical aberration from a single electron micrograph. Optik (Stuttgart), 45, 97–101.Google Scholar
First citation Krivanek, O. L., Ahn, C. C. & Keeney, R. B. (1987). Parallel detection electron spectrometer using quadrupole lens. Ultramicroscopy, 22, 103–115.Google Scholar
First citation Krivanek, O. L., Dellby, N., Spence, A. J., Camps, R. A. & Brown, L. M. (1997). Aberration correction in the STEM. Proc EMAG 1997, edited by S. McVitie. London: Institute of Physics.Google Scholar
First citation Krivanek, O. L., Gubbens, A. J., Dellby, N. & Meyer, C. E. (1991). Design and first applications of a post-column imaging filter. Microsc. Microanal. Microstruct. (France), 3, 187–199.Google Scholar
First citation Krivanek, O. L., Manoubi, T. & Colliex, C. (1985). Sub 1 eV resolution EELS at energy losses greater than 1 keV. Ultramicroscopy, 18, 155–158.Google Scholar
First citation Krivanek, O. L. & Mooney, P. E. (1993). Applications of slow-scan CCD cameras in HREM. Ultramicroscopy, 49, 95–108.Google Scholar
First citation Krivanek, O. L., Mooney, P. E., Fan, G. Y. Leber, M. L. & Meyer, C. E. (1991). Slow-scan CCD cameras for transmission electron microscopy. Electron microscopy and analysis 1991, pp. 523–526. Bristol: IOP Publishing.Google Scholar
First citation Krivanek, O. L. & Swann, P. R. (1981). An advanced electron energy loss spectrometer. Quantitative microanalysis with high spatial resolution, pp. 136–140. London: The Metals Society.Google Scholar
First citation Kröger, E. Z. (1970). Transition radiation, Čerenkov radiation and energy losses of relativistic charged particles traversing thin foils at oblique incidence. Z. Phys. 235, 403–421.Google Scholar
First citation Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature (London), 367, 614–621.Google Scholar
First citation Kuyatt, C. E. & Simpson, J. A. (1967). Electron monochromator design. Rev. Sci. Instrum. 38, 103–111.Google Scholar
First citation Landau, L. & Lifchitz, E. (1966). Mécanique quantique. Théorie non relativiste, pp. 632–690. Moscow: Editions Mir.Google Scholar
First citation Larsen, P. K. & Dobson, P. J. (1988). Editors. Reflection high energy electron diffraction and reflection electron imaging of surfaces. NATO ASI series. New York/London: Plenum Press.Google Scholar
First citation Leapman, R. D., Grunes, L. A. & Fejes, P. L. (1982). Study of the L23 edges in the 3d transition metals and their oxides by electron energy loss spectroscopy with comparisons to theory. Phys. Rev. B, 26, 614–635.Google Scholar
First citation Leapman, R. D., Rez, P. & Mayers, D. F. (1980). K, L and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions. J. Chem. Phys. 72, 1232–1243.Google Scholar
First citation Leapman, R. D. & Swyt, C. R. (1988). Separation of overlapping core edges in EELS spectra by multiple least-squares fitting. Ultramicroscopy, 26, 393–404.Google Scholar
First citation Lehmpfuhl, G. (1974). Dynamical interaction of electron waves in a perfect single crystal. Z. Naturforsch. Teil A, 27, 424–433.Google Scholar
First citation Lichte, H. (1991). Electron image plane off-axis holography of atomic structures. Adv. Opt. Electron Microsc. 12, 25–91.Google Scholar
First citation Lindhard, J. (1954). On the properties of a gas of charged particles. Dan. Vidensk. Selsk. Mater. Fys. Medd. 28, 1–57.Google Scholar
First citation Lindner, T., Sauer, H., Engel, W. & Kambe, K. (1986). Near-edge structure in electron energy loss spectra of MgO. Phys. Rev. B, 33, 22–24.Google Scholar
First citation Liu, J. W. & Smith, V. H. (1977). A critical study of high energy electron scattering from H2. Chem. Phys. Lett. 45, 59–63.Google Scholar
First citation Livingood, J. J. (1969). The optics of dipole magnets. New York: Academic Press.Google Scholar
First citation Lovey, F. C., Coene, W., Van Dyck, D., Van Tendeloo, G., Van Landuyt, J. & Amelinckx, S. (1984). HREM imaging conditions for stacking sequences in 18R martensite of Cu–Al alloys. Ultramicroscopy, 15, 345–356.Google Scholar
First citation Lynch, D. F., Moodie, A. F. & O'Keefe, M. A. (1975). n-Beam lattice images. V. The use of the charge-density approximation in the interpretation of lattice images. Acta Cryst. A31, 300–307.Google Scholar
First citation Lytle, F. W., Greegor, R. B. & Panson, A. Y. (1988). Discussion of X-ray absorption near edge structure: application to Cu in the high Tc superconductors La1.8Sr0.2Cu4 and YBa2Cu3O7. Phys. Rev. B, 37, 1550–1562.Google Scholar
First citation Ma, Y., Rømming, C., Lebech, B. & Gjønnes, J. (1992). Structure refinement of Al3Zr using single-crystal X-ray diffraction, powder neutron diffraction and CBED. Acta Cryst. B48, 11–16.Google Scholar
First citation McClelland, J. J. & Fink, M. (1985). Electron correlation and binding effects in measured electron-scattering cross sections of CO2. Phys. Rev. Lett. 54, 2218–2221.Google Scholar
First citation MacGillavry, C. H. (1940). Zur Prufung der Dynamischen Theorie der Elektronenbeugung an Kristallgitter. Physica (Utrecht), 7, 329–343.Google Scholar
First citation McLean, A. D. & McLean, R. S. (1981). Roothaan–Hartree–Fock atomic wave-functions: Slater basis-set expansions for Z = 55–92. At. Data Nucl. Data Tables, 26, 197–381.Google Scholar
First citation Maher, D. M. (1979). Elemental analysis using inner-shell excitations: a microanalytical technique for materials characterization. Introduction to analytical electron microscopy, edited by J. J. Hren, J. I. Goldstein & D. C. Joy, pp. 259–294. New York: Plenum.Google Scholar
First citation Mamy, J. & Gaultier, J.-P. (1976). Evolution structurale de la montmorillonite associée au phénomène de fixation irréversible du potassium. An. Agron. 27(1), 1–16.Google Scholar
First citation Mann, J. B. (1968). Los Alamos Scientific Laboratory Report LA3691, p. 168.Google Scholar
First citation Manoubi, T., Rez, P. & Colliex, C. (1989). Quantitative electron energy loss spectroscopy on M45 edges in rare earth oxides. J. Electron Spectrosc. Relat. Phenom. 50, 1–18.Google Scholar
First citation Manoubi, T., Tence, M., Walls, M. G. & Colliex, C. (1990). Curve fitting methods for quantitative analysis in EELS. Microsc. Microanal. Microstruct. 1, 23–39.Google Scholar
First citation Manzke, R. (1980). Wavevector dependence of the volume plasmon of GaAs and InSb. J. Phys. C, 13, 911–917.Google Scholar
First citation Marks, L. (1986). High resolution electron microscopy of surfaces. In Topics in current physics, Vol. 41. Structure and dynamics of surfaces. I, edited by W. Schommers and P. Von Blackenhagen. Berlin/Heidelberg: Springer Verlag.Google Scholar
First citation Marthinsen, K., Holmestad, R. & Høier, R. (1994). Analytical filtering of low-angle inelastic scattering contributions to CBED contrast. Ultramicroscopy, 55, 268–275.Google Scholar
First citation Maslen, V. M. & Rossouw, C. J. (1983). The inelastic scattering matrix element and its application to electron energy loss spectroscopy. Philos. Mag. A47, 119–130.Google Scholar
First citation Matsuhata, H. & Gjønnes, J. (1994). Bloch-wave degeneracies and non-systematic critical voltage: a method for structure-factor determination. Acta Cryst. A50, 107–115.Google Scholar
First citation Matsuhata, H. & Steeds, J. W. (1987). Observation of accidental Bloch-wave degeneracies of zone-axis critical voltage. Philos. Mag. B55, 39–54.Google Scholar
First citation Matsuhata, H., Tomokiyo, Y., Watanabe, H. & Eguchi, T. (1984). Determination of the structure factors of Cu and Cu3Au by the intersecting Kikuchi-line method. Acta Cryst. B40, 544–549.Google Scholar
First citation Mawhorter, R. J. & Fink, M. (1983). The vibrationally averaged, temperature-dependent structure of polyatomic molecules. II. SO2. J. Chem. Phys. 79, 3292–3296.Google Scholar
First citation Mawhorter, R. J., Fink, M. & Archer, B. T. (1983). The vibrationally averaged, temperature-dependent structure of polyatomic molecules. I. CO2. J. Chem. Phys. 79, 170–174.Google Scholar
First citation Melkanov, M. A., Sawada, T. & Raynal, J. (1966). Nuclear optical model calculations. Methods Comput. Phys. 6, 1–80.Google Scholar
First citation Menter, J. W. (1956). The resolution of crystal lattices. Proc. R. Soc. London Ser. A, 236, 119.Google Scholar
First citation Méring, J. (1949). L'interférence des rayons X dans les systèmes à stratification désordonnée. Acta Cryst. 2, 371–377.Google Scholar
First citation Metherell, A. J. F. (1971). Energy analysing and energy selecting electron microscopes. Adv. Opt. Electron Microsc. 4, 263–361.Google Scholar
First citation Miller, B. R. & Fink, M. (1981). Mean amplitudes of vibration of SF6 and intramolecular multiple scattering. J. Chem. Phys. 75, 5326–5328.Google Scholar
First citation Miller, B. R. & Fink, M. (1985). The vibrationally averaged, temperature-dependent structure of polyatomic molecules. III. NO2. J. Chem. Phys. 83, 939–944.Google Scholar
First citation Möllenstedt, G. & Düker, H. (1956). Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen. Z. Phys. 145, 377–397.Google Scholar
First citation Moodie, A. F. & Warble, C. E. (1967). The observation of primary step growth in magnesium oxide by direct transmission electron microscopy. Philos. Mag. 16, 891–904.Google Scholar
First citation Mori, N., Oikawa, T & Harada, Y. (1990). Development of the imaging plate for the transmission electron microscope and its characteristics. J. Electron Microsc. (Japan), 39, 433–436.Google Scholar
First citation Morse, P. M. (1932). Unelastische Streuung von Kathodenstrahlen. Phys. Z. 33, 443–445.Google Scholar
First citation Mory, C. & Colliex, C. (1989). Elemental analysis near the single-atom detection level by processing sequences of energy-filtered images. Ultramicroscopy, 28, 339–346.Google Scholar
First citation Mott, N. F. & Massey, H. S. W. (1952). The theory of atomic collisions, pp. 224–248. Oxford: Clarendon Press.Google Scholar
First citation Mott, N. F. & Massey, H. S. W. (1965). The theory of atomic collisions, 3rd ed., Chap. IX, Section 4, equations (22) and (23). Oxford University Press.Google Scholar
First citation Müller, J. E., Jepsen, O. & Wilkins, J. W. (1982). X-ray absorption spectra: K edges of 3d transition metals, L edges of 3d and 4d metals and M edges of palladium. Solid State Commun. 42, 365–368.Google Scholar
First citation Nagakura, S., Nakamura, Y. & Suzuki, T. (1982). Forbidden reflection intensity in electron diffraction and its influence on the crystal structure image. Jpn. J. Appl. Phys. 21, L449–L451.Google Scholar
First citation Nellist, P., McCallum, B. & Rodenburg, J. (1995). Resolution beyond the information limit in STEM. Nature (London), 374, 630–632.Google Scholar
First citation Numerov, B. V. (1924). A method of extrapolation of perturbations. Mon. Not. R. Astron. Soc. 84, 592–601.Google Scholar
First citation O'Keefe, M. A., Spence, J. C. H., Hutchinson, J. L. & Waddington, W. G. (1985). Proc. 43rd EMSA Meeting, p. 64. San Francisco: San Francisco Press. [See also H. Hashimoto in Ultramicroscopy (1985), 18, 19–32.]Google Scholar
First citation Olsen, A., Goodman, P. & Whitfield, H. (1985). Tl3SbS3, Tl3SbSe3, Tl3Sb3−xSex and Tl3SbyAs1−ySe3. J. Solid State Chem. 60, 305–315.Google Scholar
First citation Olsen, A. & Spence, J. C. H. (1981). Distinguishing dissociated glide and shuffle set dislocations by high resolution electron microscopy. Philos. Mag. A43, 945–965.Google Scholar
First citation Orchowski, A., Rau, W. D. & Lichte, H. (1995). Electron holography surmounts resolution limit of electron microscopy. Phys. Rev. Lett. 74, 399.Google Scholar
First citation Parker, N. W., Utlaut, M. & Isaacson, M. S. (1978). Design of magnetic spectrometers with second order aberrations corrected. Optik (Stuttgart), 51, 333–351.Google Scholar
First citation Pearce-Percy. H. T. (1978). The design of spectrometers for energy loss spectroscopy. Scaning Electron Microsc. 1, 41–51.Google Scholar
First citation Peixoto, E. M. A., Bunge, C. F. & Bonham, R. A. (1969). Elastic and inelastic electron scattering by He and Ne atoms in their ground states. Phys. Rev. 181, 322–328.Google Scholar
First citation Pendry, J. B. (1974). Low energy electron diffraction. New York: Academic Press.Google Scholar
First citation Peng, L.-M. (1998). Electron scattering factors of ions and their parameterization. Acta Cryst. A54, 481–485.Google Scholar
First citation Peng, L. M. & Cowley, J. M. (1988). Errors arising from numerical use of the Mott formula in electron image simulation. Acta Cryst. A44, 1–5.Google Scholar
First citation Peng, L.-M., Ren, G., Dudarev, S. L. & Whelan, M. J. (1996). Robust parameterization of elastic and absorptive electron atomic scattering factors. Acta Cryst. A52, 257–276.Google Scholar
First citation Pennycook, S. J. & Jesson, D. E. (1991). High-resolution Z-contrast imaging of crystals. Ultramicroscopy, 37, 14–38.Google Scholar
First citation Pinsker, Z. G. (1953). Electron diffraction. London: Butterworth.Google Scholar
First citation Pirouz, P. (1974). Effects of absorption on lattice images. Optik (Stuttgart), 54, 69–74.Google Scholar
First citation Plançon, A., Rousseaux, F., Tchoubar, D., Tchoubar, C., Krinari, G. & Drits, V. A. (1982). Recording and calculation of hk rod intensities in case of diffraction by highly oriented powders of lamellar samples. J. Appl. Cryst. 15, 509–512.Google Scholar
First citation Powell, C. J. (1976). Cross sections for ionization of inner-shell electrons by electrons. Rev. Mod. Phys. 48, 33–47.Google Scholar
First citation Powell, C. J. (1984). Inelastic scattering of electrons in solids. Electron beam interactions with solids for microscopy, microanalysis and micro-lithography, edited by D. F. Kyser, H. Niedrig, D. E. Newbury & R. Shimizu, pp. 19–31. Chicago: SEM, Inc.Google Scholar
First citation Powell, C. J. (1989). Cross sections for inelastic electron scattering in solids. Ultramicroscopy, 28, 24–31.Google Scholar
First citation Pulay, P., Mawhorter, R. J., Kohl, D. A. & Fink, M. (1983). Ab initio Hartree–Fock calculation of the elastic electron scattering cross section of sulphur hexafluoride. J. Chem. Phys. 79, 185–191.Google Scholar
First citation Raether, H. (1965). Electron energy loss spectroscopy. Springer Tracts Mod. Phys. Vol. 38, pp. 85–170. Berlin: Springer.Google Scholar
First citation Raether, H. (1980). Excitation of plasmons and interband transitions by electrons. Spring Tracts Mod. Phys. Vol. 88. Berlin: Springer.Google Scholar
First citation Rao, C. N., Thomas, J. M., Williams, B. G. & Sparrow, T. G. (1984). Determination of the number of d-electron states in transition metal compounds. J. Phys. Chem. 88, 5769–5770.Google Scholar
First citation Rask, J. H., Miner, B. A. & Buseck, P. (1987). Determination of manganese oxidation states in solids by EELS. Ultramicroscopy, 21, 321–326.Google Scholar
First citation Reimer, L. & Rennekamp, R. (1989). Imaging and recording of multiple scattering effects by angular resolved electron energy loss spectroscopy. Ultramicroscopy, 28, 258–265.Google Scholar
First citation Rez, D., Rez, P. & Grant, I. (1994). Dirac–Fock calculations of X-ray scattering factors and contributions to the mean inner potential for electron scattering. Acta Cryst. A50, 481–497.Google Scholar
First citation Rez, P. (1989). Inner shell spectroscopy: an atomic view. Ultramicroscopy, 28, 16–23.Google Scholar
First citation Ritchie, R. H. (1957). Plasmon losses by fast electrons in thin films. Phys. Rev. 106, 874–881.Google Scholar
First citation Rose, H. & Plies, E. (1974). Entwurf eines fehlerarmen magnetischen Energie Analysators. Optik (Stuttgart), 40, 336–341.Google Scholar
First citation Rose, H. & Spehr, R. (1980). On the theory of the Boersch effect. Optik (Stuttgart), 57, 339–364.Google Scholar
First citation Ross, A. W. & Fink, M. (1986). Atomic scattering factor and spin polarization calculations. Phys. Rev. 85, 6810–6811.Google Scholar
First citation Sasaki, H., Konaka, S., Iijima, T. & Kimura, M. (1982). Small-angle electron scattering and electron density in carbon dioxide. Int. J. Quantum Chem. 21, 475–485.Google Scholar
First citation Saunders, M., Bird, D. M., Midgley, P. A. & Vincent, R. (1994). Structure factor refinement by zone-axis CBED pattern matching. Proceedings of 13th International Congress on Electron Microscopy, Paris, France, 17–22 July 1994, Vol. 1, pp. 847–848.Google Scholar
First citation Saxton, W. O. (1978). Computer techniques for image processing in electron microscopy, pp. 9–19. New York: Academic Press.Google Scholar
First citation Saxton, W. O. (1980a). Recovery of specimen information for strongly scattering objects. In Computer processing of electron microscopy images. Topics in current physics, Vol. 13, edited by P. W. Hawkes, p. 35. Berlin/Heidelberg/New York: Springer Verlag.Google Scholar
First citation Saxton, W. O. (1980b). Correction of artifacts in linear and nonlinear high resolution electron micrographs. J. Microsc. Spectrosc. Electron, 5, 665–674.Google Scholar
First citation Sayers, D. E., Stern, E. A. & Lytle, F. M. (1971). New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray absorption fine structure. Phys. Rev. Lett. 27, 1204–1207.Google Scholar
First citation Schäfer, L. & Seip, H. M. (1967). Studies on the failure of the first Born approximation in electron diffraction. VI. Ruthenium tetraoxide. Acta Chem. Scand. 21, 737–744.Google Scholar
First citation Schattschneider, P. (1983). A performance test of the recovery of single energy loss profiles via matrix analysis. Ultramicroscopy, 11, 321–322.Google Scholar
First citation Schattschneider, P. (1989). The dielectric description of inelastic electron scattering. Ultramicroscopy, 28, 1–15.Google Scholar
First citation Scheinfein, M. & Isaacson, M. S. (1984). Design and performance of second order aberration corrected spectrometers for use with the scanning transmission electron microscope. Scanning Electron Microsc. 4, 1681–1696.Google Scholar
First citation Scheinfein, M. & Isaacson, M. S. (1986). Electronic and chemical analysis of fluoride interface structures at subnanometer spatial resolution. J. Vac. Sci. Technol. B4, 326–332.Google Scholar
First citation Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29.Google Scholar
First citation Schiske, P. (1975). Phase determination from a focal series and the corresponding diffraction pattern in electron microscopy for strongly scattering objects. J. Phys. D, 8, 1372–1386.Google Scholar
First citation Schnatterly, S. E. (1979). Inelastic electron scattering spectroscopy. Solid State Phys. 14, 275–358.Google Scholar
First citation Schomaker, V. & Glauber, R. (1952). The Born approximation in electron diffraction. Nature (London), 170, 290–291.Google Scholar
First citation Schröder, B. & Geiger, J. (1972). Electron spectrometric study of amorphous germanium and silicon in the two phonon region. Phys. Rev. Lett. 28, 301–303.Google Scholar
First citation Seip, H. M. (1965). Studies on the failure of the first Born approximation in electron diffraction. I. Uranium hexafluoride. Acta Chem. Scand. 19, 1955–1968.Google Scholar
First citation Seip, H. M. & Seip, R. (1966). Studies on the failure of the first Born approximation in electron diffraction. IV. Molybdenum- and tungsten hexafluoride. Acta Chem. Scand. 20, 2698–2711.Google Scholar
First citation Seip, H. M. & Stølevik, V. (1966a). Studies on the failure of the first Born approximation in electron diffraction. II. Osmium tetraoxide. Acta Chem. Scand. 20, 385–394.Google Scholar
First citation Seip, H. M. & Stølevik, V. (1966b). Studies on the failure of the first Born approximation in electron diffraction. III. Tellurium hexafluoride. Acta Chem. Scand. 20, 1535–1545.Google Scholar
First citation Self, P. G., O'Keefe, M. A., Buseck, P. R. & Spargo, A. E. C. (1983). Practical computation of amplitudes and phases in electron diffraction. Ultramicroscopy, 11, 35–52.Google Scholar
First citation Sevely, J. (1985). Voltage dependence in electron energy loss spectroscopy. Inst. Phys. Conf. Ser. 78, 155–160.Google Scholar
First citation Shibata, S., Hirota, F., Kakuta, N. & Muramatsu, T. (1980). Electron distribution in water by high-energy electron scattering. Int. J. Quantum Chem. 18, 281–285.Google Scholar
First citation Shiles, E., Sazaki, T., Inokuti, M. & Smith, D. Y. (1980). Self consistency and sum-rule tests in the Kramers Kronig analysis of optical data: applications to aluminium. Phys. Rev. B, 22, 1612–1628.Google Scholar
First citation Shindo, D., Hiraga, K., Oikawa, T. & Mori, N. (1990). Quantification of electron diffraction with imaging plate. J. Electron Microsc. 39, 449–453.Google Scholar
First citation Shuman, H. (1980). Correction of the second order aberrations of uniform field magnetic sections. Ultramicroscopy, 5, 45–53.Google Scholar
First citation Shuman, H. & Kruit, P. (1985). Quantitative data processing of parallel recorded electron energy-loss spectra with low signal to background. Rev. Sci. Instrum. 56, 231–239.Google Scholar
First citation Shuman, H. & Somlyo, A. P. (1987). Electron energy loss analysis of near-trace-element concentrations of calcium. Ultramicroscopy, 21, 23–32.Google Scholar
First citation Smith, D. J., Bursill, L. A. & Wood, G. J. (1985). Non-anomalous high-resolution imaging of crystalline materials. Ultramicroscopy, 16, 19–32.Google Scholar
First citation Smith, D. J., Saxton, W. O., O'Keefe, M. A., Wood, G. J. & Stobbs, W. M. (1983). The importance of beam alignment and crystal tilt in high resolution electron microscopy. Ultramicroscopy, 11, 263–282.Google Scholar
First citation Spargo, A. E. C. (1994). Electron crystallography and crystal structure. Proceedings of 13th International Congress on Electron Microscopy, Paris, France 17–22 July 1994, Vol. 1, pp. 959–960.Google Scholar
First citation Spence, J. C. H. (1979). Uniqueness and the inversion problem of incoherent multiple scattering. Ultramicroscopy, 4, 9–12.Google Scholar
First citation Spence, J. C. H. (1981). The crystallographic information in localized characteristic-loss electron images and diffraction patterns. Ultramicroscopy, 7, 59–64.Google Scholar
First citation Spence, J. C. H. (1988a). Inelastic electron scattering: Parts I and II. High resolution transmission electron microscopy and associated techniques, edited by P. R. Buseck, J. M. Cowley & L. Eyring, pp. 129–189. Oxford University Press.Google Scholar
First citation Spence, J. C. H. (1988b). High resolution electron microscopy, 2nd ed. New York: Oxford University Press.Google Scholar
First citation Spence, J. C. H. (1998). Direct inversion of dynamical electron diffraction patterns to structure factors. Acta Cryst. A54, 7–18.Google Scholar
First citation Spence, J. C. H. & Lynch, J. (1982). STEM microanalysis and inelastic imaging in crystals. Ultramicroscopy, 9, 267–278.Google Scholar
First citation Spence, J. C. H., O'Keefe, M. A. & Iijima, S. (1978). On the thickness periodicity of atomic-resolution images of dislocation cores. Philos. Mag. A38, 463–482.Google Scholar
First citation Spence, J. C. H. & Tafto, J. (1983). ALCHEMI: a new technique for locating atoms in small crystals. J. Microsc. 130, 147–154.Google Scholar
First citation Spence, J. C. H. & Zuo, J. M. (1992). Electron microdiffraction. New York: Plenum.Google Scholar
First citation Steeds, J. W. (1984). Further development in the analysis of convergent beam electron diffraction (CBED) data. EMAG 1983. Inst. Phys. Conf. Ser. No. 69, pp. 31–36.Google Scholar
First citation Stohr, J., Sette, F. & Johnson, A. L. (1984). Near edge X-ray absorption fine structure studies of chemisorbed hydrocarbons: bond lengths with a ruler. Phys. Rev. Lett. 53, 1684–1687.Google Scholar
First citation Strauss, M. G., Naday, Y., Sherman, I. S. & Zaluzec, N. J. (1987). CCD base parallel detection system for EELS spectroscopy and imaging. Ultramicroscopy, 22, 117–124.Google Scholar
First citation Sturm, K. (1982). Electron energy loss in simple metals and semiconductors. Adv. Phys. 31, 1–64.Google Scholar
First citation Swyt, C. R. & Leapman, R. D. (1982). Plural scattering in electron energy loss analysis. Scanning Electron Microsc. 1, 73–82.Google Scholar
First citation Taft, E. A. & Philipp, H. R. (1965). Optical properties of graphite. Phys. Rev. A, 138, 197–202.Google Scholar
First citation Taftø, J. & Gjønnes, J. (1985). The intersecting Kikuchi line technique: critical voltage at any voltage. Ultramicroscopy, 17, 329–334.Google Scholar
First citation Tafto, J. & Krivanek, O. L. (1982). Site specific valence determination by EELS. Phys. Rev. Lett. 48, 560–563.Google Scholar
First citation Taftø, J. & Metzger, T. H. (1985). Large-angle convergent-beam electron diffraction; a simple technique for the study of modulated structures with application to V2D. J. Appl. Cryst. 18, 110–113.Google Scholar
First citation Tafto, J. & Zhu, J. (1982). Electron energy-loss near edge structure (ELNES), a potential technique in the studies of local atomic arrangements. Ultramicroscopy, 9, 349–354.Google Scholar
First citation Takayanagi, K. (1984). Surface structure imaging by electron microscopy. J. Microsc. 136, 287–298.Google Scholar
First citation Tanaka, M. & Tsuda, K. (1990). Determination of positional parameters by convergent-beam electron diffraction. Proceedings of 12th International Congress on Electron Microscopy 1990, Vol. 2, pp. 518–519.Google Scholar
First citation Tavard, C. & Bonham, R. A. (1969). Quantum-mechanical formulas for the inelastic scattering of fast electrons and their Compton line shape. Nonrelativistic approximation. J. Chem. Phys. 50, 1736–1747.Google Scholar
First citation Tavard, C., Rouault, M. & Roux, M. (1965). Diffraction des rayons X et des électrons par les molécules. III. Une méthode de detémination des densités électroniques moléculaires. J. Chim. Phys. 62, 1410–1417.Google Scholar
First citation Tavard, C. & Roux, M. (1965). Calcul des intensités de diffraction de rayons X et de électrons par les molécules. C. R. Acad. Sci. 260, 4933–4936.Google Scholar
First citation Teo, B. K. & Joy, D. C. (1981). EXAFS spectroscopy techniques and applications. New York: Plenum.Google Scholar
First citation Terasaki, O., Watanabe, D. & Gjønnes, J. (1979). Determination of crystal structure factor of Si by the intersecting-Kikuchi-line method. Acta Cryst. A35, 895–900.Google Scholar
First citation Thakkar, A. J. & Smith, V. H. Jr (1978). Form factors and total scattering intensities for the helium-like ions from explicitly correlated wavefunctions. J. Phys. B, 11, 3803–3820.Google Scholar
First citation Thole, B. T., van der Laan, G., Fuggle, J. C., Sawatzky, G. A., Karnatak, R. C. & Esteva, J.-M. (1985). 3d X-ray absorption lines and the [3d^94f^{n+1}] multiplets of the lanthanides. Phys. Rev. B, 32, 5107–5118.Google Scholar
First citation Tonomura, A. (1992). Electron-holographic interference microscopy. Adv. Phys. 41, 59–103.Google Scholar
First citation Tossell, J. A., Vaughan, D. J. & Johnson, K. H. (1974). The electronic structure of rutile, wustite and hematite from molecular orbital calculations. Am. Mineral. 59, 319–334.Google Scholar
First citation Treacy, M. M. J. & Rice, S. B. (1989). Catalyst particle sizes from Rutherford scattered intensities. J. Microsc. 156, 211–234.Google Scholar
First citation Trebbia, P. (1988). Unbiased method for signal estimation in EELS. Concentration measurements and detection limits in quantitative analysis: methods and programs. Ultramicroscopy, 24, 399–408.Google Scholar
First citation Unwin, P. N. T. & Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–432.Google Scholar
First citation Vainshtein, B. K. (1964). Structure analysis by electron diffraction. Oxford: Pergamon Press.Google Scholar
First citation Van Dyck, D. (1980). Fast computational procedures for the simulation of structure images in complex or disordered crystals. J. Microsc. 119, 141.Google Scholar
First citation Van Dyck, D., Op de Beeck, M. & Coene, W. M. J. (1994). Information in electron microscopy. Microsc. Soc. Am. Bull. 24, 427–437.Google Scholar
First citation Venghaus, H. (1975). Redetermination of the dielectric function of graphite. Phys. Status Solidi B, 71, 609–614.Google Scholar
First citation Vincent, R., Bird, D. M. & Steeds, J. W. (1984). Structure of AuGeAs determined by convergent beam electron diffraction. II. Refinement of structural parameters. Philos. Mag. A50, 765–786.Google Scholar
First citation Vincent, R. & Midgley, P. A. (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271–284.Google Scholar
First citation Voigt-Martin, I. G., Yan, D. H., Gilmore, C. J., Shankland, K. & Bricogne, G. (1994). The use of maximum entropy and likelihood ranking to determine the crystal structure of 4-[4′-(N-dimethylamino)benzylidene]pyrazolidine-3,5-dione at 1.4 Å resolution from electron diffraction and high-resolution electron microscopy image data. Ultramicroscopy, 56, 271–288.Google Scholar
First citation Von Festenberg, C. (1968). Retardierungseffekte im Energieverlustspektrum von GaP. Z. Phys. 214, 464.Google Scholar
First citation Voss, R., Lehmpfuhl, G. & Smith, D. J. (1980). Influence of doping on the crystal potential of silicon investigated by the convergent beam electron diffraction technique. Z. Naturforsch. Teil A, 35, 973–984.Google Scholar
First citation Vvedensky, D. D., Saldin, D. K. & Pendry, J. B. (1985). Azimuthal and polar angle dependence in XANES of low symmetry adsorption sites. Surf. Sci. 162, 909–912.Google Scholar
First citation Wade, R. H. & Frank, J. (1977). Electron microscope transfer functions for partially coherent axial illumination. Optik (Stuttgart), 49, 81–92.Google Scholar
First citation Wang, J., Esquivel, R. O., Smith, V. H. Jr & Bunge, C. (1995). Accurate elastic and inelastic scattering factors from He to Ne using correlated wavefunctions. Phys. Rev. A, 51, 3812–3818.Google Scholar
First citation Wang, J., Sagar, R. P., Schmider, H. & Smith, V. H. Jr (1993). X-ray elastic and inelastic scattering factors for neutral atoms Z = 2–92. At. Data Nucl. Data Tables, 53, 233–269.Google Scholar
First citation Wang, J., Tripathi, A. N. & Smith, V. H. Jr (1994). Chemical binding and electron correlation effects in X-ray and high energy electron scattering. J. Chem. Phys. 101, 4842–4854.Google Scholar
First citation Warren, B. E. (1941). X-ray diffraction in random layer lattices. Phys. Rev. 59, 693–698.Google Scholar
First citation Watanabe, D., Uyeda, R. & Fukuhara, A. (1969). Determination of the atomic form factor by high-voltage electron diffraction. Acta Cryst. A25, 138–140.Google Scholar
First citation Wehenkel, C. (1975). Mise au point d'une nouvelle méthode d'analyse quantitative des spectres de pertes d'énergie d'électrons rapides diffusés dans la direction du faisceau incident: application à l'étude des métaux nobles. J. Phys. (Paris), 36, 199–207.Google Scholar
First citation Weickenmeier, A. & Kohl, H. (1991). Computation of absorptive form factors for high-energy electron diffraction. Acta Cryst. A47, 590–597.Google Scholar
First citation Weng, X. D. & Rez, P. (1989). Multiple scattering approach to oxygen K near edge structures in EELS spectroscopy of alkaline earths. Phys. Rev. B, 39, 7405–7412.Google Scholar
First citation Weng, X. D., Rez, P. & Ma, H. (1989). Carbon K-shell near-edge structure: multiple scattering and band theory calculations. Phys. Rev. B. 40, 4175–4178.Google Scholar
First citation Weng, X. D., Rez, P. & Sankey, O. F. (1989). Pseudo-atomic orbital band theory applied to EELS near edge structures. Phys. Rev. B, 40, 5694–5704.Google Scholar
First citation Wien, W. (1897). Vert. Deutschen Phys. Res. 16, 165.Google Scholar
First citation Williams, B. G. & Bourdillon, A. J. (1982). Localised Compton scattering using EELS. J. Phys. C, 15, 6881–6890.Google Scholar
First citation Williams, B. G., Sparrow, T. G. & Egerton, R. F. (1984). Electron Compton scattering from solids. Proc. R. Soc. London Ser. A, 393, 409–422.Google Scholar
First citation Williams, D. B. & Carter, C. B. (1996). Transmission electron microscopy. New York: Plenum Press.Google Scholar
First citation Wilson, A. J. C. (1949). Diffraction by random layers: ideal line profiles and determination of structure amplitudes from observed line profiles. Acta Cryst. 2, 245–251.Google Scholar
First citation Wilson, A. J. C. (1962). X-ray optics, 2nd ed. London: Methuen.Google Scholar
First citation Wilson, A. R., Spargo, A. E. C. & Smith, D. J. (1982). The characterisation of instrumental parameters in the high resolution electron microscope. Optik (Stuttgart), 61, 63–78.Google Scholar
First citation Wong, T. C. & Bartell, L. S. (1973). Three atom scattering in gas-phase electron diffraction. II. A general treatment. J. Chem. Phys. 58, 5654–5660.Google Scholar
First citation Xie, S.-D., Fink, M. & Kohl, D. A. (1984). Basis set dependence of ab initio SCF elastic, Born, electron scattering cross sections for C2H4. J. Chem. Phys. 81, 1940–1942.Google Scholar
First citation Yagi, K. (1993). RHEED and REM. In Electron diffraction techniques, Vol. 2, edited by J. M. Cowley. IUCr/Oxford University Press.Google Scholar
First citation Yagi, K. & Cowley, J. M. (1978). Electron microscopy study of ordering of potassium ions in cubic KSbO3. Acta Cryst. A34, 625–634.Google Scholar
First citation Yates, A. C. (1970). Relativistic effects in high-energy inelastic electron–atom collisions. Chem. Phys. Lett. 6, 49–53.Google Scholar
First citation Yates, A. C. (1971). A program for calculating relativistic elastic electron–atom collision data. Comput. Phys. Commun. 2, 175–179.Google Scholar
First citation Yates, A. C. & Bonham, R. A. (1969). Use of relativistic electron scattering factors in electron diffraction analysis. J. Chem. Phys. 50, 1056–1058.Google Scholar
First citation Zaanen, J., Sawatzky, G. A., Fink, J., Speier, W. & Fuggle, J. C. (1985). L23 absorption spectra of the lighter 3d transition metals. Phys. Rev. B, 32, 4905–4913.Google Scholar
First citation Zakharov, N. D., Pasemann, M. & Rozhanski, V. N. (1982). Observations of point defects in silicon by means of dark-field lattice plane imaging. Phys. Status Solidi A, 71, 275–281.Google Scholar
First citation Zanchi, G., Perez, J. P. & Sevely, J. (1975). Adaptation of magnetic filtering device on a one megavolt electron microscope. Optik (Stuttgart), 43, 495–501.Google Scholar
First citation Zanchi, G., Sevely, J. & Jouffrey, B. (1977). Second order image aberration of a one megavolt magnetic filter. Optik (Stuttgart), 48, 173–192.Google Scholar
First citation Zhukhlistov, A. P., Avilov, A. S., Ferraris, G., Zvyagin, B. B. & Plotnikov, V. P. (1997). Statistical distribution of hydrogen over three positions in brucite Mg(OH)2 structure from electron diffractometry data. Crystallogr. Rep. 42, 774–777.Google Scholar
First citation Zimmermann, S. (1976). The dielectric function of InSb determined by electron energy losses. J. Phys. C, 9, 2643–2649.Google Scholar
First citation Zou, X. D., Sukharev, Y. & Hovmöller, S. (1993). ELD – a computer program for extracting intensities from electron diffraction patterns. Ultramicroscopy, 49, 147–158.Google Scholar
First citation Zuo, J. M., Høier, R. & Spence, J. C. H. (1989). Three-beam and many-beam theory in electron diffraction and its use for structure-factor phase determination in non-centrosymmetrical crystal structures. Acta Cryst. A45, 839–851.Google Scholar
First citation Zuo, J. M., Spence, J. C. H., Downs, J. & Mayer, J. (1993). Measurement of individual structure-factor phases with tenth-degree accuracy: the 00.2 reflection in BeO studied with electron and X-ray diffraction. Acta Cryst. A49, 422–429.Google Scholar
First citation Zuo, J. M., Spence, J. C. H. & O'Keefe, M. (1988). Bonding in GaAs. Phys. Rev. Lett. 61, 353–356.Google Scholar
First citation Zvyagin, B. B. (1967). Electron diffraction analysis of clay mineral structures. New York: Plenum.Google Scholar
First citation Zvyagin, B. B., Vrublevskaya, Z. V., Zhukhlistov, A. P., Sidorenko, O. V., Soboleva, S. V. & Fedotov, A. F. (1979). High-voltage electron diffraction in the study of layered minerals. Moscow: Nauka.Google Scholar
First citation Zvyagin, B. B., Zhukhlistov, A. P. & Plotnikov, V. P. (1996). The development of electron diffractometry of minerals. Structural studies of crystals (For the 75th birthday of B. K. Vainshtein), pp. 225–234. Moscow: Nauka Physmathgis.Google Scholar








































to end of page
to top of page