International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 6.4, p. 611

Section 6.4.10.2. The uncorrelated block model

T. M. Sabinea

a ANSTO, Private Mail Bag 1, Menai, NSW 2234, Australia

6.4.10.2. The uncorrelated block model

| top | pdf |

When this model is used, two values of x are required. These are designated [x_p] for primary extinction and [x_s] for secondary extinction. Equation (6.4.8.1)[link] is used to obtain a value for [x_p]. The primary-extinction factors are then calculated from (6.4.5.3)[link], (6.4.5.4)[link] and (6.4.5.5)[link], and [E_p(2\theta)] is given by equation (6.4.7.1)[link]. In the second step, [x_s] is obtained from equation (6.4.9.1)[link], and the secondary-extinction factors are calculated from either (6.4.9.2)[link] and (6.4.9.3)[link] or (6.4.9.4)[link] and (6.4.9.5)[link]. The result of these calculations is then used in equation (6.4.7.1)[link] to give [E_s(2\theta)]. It is emphasised that [x_s] includes the primary-extinction factor. Finally, [E(2\theta)=E_p(2\theta) E_s[E_p(2\theta),2\theta] ].

Application of both models to the analysis of neutron diffraction data has been carried out by Kampermann, Sabine, Craven & McMullan (1995[link]).

References

First citation Kampermann, S. P., Sabine, T. M., Craven, B. M. & McMullan, R. K. (1995). Hexamethylenetetramine: extinction and thermal vibrations from neutron diffraction at six temperatures. Acta Cryst. A51, 489–497.Google Scholar








































to end of page
to top of page