For diffraction in the equatorial plane of a cylinder of radius R within the X-ray beam, the expression for the transmission coefficient reduces to
Values of the absorption correction A* obtained by numerical integration by Dwiggins (1975a
) are listed in Table 6.3.3.2
.
μR | θ = 0° | θ = 5° | θ = 10° | θ = 15° | θ = 20° | θ = 25° | θ = 30° | θ = 35° | θ = 40° | θ = 45° | θ = 50° | θ = 55° | θ = 60° | θ = 65° | θ = 70° | θ = 75° | θ = 80° | θ = 85° | θ = 90° |
---|
0.0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.1 | 1.1843 | 1.1843 | 1.1842 | 1.1840 | 1.1838 | 1.1835 | 1.1832 | 1.1828 | 1.1823 | 1.1818 | 1.1813 | 1.1808 | 1.1802 | 1.1798 | 1.1793 | 1.1790 | 1.1787 | 1.1785 | 1.1785 | 0.2 | 1.4009 | 1.4007 | 1.4002 | 1.3995 | 1.3984 | 1.3970 | 1.3953 | 1.3934 | 1.3912 | 1.3889 | 1.3865 | 1.3841 | 1.3818 | 1.3796 | 1.3777 | 1.3761 | 1.3749 | 1.3741 | 1.3739 | 0.3 | 1.6548 | 1.6544 | 1.6531 | 1.6510 | 1.6481 | 1.6443 | 1.6398 | 1.6347 | 1.6290 | 1.6230 | 1.6169 | 1.6108 | 1.6049 | 1.5994 | 1.5946 | 1.5906 | 1.5876 | 1.5857 | 1.5851 | 0.4 | 1.9522 | 1.9513 | 1.9485 | 1.9439 | 1.9376 | 1.9296 | 1.9201 | 1.9094 | 1.8979 | 1.8857 | 1.8733 | 1.8611 | 1.8495 | 1.8388 | 1.8293 | 1.8215 | 1.8157 | 1.8121 | 1.8108 | 0.5 | 2.2996 | 2.2979 | 2.2926 | 2.2840 | 2.2721 | 2.2572 | 2.2398 | 2.2204 | 2.1996 | 2.1781 | 2.1564 | 2.1352 | 2.1152 | 2.0969 | 2.0809 | 2.0677 | 2.0579 | 2.0518 | 2.0497 | 0.6 | 2.7047 | 2.7017 | 2.6926 | 2.6775 | 2.6570 | 2.6317 | 2.6023 | 2.5701 | 2.5359 | 2.5010 | 2.4662 | 2.4327 | 2.4012 | 2.3728 | 2.3480 | 2.3277 | 2.3126 | 2.3033 | 2.3001 | 0.7 | 3.1762 | 3.1712 | 3.1561 | 3.1315 | 3.0982 | 3.0575 | 3.0111 | 2.9607 | 2.9081 | 2.8549 | 2.8028 | 2.7530 | 2.7068 | 2.6653 | 2.6295 | 2.6003 | 2.5786 | 2.5651 | 2.5606 | 0.8 | 3.7236 | 3.7157 | 3.6919 | 3.6532 | 3.6015 | 3.5392 | 3.4691 | 3.3941 | 3.3169 | 3.2400 | 3.1656 | 3.0953 | 3.0307 | 2.9732 | 2.9239 | 2.8839 | 2.8542 | 2.8359 | 2.8297 | 0.9 | 4.3578 | 4.3456 | 4.3093 | 4.2507 | 4.1733 | 4.0812 | 3.9792 | 3.8718 | 3.7629 | 3.6560 | 3.5538 | 3.4584 | 3.3717 | 3.2951 | 3.2299 | 3.1772 | 3.1383 | 3.1142 | 3.1061 | 1.0 | 5.0907 | 5.0724 | 5.0185 | 4.9323 | 4.8196 | 4.6877 | 4.5439 | 4.3948 | 4.2461 | 4.1022 | 3.9664 | 3.8413 | 3.7286 | 3.6298 | 3.5462 | 3.4790 | 3.4295 | 3.3990 | 3.3886 | 1.1 | 5.9356 | 5.9089 | 5.8305 | 5.7065 | 5.5466 | 5.3624 | 5.1649 | 4.9636 | 4.7660 | 4.5776 | 4.4022 | 4.2424 | 4.0998 | 3.9759 | 3.8717 | 3.7882 | 3.7269 | 3.6891 | 3.6763 | 1.2 | 6.907 | 6.869 | 6.757 | 6.582 | 6.360 | 6.109 | 5.8436 | 5.5782 | 5.3219 | 5.0811 | 4.8598 | 4.6604 | 4.4842 | 4.3322 | 4.2051 | 4.1038 | 4.0295 | 3.9838 | 3.9682 | 1.3 | 8.021 | 7.967 | 7.810 | 7.568 | 7.266 | 6.929 | 6.581 | 6.238 | 5.9125 | 5.6110 | 5.3376 | 5.0938 | 4.8805 | 4.6976 | 4.5456 | 4.4248 | 4.3365 | 4.2821 | 4.2636 | 1.4 | 9.294 | 9.219 | 9.003 | 8.674 | 8.268 | 7.826 | 7.376 | 6.942 | 6.536 | 6.166 | 5.8341 | 5.5413 | 5.2873 | 5.0711 | 4.8922 | 4.7506 | 4.6471 | 4.5835 | 4.5619 | 1.5 | 10.746 | 10.643 | 10.349 | 9.907 | 9.372 | 8.800 | 8.230 | 7.689 | 7.192 | 6.744 | 6.348 | 6.002 | 5.7036 | 5.4516 | 5.2441 | 5.0804 | 4.9609 | 4.8875 | 4.8625 | 1.6 | 12.397 | 12.257 | 11.862 | 11.276 | 10.581 | 9.852 | 9.141 | 8.477 | 7.877 | 7.344 | 6.877 | 6.473 | 6.128 | 5.8385 | 5.6007 | 5.4136 | 5.2773 | 5.1935 | 5.1650 | 1.7 | 14.267 | 14.080 | 13.555 | 12.788 | 11.897 | 10.982 | 10.106 | 9.304 | 8.589 | 7.963 | 7.420 | 6.955 | 6.561 | 6.231 | 5.961 | 5.7499 | 5.5960 | 5.5014 | 5.4691 | 1.8 | 16.379 | 16.131 | 15.441 | 14.450 | 13.323 | 12.189 | 11.125 | 10.168 | 9.327 | 8.600 | 7.976 | 7.446 | 7.000 | 6.628 | 6.326 | 6.089 | 5.9166 | 5.8107 | 5.7746 | 1.9 | 18.76 | 18.43 | 17.53 | 16.267 | 14.858 | 13.470 | 12.194 | 11.066 | 10.089 | 9.253 | 8.544 | 7.946 | 7.444 | 7.030 | 6.693 | 6.430 | 6.239 | 6.121 | 6.081 | 2.0 | 21.43 | 21.00 | 19.84 | 18.24 | 16.50 | 14.824 | 13.311 | 11.995 | 10.871 | 9.921 | 9.122 | 8.452 | 7.895 | 7.435 | 7.063 | 6.773 | 6.562 | 6.433 | 6.389 | 2.1 | 24.41 | 23.87 | 22.39 | 20.38 | 18.25 | 16.247 | 14.472 | 12.953 | 11.673 | 10.602 | 9.709 | 8.965 | 8.349 | 7.843 | 7.436 | 7.118 | 6.887 | 6.745 | 6.697 | 2.2 | 27.74 | 27.04 | 25.17 | 22.69 | 20.11 | 17.74 | 15.675 | 13.938 | 12.493 | 11.295 | 10.304 | 9.484 | 8.808 | 8.255 | 7.810 | 7.464 | 7.213 | 7.059 | 7.006 | 2.3 | 31.44 | 30.55 | 28.20 | 25.16 | 22.07 | 19.29 | 16.92 | 14.947 | 13.328 | 11.999 | 10.906 | 10.008 | 9.271 | 8.669 | 8.187 | 7.812 | 7.540 | 7.372 | 7.315 | 2.4 | 35.54 | 34.41 | 31.49 | 27.79 | 24.13 | 20.90 | 18.19 | 15.978 | 14.177 | 12.711 | 11.515 | 10.537 | 9.736 | 9.086 | 8.565 | 8.161 | 7.868 | 7.687 | 7.625 | 2.5 | 40.06 | 38.65 | 35.05 | 30.59 | 26.28 | 22.56 | 19.50 | 17.03 | 15.040 | 13.433 | 12.130 | 11.069 | 10.205 | 9.505 | 8.945 | 8.511 | 8.196 | 8.002 | 7.935 |
|
The reduced expression for a spherical crystal of radius R is
Values of A* obtained using numerical integration by Dwiggins (1975b
) are listed in Table 6.3.3.3
. An estimate of the accuracy of the numerical integration is given by comparison with the results for special values of θ at which equations (6.3.3.4)
and (6.3.3.5)
may be integrated analytically, which are included in Table 6.3.3.1
. The comparison indicates a reliability for the tabulated values of better than 0.1%. Tables at finer intervals for cylinders and spheres for
are given by Rouse, Cooper, York & Chakera (1970
). A tabulation up to
for spheres is given by Weber (1969
). Interpolation for μR may be effected by the formula
where the Km are determined, for fixed θ, from the values in Tables 6.3.3.2
and 6.3.3.3
.
μR | θ = 0° | θ = 5° | θ = 10° | θ = 15° | θ = 20° | θ = 25° | θ = 30° | θ = 35° | θ = 40° | θ = 45° | θ = 50° | θ = 55° | θ = 60° | θ = 65° | θ = 70° | θ = 75° | θ = 80° | θ = 85° | θ = 90° |
---|
0.0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.1 | 1.1609 | 1.1609 | 1.1609 | 1.1607 | 1.1606 | 1.1603 | 1.1600 | 1.1597 | 1.1593 | 1.1589 | 1.1586 | 1.1582 | 1.1579 | 1.1575 | 1.1572 | 1.1570 | 1.1568 | 1.1567 | 1.1567 | 0.2 | 1.3457 | 1.3456 | 1.3452 | 1.3447 | 1.3439 | 1.3428 | 1.3415 | 1.3400 | 1.3383 | 1.3366 | 1.3348 | 1.3331 | 1.3313 | 1.3297 | 1.3282 | 1.3271 | 1.3262 | 1.3256 | 1.3254 | 0.3 | 1.5574 | 1.5571 | 1.5561 | 1.5546 | 1.5525 | 1.5497 | 1.5463 | 1.5426 | 1.5383 | 1.5339 | 1.5293 | 1.5248 | 1.5204 | 1.5162 | 1.5126 | 1.5096 | 1.5074 | 1.5059 | 1.5055 | 0.4 | 1.7994 | 1.7988 | 1.7968 | 1.7935 | 1.7891 | 1.7833 | 1.7765 | 1.7689 | 1.7604 | 1.7515 | 1.7425 | 1.7335 | 1.7249 | 1.7169 | 1.7099 | 1.7041 | 1.6997 | 1.6970 | 1.6961 | 0.5 | 2.0755 | 2.0743 | 2.0706 | 2.0647 | 2.0565 | 2.0462 | 2.0340 | 2.0204 | 2.0056 | 1.9901 | 1.9745 | 1.9592 | 1.9445 | 1.9311 | 1.9194 | 1.9097 | 1.9024 | 1.8979 | 1.8964 | 0.6 | 2.3897 | 2.3877 | 2.3816 | 2.3715 | 2.3578 | 2.3406 | 2.3206 | 2.2984 | 2.2746 | 2.2500 | 2.2255 | 2.2015 | 2.1789 | 2.1583 | 2.1403 | 2.1257 | 2.1145 | 2.1076 | 2.1063 | 0.7 | 2.7467 | 2.7434 | 2.7336 | 2.7177 | 2.6959 | 2.6691 | 2.6382 | 2.6042 | 2.5683 | 2.5316 | 2.4952 | 2.4602 | 2.4274 | 2.3977 | 2.3719 | 2.3508 | 2.3351 | 2.3253 | 2.3220 | 0.8 | 3.1511 | 3.1461 | 3.1312 | 3.1069 | 3.0740 | 3.0339 | 2.9882 | 2.9386 | 2.8869 | 2.8347 | 2.7835 | 2.7346 | 2.6892 | 2.6484 | 2.6133 | 2.5845 | 2.5632 | 2.5499 | 2.5454 | 0.9 | 3.6082 | 3.6009 | 3.5789 | 3.5431 | 3.4952 | 3.4374 | 3.3723 | 3.3026 | 3.2308 | 3.1592 | 3.0898 | 3.0241 | 2.9637 | 2.9098 | 2.8634 | 2.8258 | 2.7979 | 2.7805 | 2.7747 | 1.0 | 4.1237 | 4.1131 | 4.0815 | 4.0304 | 3.9625 | 3.8816 | 3.7917 | 3.6966 | 3.6001 | 3.5048 | 3.4135 | 3.3280 | 3.2499 | 3.1807 | 3.1216 | 3.0738 | 3.0383 | 3.0163 | 3.0090 | 1.1 | 4.7035 | 4.6886 | 4.6442 | 4.5729 | 4.4790 | 4.3686 | 4.2474 | 4.1211 | 3.9945 | 3.8710 | 3.7540 | 3.6455 | 3.5470 | 3.4605 | 3.3870 | 3.3276 | 3.2838 | 3.2566 | 3.2474 | 1.2 | 5.3542 | 5.3335 | 5.2722 | 5.1747 | 5.0476 | 4.9001 | 4.7404 | 4.5761 | 4.4137 | 4.2571 | 4.1104 | 3.9756 | 3.8542 | 3.7483 | 3.6586 | 3.5866 | 3.5334 | 3.5005 | 3.4894 | 1.3 | 6.082 | 6.054 | 5.9710 | 5.8399 | 5.6710 | 5.4776 | 5.2711 | 5.0617 | 4.8573 | 4.6625 | 4.4819 | 4.3175 | 4.1706 | 4.0432 | 3.9360 | 3.8500 | 3.7868 | 3.7477 | 3.7344 | 1.4 | 6.895 | 6.857 | 6.746 | 6.573 | 6.352 | 6.102 | 5.8400 | 5.5774 | 5.3244 | 5.0862 | 4.8676 | 4.6703 | 4.4955 | 4.3447 | 4.2183 | 4.1174 | 4.0432 | 3.9974 | 3.9819 | 1.5 | 7.801 | 7.750 | 7.604 | 7.377 | 7.092 | 6.775 | 6.447 | 6.123 | 5.8143 | 5.5273 | 5.2666 | 5.0333 | 4.8281 | 4.6520 | 4.5052 | 4.3883 | 4.3024 | 4.2495 | 4.2315 | 1.6 | 8.806 | 8.740 | 8.549 | 8.256 | 7.894 | 7.497 | 7.092 | 6.697 | 6.326 | 5.9849 | 5.6780 | 5.4057 | 5.1678 | 4.9647 | 4.7961 | 4.6622 | 4.5641 | 4.5036 | 4.4830 | 1.7 | 9.920 | 9.834 | 9.587 | 9.214 | 8.759 | 8.268 | 7.774 | 7.299 | 6.859 | 6.458 | 6.101 | 5.7867 | 5.5140 | 5.2823 | 5.0907 | 4.9390 | 4.8279 | 4.7595 | 4.7361 | 1.8 | 11.151 | 11.040 | 10.725 | 10.254 | 9.689 | 9.088 | 8.492 | 7.928 | 7.411 | 6.946 | 6.535 | 6.176 | 5.8662 | 5.6045 | 5.3888 | 5.2184 | 5.0936 | 5.0170 | 4.9908 | 1.9 | 12.507 | 12.366 | 11.967 | 11.380 | 10.685 | 9.957 | 9.246 | 8.583 | 7.982 | 7.447 | 6.978 | 6.572 | 6.224 | 5.9308 | 5.6900 | 5.5001 | 5.3613 | 5.2760 | 5.2468 | 2.0 | 13.998 | 13.819 | 13.320 | 12.593 | 11.746 | 10.873 | 10.034 | 9.262 | 8.570 | 7.961 | 7.431 | 6.975 | 6.587 | 6.261 | 5.9942 | 5.7842 | 5.6307 | 5.5365 | 5.5041 | 2.1 | 15.632 | 15.408 | 14.788 | 13.895 | 12.874 | 11.837 | 10.855 | 9.964 | 9.175 | 8.486 | 7.893 | 7.385 | 6.955 | 6.595 | 6.301 | 6.070 | 5.9017 | 5.7982 | 5.7627 | 2.2 | 17.419 | 17.141 | 16.376 | 15.290 | 14.067 | 12.847 | 11.708 | 10.688 | 9.795 | 9.023 | 8.362 | 7.800 | 7.327 | 6.932 | 6.610 | 6.358 | 6.174 | 6.061 | 6.022 | 2.3 | 19.369 | 19.025 | 18.089 | 16.778 | 15.327 | 13.902 | 12.592 | 11.433 | 10.429 | 9.569 | 8.839 | 8.220 | 7.702 | 7.272 | 6.922 | 6.648 | 6.448 | 6.325 | 6.282 | 2.4 | 21.489 | 21.069 | 19.931 | 18.361 | 16.652 | 15.000 | 13.504 | 12.198 | 11.077 | 10.125 | 9.322 | 8.645 | 8.081 | 7.614 | 7.235 | 6.938 | 6.722 | 6.589 | 6.543 | 2.5 | 23.791 | 23.280 | 21.907 | 20.040 | 18.041 | 16.142 | 14.445 | 12.982 | 11.738 | 10.690 | 9.810 | 9.074 | 8.462 | 7.957 | 7.548 | 7.229 | 6.996 | 6.853 | 6.803 |
|
Subsequent interpolation as a function of θ may be effected by the interpolation formula
Interpolation is accurate to 0.1% with N = M = 3.
For cylinders and spheres,
may be obtained by means of the expression
using the values listed in Tables 6.3.3.2
and 6.3.3.3
.
Values of (1/A*)[dA*/d(μR)] obtained by numerical integration by Flack & Vincent (1978
) for spheres with
are listed in Table 6.3.3.4
. An equivalent table of μ(R/A*)/[dA*/d(μR)] for
is given by Rigoult & Guidi-Morosini (1980
).
μR | θ = 0° | θ = 5° | θ = 10° | θ = 15° | θ = 20° | θ = 25° | θ = 30° | θ = 35° | θ = 40° | θ = 45° | θ = 50° | θ = 55° | θ = 60° | θ = 65° | θ = 70° | θ = 75° | θ = 80° | θ = 85° | θ = 90° |
---|
0.0 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 0.1 | 1.4845 | 1.4842 | 1.4829 | 1.4809 | 1.4782 | 1.4739 | 1.4690 | 1.4634 | 1.4569 | 1.4504 | 1.4439 | 1.4375 | 1.4309 | 1.4248 | 1.4191 | 1.4152 | 1.4117 | 1.4096 | 1.4089 | 0.2 | 1.4692 | 1.4682 | 1.4650 | 1.4611 | 1.4548 | 1.4472 | 1.4374 | 1.4268 | 1.4145 | 1.4019 | 1.3879 | 1.3748 | 1.3615 | 1.3491 | 1.3385 | 1.3292 | 1.3228 | 1.3180 | 1.3168 | 0.3 | 1.4527 | 1.4515 | 1.4476 | 1.4400 | 1.4309 | 1.4186 | 1.4044 | 1.3886 | 1.3708 | 1.3517 | 1.3327 | 1.3128 | 1.2947 | 1.2773 | 1.2624 | 1.2494 | 1.2397 | 1.2340 | 1.2321 | 0.4 | 1.4360 | 1.4341 | 1.4283 | 1.4190 | 1.4058 | 1.3898 | 1.3709 | 1.3492 | 1.3265 | 1.3018 | 1.2773 | 1.2531 | 1.2296 | 1.2089 | 1.1903 | 1.1748 | 1.1628 | 1.1560 | 1.1533 | 0.5 | 1.4186 | 1.4161 | 1.4090 | 1.3969 | 1.3803 | 1.3598 | 1.3360 | 1.3093 | 1.2812 | 1.2522 | 1.2231 | 1.1946 | 1.1678 | 1.1434 | 1.1218 | 1.1044 | 1.0910 | 1.0825 | 1.0797 | 0.6 | 1.4011 | 1.3980 | 1.3890 | 1.3742 | 1.3538 | 1.3289 | 1.3006 | 1.2693 | 1.2365 | 1.2033 | 1.1700 | 1.1382 | 1.1087 | 1.0816 | 1.0577 | 1.0383 | 1.0239 | 1.0147 | 1.0115 | 0.7 | 1.3830 | 1.3792 | 1.3683 | 1.3507 | 1.3264 | 1.2973 | 1.2643 | 1.2286 | 1.1918 | 1.1549 | 1.1184 | 1.0839 | 1.0516 | 1.0250 | 0.9978 | 0.9767 | 0.9615 | 0.9518 | 0.9484 | 0.8 | 1.3641 | 1.3600 | 1.3473 | 1.3262 | 1.2984 | 1.2650 | 1.2275 | 1.1879 | 1.1473 | 1.1071 | 1.0684 | 1.0314 | 0.9976 | 0.9674 | 0.9409 | 0.9195 | 0.9034 | 0.8931 | 0.8898 | 0.9 | 1.3451 | 1.3401 | 1.3253 | 1.3013 | 1.2696 | 1.2321 | 1.1908 | 1.1474 | 1.1038 | 1.0608 | 1.0198 | 0.9815 | 0.9465 | 0.9152 | 0.8880 | 0.8663 | 0.8495 | 0.8391 | 0.8359 | 1.0 | 1.3255 | 1.3198 | 1.3029 | 1.2758 | 1.2401 | 1.1987 | 1.1535 | 1.1070 | 1.0608 | 1.0157 | 0.9733 | 0.9340 | 0.8978 | 0.8661 | 0.8392 | 0.8167 | 0.8001 | 0.7897 | 0.7859 | 1.1 | 1.3058 | 1.2993 | 1.2800 | 1.2497 | 1.2103 | 1.1651 | 1.1165 | 1.0670 | 1.0185 | 0.9720 | 0.9286 | 0.8886 | 0.8522 | 0.8205 | 0.7931 | 0.7709 | 0.7542 | 0.7437 | 0.7400 | 1.2 | 1.2851 | 1.2780 | 1.2566 | 1.2228 | 1.1799 | 1.1312 | 1.0796 | 1.0278 | 0.9777 | 0.9299 | 0.8858 | 0.8455 | 0.8093 | 0.7776 | 0.7506 | 0.7285 | 0.7120 | 0.7017 | 0.6981 | 1.3 | 1.2645 | 1.2563 | 1.2324 | 1.1961 | 1.1494 | 1.0967 | 1.0430 | 0.9892 | 0.9377 | 0.8895 | 0.8451 | 0.8048 | 0.7691 | 0.7378 | 0.7113 | 0.6895 | 0.6733 | 0.6631 | 0.6596 | 1.4 | 1.2449 | 1.2349 | 1.2090 | 1.1684 | 1.1180 | 1.0628 | 1.0068 | 0.9517 | 0.8990 | 0.8504 | 0.8064 | 0.7666 | 0.7315 | 0.7009 | 0.6749 | 0.6539 | 0.6377 | 0.6278 | 0.6243 | 1.5 | 1.2231 | 1.2133 | 1.1845 | 1.1398 | 1.0867 | 1.0295 | 0.9711 | 0.9145 | 0.8615 | 0.8133 | 0.7696 | 0.7308 | 0.6964 | 0.6665 | 0.6414 | 0.6209 | 0.6055 | 0.5957 | 0.5922 | 1.6 | 1.2015 | 1.1908 | 1.1585 | 1.1118 | 1.0555 | 0.9957 | 0.9358 | 0.8782 | 0.8261 | 0.7778 | 0.7350 | 0.6970 | 0.6638 | 0.6349 | 0.6105 | 0.5907 | 0.5758 | 0.5663 | 0.5628 | 1.7 | 1.1806 | 1.1681 | 1.1339 | 1.0836 | 1.0244 | 0.9621 | 0.9005 | 0.8435 | 0.7912 | 0.7444 | 0.7027 | 0.6659 | 0.6334 | 0.6057 | 0.5822 | 0.5632 | 0.5484 | 0.5394 | 0.5361 | 1.8 | 1.1586 | 1.1456 | 1.1087 | 1.0558 | 0.9939 | 0.9294 | 0.8669 | 0.8101 | 0.7579 | 0.7121 | 0.6711 | 0.6359 | 0.6053 | 0.5787 | 0.5561 | 0.5376 | 0.5236 | 0.5148 | 0.5117 | 1.9 | 1.1370 | 1.1226 | 1.0835 | 1.0275 | 0.9625 | 0.8964 | 0.8341 | 0.7774 | 0.7262 | 0.6817 | 0.6420 | 0.6078 | 0.5791 | 0.5535 | 0.5321 | 0.5144 | 0.5010 | 0.4924 | 0.4892 | 2.0 | 1.1152 | 1.0996 | 1.0584 | 0.9982 | 0.9318 | 0.8646 | 0.8019 | 0.7457 | 0.6962 | 0.6527 | 0.6160 | 0.5830 | 0.5550 | 0.5305 | 0.5098 | 0.4927 | 0.4799 | 0.4717 | 0.4687 | 2.1 | 1.0932 | 1.0772 | 1.0327 | 0.9703 | 0.9014 | 0.8340 | 0.7712 | 0.7157 | 0.6678 | 0.6259 | 0.5899 | 0.5588 | 0.5322 | 0.5088 | 0.4886 | 0.4726 | 0.4603 | 0.4523 | 0.4494 | 2.2 | 1.0719 | 1.0543 | 1.0074 | 0.9427 | 0.8719 | 0.8039 | 0.7421 | 0.6874 | 0.6402 | 0.6003 | 0.5658 | 0.5353 | 0.5098 | 0.4884 | 0.4699 | 0.4548 | 0.4426 | 0.4347 | 0.4311 | 2.3 | 1.0498 | 1.0316 | 0.9822 | 0.9150 | 0.8434 | 0.7744 | 0.7133 | 0.6605 | 0.6147 | 0.5758 | 0.5433 | 0.5141 | 0.4896 | 0.4692 | 0.4518 | 0.4363 | 0.4252 | 0.4175 | 0.4149 | 2.4 | 1.0275 | 1.0118 | 0.9583 | 0.8889 | 0.8147 | 0.7482 | 0.6870 | 0.6340 | 0.5918 | 0.5507 | 0.5212 | 0.4937 | 0.4699 | 0.4500 | 0.4328 | 0.4187 | 0.4076 | 0.4003 | 0.3986 | 2.5 | 1.0108 | 0.9691 | 0.9297 | 0.8562 | 0.7904 | 0.7074 | 0.6554 | 0.6194 | 0.5618 | 0.5289 | 0.4980 | 0.4776 | 0.4554 | 0.4315 | 0.4142 | 0.4028 | 0.3921 | 0.3883 | 0.3783 |
|
Alternatively, one can differentiate the interpolation formula (6.3.3.6)
, yielding
In this case, however, the maximum index M = 7 is required to obtain convergence for
. Numerical values of the coefficients Km for cylinders and spheres evaluated by Tibballs (1982
) are listed in Table 6.3.3.5
.
![[\theta_j]](/teximages/bbch3o5/bbch3o5fi451.svg) | 0° | 15° | 30° | 45° | 60° | 75° | 90° | Units |
---|
K1 (sphere) | 3/2 | 3/2 | 3/2 | 3/2 | 3/2 | 3/2 | 3/2 | | K2 | −7.5234 | −9.4320 | −15.109 | −24.3812 | −35.219 | −44.042 | −47.745 | 10−2 | K3 | −7.0935 | −10.737 | −18.027 | −11.088 | 14.265 | 40.021 | 61.084 | 10−3 | K4 | −2.3096 | −2.1332 | −1.4693 | 7.4205 | 24.832 | 44.308 | 37.394 | 10−3 | K5 | 1.8323 | 1.1711 | 4.6784 | 3.0970 | −10.284 | −27.987 | −25.879 | 10−3 | K6 | −5.1259 | −1.2652 | −14.491 | −16.740 | 21.910 | 77.007 | 71.458 | 10−4 | K7 | 6.0265 | 0.7932 | 16.489 | 21.774 | −22.391 | −85.570 | −78.812 | 10−5 | K1 (cylinder) | 16/3π | 16/3π | 16/3π | 16/3π | 16/3π | 16/3π | 16/3π | | K2 | −5.7832 | −8.1900 | −15.651 | −27.048 | −40.317 | −51.497 | −55.837 | 10−2 | K3 | −14.737 | −19.551 | −22.883 | −27.345 | −8.807 | 26.637 | 41.420 | 10−3 | K4 | 5.2399 | 1.2934 | −12.301 | 6.844 | 40.689 | 61.371 | 68.963 | 10−3 | K5 | −4.0958 | −2.8349 | 9.6249 | 7.503 | −11.295 | −29.397 | −36.556 | 10−3 | K6 | 13.178 | 12.731 | −19.881 | −30.211 | 9.4468 | 60.356 | 80.965 | 10−4 | K7 | −14.500 | −14.846 | 14.414 | 34.222 | 3.1492 | −49.206 | −70.573 | 10−5 | (C−1)0,j | 3 | 0 | 0 | 0 | 0 | 0 | 0 | All values multiplied by 3 to eliminate fractions | (C−1)1,j | −73 | 48 + 24![[\sqrt{3}]](/teximages/cbch6o3/cbch6o3fi28.svg) | −24 | 12 | −8 | 48 − 24![[\sqrt{3}]](/teximages/cbch6o3/cbch6o3fi28.svg) | −3 | (C−1)2,j | 518 | −496 − 200![[\sqrt {3}]](/teximages/cbch6o3/cbch6o3fi30.svg) | 488 | −268 | 184 | −496 + 200![[\sqrt{3}]](/teximages/cbch6o3/cbch6o3fi28.svg) | 70 | (C−1)3,j | −1600 | 1920 + 560![[\sqrt{3}]](/teximages/cbch6o3/cbch6o3fi28.svg) | −2192 | 1536 | −1136 | 1920 − 560![[\sqrt{3}]](/teximages/cbch6o3/cbch6o3fi28.svg) | −448 | (C−1)4,j | 2432 | −3520 − 640![[\sqrt{3}]](/teximages/cbch6o3/cbch6o3fi28.svg) | 4032 | −3328 | 2752 | −3520 + 640![[\sqrt{3}]](/teximages/cbch6o3/cbch6o3fi28.svg) | 1152 | (C−1)5,j | −1792 | 3072 + 256![[\sqrt{3}]](/teximages/cbch6o3/cbch6o3fi28.svg) | −3328 | 3072 | −2816 | 3072 − 256![[\sqrt{3}]](/teximages/cbch6o3/cbch6o3fi28.svg) | −1280 | (C−1)6,j | 512 | −1024 | 1024 | −1024 | 1024 | −1024 | 512 |
|
Interpolation between the tabulated θ values is obtained from the θ interpolation formula, noting that
where
The elements
and the
for
at 15° intervals in the range
are listed in Table 6.3.3.5
. Differentiating (6.3.3.7)
yields
where
Equation (6.3.3.12)
for path lengths is the analogue of equation (6.3.3.7)
for the transmission factors. It provides the basis for an interpolation formula.
In the case of a cylindrical crystal much larger than the X-ray beam, the absorption correction has been determined by Coyle (1972
), in an extension of earlier work by Coyle & Schroeder (1971
). The absorption correction for the case of the cylinder axis coincident with the
axis of a Eulerian cradle, shown in Fig. 6.3.3.1
, reduces to the line integral
where z and T(z) are the path lengths for the incident and diffracted beams, respectively. τ is the radius, along the line of the incident beam, of the ellipse described by the cross section of the crystal in the plane of diffraction, shown in Fig. 6.3.3.2
. The equation for the ellipse is
The outgoing elliptical radius v satisfies
where ![[\eqalign{ A&=[1-\sin^2\theta\sin^2\chi]^2 \cr B &=-2R^2[1-\sin^2\theta\sin^2 \chi] \cr&\quad -2(\tau-z){^2}[\cos\!{^2}\,\theta-\sin\!{^2}\, \theta\cos\!{^2}\,\chi]\sin\!{^2}\,2\theta\sin{^2}\chi \cr C &=R^4+2R^2(\tau-z)^2\sin^22\theta\sin^2\chi\cos2\theta \cr &\quad+(\tau-z)^4\sin^42\theta\sin^4\chi.}]](/teximages/cbch6o3/cbch6o3fd33.svg)
![[Figure 6.3.3.1]](/figures/Cbfig6o3o3o1thm.gif)
| Figure 6.3.3.1| top | pdf | Geometry of the Eulerian cradle with the axis of a cylindrical specimen coincident with the φ axis. |
![[Figure 6.3.3.2]](/figures/Cbfig6o3o3o2thm.gif)
| Figure 6.3.3.2| top | pdf | Cross section of the plane of diffraction for a cylindrical specimen coincident with the φ axis. |
In the case where the cylinder axis is inclined at an angle Γ to the
axis, these equations become
where
The roots of the quadratic equation (6.3.3.16)
for
are real and positive for reflection from within the crystal. The convergent path length T is given by the positive root of the triangle formula ![[T^2-2T(\tau-z)\cos2\theta+(\tau-z)^2-v^2=0. \eqno (6.3.3.17)]](/teximages/cbch6o3/cbch6o3fd36.svg)
It should be noted that the volume of the specimen irradiated changes with the angular settings of the diffractometer. Normalization to constant volume requires that the absorption correction be multiplied by the volume-correction factor
.
The method readily extends to the case of a cylindrical window or sheath, such as used for mounting an unstable crystal of conventional size. The correction in this case is
where the subscripts 1 and 2 apply to the inner and outer radii, respectively.
The integral in equation (6.3.3.14)
may be evaluated by Gaussian quadrature, i.e. by approximation as a weighted sum of the values of the function at the N zeros
of the Legendre polynomial of degree N in the interval [−1, +1]. The weights
for the points are tabulated by Abramowitz & Stegun (1964
). Further details are given in Subsection 6.3.3.4
. The emergent path lengths
and
for the case of the sheath are calculated as functions of the Gaussian variable
using the linear transformation
This transformation converts the Gaussian variable X into the beam coordinate z for each i of the N summation points.