International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 7.1, p. 620

Section 7.1.4.2. Solid-state detectors

W. Parrishf and J. I. Langforde

7.1.4.2. Solid-state detectors

| top | pdf |

The following description applies primarily to the use of solid-state detectors in powder diffractometry. Further details of their operation and their use in energy-dispersive diffractometry are treated in Section 7.1.5[link].

The most common form of solid-state detector consists of a lithium-drifted silicon crystal Si(Li) and liquid-nitrogen Dewar. A perfect single crystal is used with very thin gold film on the front surface for electrical contact. The first amplifier stage is a field-effect transistor (FET). The unit must be kept at liquid-nitrogen temperature at all times (even when not in use) to prevent Li diffusion and to reduce the dark current when in use. The unit is large and heavy and, if not used in a stationary position, a robust detector arm is required, which is usually counter-balanced. The crystal is made with different-size sensitive areas and the resolution is somewhat dependent on the size of the area. In the detector process, the number of free charge carriers (the electron and electron–hole pairs) generated during the X-ray absorption changes the conductivity of the crystal and is proportional to the energy of the X-ray quantum. Details of the mechanism are given in several books [see, for example, Heinrich, Newbury, Myklebust & Fiori (1981[link]) and Russ (1984[link])].

Intrinsic germanium detectors have higher absorption than silicon detectors, but they have lower energy resolution and there are more interferences from escape peaks. A mercuric iodide (HgI2) detector can be operated at room temperature and has high absorption (Nissenbaum, Levi, Burger, Schieber & Burshtein, 1984[link]). They have poorer resolution than Si or Ge detectors but can be improved to FWHM = 200 eV at 5.9 keV by cooling to 269 K (Ames, Drummond, Iwanczyk & Dabrowski, 1983[link]).

A small (about 16.5 × 10 cm), lightweight (3.2 kg) silicon detector with Peltier thermoelectric cooling is available (e.g. Kevex Corporation, 1990[link]). This development has supplanted a number of the methods of collecting powder data. The elimination of the liquid-nitrogen Dewar and the compact size makes it possible to replace conventional detectors and the diffracted-beam monochromator in scanning powder diffractometry. The spectrum is displayed on a small screen and the window of the analyser can be set closely on the energy distribution obtained from a powder reflection to transmit, say, only Cu Kα. The monochromator can be eliminated for a large gain of intensity without loss of pattern resolution. The energy resolution is FWHM [\approx] 195 eV at 5.9 keV. Elemental analysis can be performed by energy-dispersive fluorescence, and the background can be restricted to the narrow energy window selected. Bish & Chipera (1989[link]) used it to obtain a 3–4 times increase of intensity, the same pattern resolution, and lower tails than with a graphite monochromator and scintillation counter in conventional diffractometry. The major limitation at present is the limited input intensity that can be handled. The limiting (total) count rate is about 104 counts s−1 and the detector becomes markedly nonlinear at 2 × 104 counts s−1. Internal dead-time corrections can extend the range by increasing the counting times.

References

First citation Ames, L., Drummond, W., Iwanczyk, J. & Dabrowski, A. (1983). Energy resolution measurements of mercuric iodide detectors using a cooled FET preamplifier. Adv. X-ray Anal. 26, 325–330.Google Scholar
First citation Bish, D. L. & Chipera, S. J. (1989). Comparison of a solid-state Si detector to a conventional scintillation detector–monochromator system in X-ray powder diffraction. Powder Diffr. 4, 137–143.Google Scholar
First citation Heinrich, K. F. J., Newbury, D. E., Myklebust, R. L. & Fiori, C. E. (1981). Editors. Energy dispersive X-ray spectrometry. US Natl Bur. Stand. Spec. Publ. No. 604.Google Scholar
First citation Kevex Corporation (1990). Brochure on equipment.Google Scholar
First citation Nissenbaum, J., Levi, A., Burger, A., Schieber, M. & Burshtein, Z. (1984). Suppression of X-ray fluorescence background in X-ray powder diffraction by a mercuric iodide spectrometer. Adv. X-ray Anal. 27, 307–316.Google Scholar
First citation Russ, J. C. (1984). Fundamentals of energy dispersive X-ray analysis. London: Butterworth.Google Scholar








































to end of page
to top of page