International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.3, p. 96

Section 1.3.7.4. Harmonic generation

A. Authiera* and A. Zarembowitchb

a Institut de Minéralogie et de la Physique des Milieux Condensés, Bâtiment 7, 140 rue de Lourmel, 75015 Paris, France, and bLaboratoire de Physique des Milieux Condensés, Université P. et M. Curie, 75252 Paris CEDEX 05, France
Correspondence e-mail:  aauthier@wanadoo.fr

1.3.7.4. Harmonic generation

| top | pdf |

The coordinates in the medium free of stress are denoted either a or [{\bar X}]. The notation [{\bar X}] is used when we have to discriminate the natural configuration, [{\bar X}], from the initial configuration X. Here, the process that we describe refers to the propagation of an elastic wave in a medium free of stress (natural state) and the coordinates will be denoted [a_{i}].

Let us first examine the case of a pure longitudinal mode, i.e. [u_{1} = u_{1}(a_{1},t)\semi \quad u_{2} = u_{3} = 0. ]

The equations of motion, (1.3.7.7)[link] and (1.3.7.9)[link], reduce to [\rho u_{1}'' = (\lambda + 2\mu){\partial^{2} u_{1} \over \partial a_{1}^{2}} + [3(\lambda + 2\mu) + 2(l + 2m)] {\partial u_{1}\over \partial a_{1}}{\partial^{2} u_{1}\over \partial a_{1}^{2}} ]for an isotropic medium or [\rho u_{1}'' = c_{11}{\partial^{2} u_{1}\over \partial a_{1}^{2}} + [3c_{11} + c_{166}] {\partial u_{1}\over \partial a_{1}}{\partial^{2}u_{1}\over \partial a_{1}^{2}} ]for a cubic crystal (most symmetrical groups) when a pure longitudinal mode is propagated along [100].

For both cases, we have a one-dimensional problem; (1.3.7.7)[link] and (1.3.7.9)[link] can therefore be written [\rho u_{1}'' = K_{2}{\partial^{2}u_{1}\over \partial a_{1}^{2}} + [3K_{2} + K_{3}] {\partial u_{1}\over \partial a_{1}}{\partial^{2}u_{1}\over \partial a_{1}^{2}}. \eqno(1.3.7.10) ]

The same equation is also valid when a pure longitudinal mode is propagated along [110] and [111], with the following correspondence: [\eqalign{[100]\ K_{2} &= c_{11}, \quad K_{3} = c_{111}\cr [110]\ K_{2} &= {c_{11} + c_{12} + 2c_{44}\over 2}, \quad \ K_{3} = {c_{111} + 3c_{112} +12 c_{166} \over 4}\cr [111]\ K_2 &= {c_{11} + 2c_{12} + 4c_{44}\over 3},\cr K_{3} &= {c_{111} + 6c_{112} + 12c_{144} + 24c_{166} + 2c_{123} + 16c_{456}\over 9}.\cr} ]Let us assume that [K_{3} \ll K_{2}]; a perturbation solution to (1.3.7.10)[link] is [u = u^{0} + u^{1},]where [u^{1} \ll u^{0}] with [\eqalignno{u^{0} &= A \sin (ka - \omega t) &(1.3.7.11)\cr u^{1} &= Ba \sin 2(ka - \omega t) + C a \cos 2(ka - \omega t). &(1.3.7.12)\cr} ]

If we substitute the trial solutions into (1.3.7.10)[link], we find after one iteration the following approximate solution: [u = A \sin (ka - \omega t) - {(kA)^{2}(3K_{2} + K_{3})\over 8\rho c^{2}} a \cos 2(ka - \omega t), ]which involves second-harmonic generation.

If additional iterations are performed, higher harmonic terms will be obtained. A well known property of the first-order nonlinear equation (1.3.7.10)[link] is that its solutions exhibit discontinuous behaviour at some point in space and time. It can be seen that such a discontinuity would appear at a distance from the origin given by (Breazeale, 1984[link]) [L = - 2{(K_2)^{2}\over 3K_{2} + K_{3}}\rho \omega u_{0}', ]where [u_{0}'] is the initial value for the particle velocity.

References

First citation Breazeale, M. A. (1984). Determination of third-order elastic constants from ultrasonic harmonic generation. Physical acoustics, Vol. 17, edited by R. N. Thurston, pp. 2–75. New York: Academic Press.Google Scholar








































to end of page
to top of page