International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 9.8, p. 941

Section 9.8.4.4.3. Structure factor

T. Janssen,a A. Janner,a A. Looijenga-Vosb and P. M. de Wolffc

a Institute for Theoretical Physics, University of Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, The Netherlands,bRoland Holstlaan 908, NL-2624 JK Delft, The Netherlands, and cMeermanstraat 126, 2614 AM, Delft, The Netherlands

9.8.4.4.3. Structure factor

| top | pdf |

The scattering from a set of atoms at positions [{\bf r}_n] is described in the kinematic approximation by the structure factor: [S_{\bf H}=\textstyle\sum\limits_n\,f_n({\bf H})\exp(2\pi i{\bf H}\cdot{\bf r}_n), \eqno (9.8.4.44)]where [f_n({\bf H})] is the atomic scattering factor. For an incommensurate crystal phase, this structure factor [S_{\bf H}] is equal to the structure factor [S_{H_S}] of the crystal structure embedded in 3 + d dimensions, where H is the projection of [H_s] on [V_E]. This structure factor is expressed by a sum of the products of atomic scattering factors [f_n] and phase factors [\exp(2\pi iH_s\cdot r_{sn})] over all particles in the unit cell of the higher-dimensional lattice. For an incommensurate phase, the number of particles in such a unit cell is infinite: for a given atom in space, the embedded positions form a dense set on lines or hypersurfaces of the higher-dimensional space. Disregarding pathological cases, the sum may be replaced by an integral. Including the possibility of an occupation modulation, the structure factor becomes (up to a normalization factor) [\eqalignno{ S_{\bf H}&=\textstyle\sum\limits_A\textstyle\sum\limits_j\textstyle\int\limits_\Omega{\rm d}{\bf t}\ f_A({\bf H})P_{Aj}({\bf t}) \cr &\quad\times\exp\{2\pi i({\bf H,H}_I)\cdot [{\bf r}_j+{\bf u}_j({\bf t}), {\bf t}]\}, & (9.8.4.45)}]where the first sum is over the different species, the second over the positions in the unit cell of the basic structure, the integral over a unit cell of the lattice spanned by [{\bf d}_1,\ldots,{\bf d}_d] in [V_I]; [f_A] is the atomic scattering factor of species A, [P_{Aj}({\bf t})] is the probability of atom j being of species A when the internal position is t.

In particular, for a given atomic species, without occupational modulation and a sinusoidal one-dimensional displacive modulation [P_j(t)=1\semi \quad {\bf u}_j(t)={\bf U}_j\sin[2\pi({\bf q}\cdot {\bf r}_j+t+\varphi_j)]. \eqno (9.8.4.46)]According to (9.8.4.45)[link], the structure factor is [\eqalignno{ S_{\bf H} &=\textstyle\sum\limits_j\textstyle\int\limits^1_0{\rm d} t\ f_j({\bf H})\exp(2\pi i{\bf H}\cdot{\bf r}_j)\exp(2\pi imt) \cr &\quad\times\exp[2\pi i{\bf H}\cdot{\bf U}_j\sin2\pi({\bf q}\cdot{\bf r}_j+t+\varphi_j)]. &(9.8.4.47)}]For a diffraction vector H = K + mq, this reduces to [\eqalignno{ S_{\bf H} &=\textstyle\sum\limits_j\,f_j({\bf H})\exp(2\pi i{\bf K\cdot r}_j)J_{-m}(2\pi{\bf H}\cdot{\bf U}_j) \cr &\quad\times\exp(-2\pi im\varphi_j). & (9.8.4.48)}]For a general one-dimensional modulation with occupation modulation function [p_j(t)] and displacement function [{\bf u}_j(t)], the structure factor becomes [\eqalignno{ S_{\bf H}&=\textstyle\sum\limits_j\textstyle\int\limits^1_0{\rm d} t\ f_j({\bf H})p_j({\bf q}\cdot {\bf r}_j+t+\psi_j)\exp[2\pi i({\bf H}\cdot{\bf r}_j+mt)] \cr&\quad\times\exp[2\pi i{\bf H}\cdot {\bf u}_j({\bf q}\cdot{\bf r}_j+t+\varphi_j)]. & (9.8.4.49)}]Because of the periodicity of [p_j(t)] and [{\bf u}_j(t)], one can expand the Fourier series: [\eqalignno{ &p_j({\bf q}\cdot{\bf r}_j+t+\psi_j)\exp[2\pi i{\bf H}\cdot{\bf u}_j({\bf q}\cdot{\bf r}_j+t+\varphi_j)] \cr&\quad=\textstyle\sum\limits_k\,C_{j,k}({\bf H})\exp[2\pi ik({\bf q}\cdot{\bf r}_j+t)], &(9.8.4.50)}]and consequently the structure factor becomes [S_{\bf H}=\textstyle\sum\limits_j\,f_j({\bf H})\exp(2\pi i{\bf K}\cdot{\bf r}_j)C_{j,-m}({\bf H}), \quad\hbox{where }{\bf H}={\bf K}+m{\bf q}. \eqno (9.8.4.51)]The diffraction from incommensurate crystal structures has been treated by de Wolff (1974[link]), Yamamoto (1982a[link],b[link]), Paciorek & Kucharczyk (1985[link]), Petricek, Coppens & Becker (1985[link]), Petříček & Coppens (1988[link]), Perez-Mato et al. (1986[link], 1987[link]), and Steurer (1987[link]).

References

First citation Paciorek, W. A. & Kucharczyk, D. (1985). Structure factor calculations in refinement of a modulated crystal structure. Acta Cryst. A41, 462–466.Google Scholar
First citation Perez-Mato, J. M., Madariaga, G. & Tello, M. J. (1986). Diffraction symmetry of incommensurate structures. J. Phys. C, 19, 2613–2622.Google Scholar
First citation Perez-Mato, J. M., Madariaga, G., Zuñiga, F. J. & Garcia Arribas, A. (1987). On the structure and symmetry of incommensurate phases. A practical formulation. Acta Cryst. A43, 216–226.Google Scholar
First citation Petříček, V. & Coppens, P. (1988). Structure analysis of modulated molecular crystals. III. Scattering formalism and symmetry considerations: extension to higher-dimensional space groups. Acta Cryst. A44, 235–239.Google Scholar
First citation Petricek, V., Coppens, P. & Becker, P. (1985). Structure analysis of displacively modulated molecular crystals. Acta Cryst. A41, 478–483.Google Scholar
First citation Steurer, W. (1987). (3+1)-dimensional Patterson and Fourier methods for the determination of one-dimensionally modulated structures. Acta Cryst. A43, 36–42.Google Scholar
First citation Wolff, P. M. de (1974). The pseudo-symmetry of modulated crystal structures. Acta Cryst. A30, 777–785.Google Scholar
First citation Yamamoto, A. (1982a). A computer program for the refinement of modulated structures. Report NIRIM, Ibaraki, Japan.Google Scholar
First citation Yamamoto, A. (1982b). Structure factor of modulated crystal structures. Acta Cryst. A38, 87–92.Google Scholar








































to end of page
to top of page