International Tables for Crystallography

Access to online content requires a licence


Electrons
K. Schwarz. International Tables for Crystallography (2006). Vol. D, ch. 2.2, pp. 294-313  [ doi:10.1107/97809553602060000639 ]

Abstract

The electronic structure of a solid, characterized by its energy band structure, is the fundamental quantity that determines the ground state of the solid and a series of excitations involving electronic states. In the first part of this chapter, several basic concepts are summarized in order to establish the notation used and to repeat essential theorems from group theory and solid-state physics that provide the definitions that are needed in this context (Brillouin zones, symmetry operators, Bloch theorem, space-group symmetry). Next the quantum-mechanical treatment, especially density functional theory, is described and the commonly used methods of band theory are outlined (the linear combination of atomic orbitals, tight binding, pseudo-potential schemes, the augmented plane wave method, the linear augmented plane wave method, the Korringa–Kohn–Rostocker method, the linear combination of muffin-tin orbitals, the Car–Parinello method etc.). The linear augmented plane wave scheme is presented explicitly so that concepts in connection with energy bands can be explained. The electric field gradient is discussed to illustrate a tensorial quantity. In the last section, a few examples illustrate the topics of the chapter.


Access, prices and ordering

International Tables for Crystallography is available online as a full set of volumes through Wiley.

set

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

About International Tables for Crystallography

International Tables for Crystallography is the definitive resource and reference work for crystallography. The multi-volume series comprises articles and tables of data relevant to crystallographic research and to applications of crystallographic methods in all sciences concerned with the structure and properties of materials.