International Tables for Crystallography (2013). Vol. D. ch. 1.3, pp. 72-100
https://doi.org/10.1107/97809553602060000902 |
Chapter 1.3. Elastic properties
Contents
- 1.3. Elastic properties (pp. 72-100) | html | pdf | chapter contents |
- 1.3.1. Strain tensor (pp. 72-76) | html | pdf |
- 1.3.1.1. Introduction, the notion of strain field (p. 72) | html | pdf |
- 1.3.1.2. Homogeneous deformation (pp. 72-74) | html | pdf |
- 1.3.1.2.1. Fundamental property of the homogeneous deformation (p. 72) | html | pdf |
- 1.3.1.2.2. Spontaneous strain (p. 72) | html | pdf |
- 1.3.1.2.3. Cubic dilatation (pp. 72-73) | html | pdf |
- 1.3.1.2.4. Expression of any homogeneous deformation as the product of a pure rotation and a pure deformation (p. 73) | html | pdf |
- 1.3.1.2.5. Quadric of elongations (pp. 73-74) | html | pdf |
- 1.3.1.3. Arbitrary but small deformations (pp. 74-75) | html | pdf |
- 1.3.1.4. Particular components of the deformation (pp. 75-76) | html | pdf |
- 1.3.2. Stress tensor (pp. 76-80) | html | pdf |
- 1.3.2.1. General conditions of equilibrium of a solid (p. 76) | html | pdf |
- 1.3.2.2. Definition of the stress tensor (pp. 76-77) | html | pdf |
- 1.3.2.3. Condition of continuity (p. 77) | html | pdf |
- 1.3.2.4. Symmetry of the stress tensor (pp. 77-78) | html | pdf |
- 1.3.2.5. Voigt's notation – interpretation of the components of the stress tensor (p. 78) | html | pdf |
- 1.3.2.6. Boundary conditions (pp. 78-79) | html | pdf |
- 1.3.2.7. Local properties of the stress tensor (p. 79) | html | pdf |
- 1.3.2.8. Energy density in a deformed medium (pp. 79-80) | html | pdf |
- 1.3.3. Linear elasticity (pp. 80-85) | html | pdf |
- 1.3.3.1. Hooke's law (pp. 80-81) | html | pdf |
- 1.3.3.2. Elastic constants (pp. 81-82) | html | pdf |
- 1.3.3.3. Elastic strain energy (pp. 82-83) | html | pdf |
- 1.3.3.4. Particular elastic constants (pp. 83-84) | html | pdf |
- 1.3.3.5. Isotropic materials (pp. 84-85) | html | pdf |
- 1.3.3.6. Equilibrium conditions of elasticity for isotropic media (pp. 85-86) | html | pdf |
- 1.3.4. Propagation of elastic waves in continuous media – dynamic elasticity (pp. 86-89) | html | pdf |
- 1.3.4.1. Introduction (p. 86) | html | pdf |
- 1.3.4.2. Equation of propagation of a wave in a material (p. 86) | html | pdf |
- 1.3.4.3. Dynamic elastic stiffnesses (pp. 86-87) | html | pdf |
- 1.3.4.4. Polarization of the elastic waves (p. 87) | html | pdf |
- 1.3.4.5. Relation between velocity of propagation and elastic stiffnesses (pp. 87-88) | html | pdf |
- 1.3.4.6. Experimental determination of elastic constants (pp. 88-89) | html | pdf |
- 1.3.5. Pressure dependence and temperature dependence of the elastic constants (pp. 89-91) | html | pdf |
- 1.3.6. Nonlinear elasticity (pp. 92-95) | html | pdf |
- 1.3.6.1. Introduction (p. 92) | html | pdf |
- 1.3.6.2. Lagrangian and Eulerian descriptions (p. 92) | html | pdf |
- 1.3.6.3. Strain and stress tensors (pp. 92-93) | html | pdf |
- 1.3.6.4. Second-order and higher-order elastic stiffnesses (p. 93) | html | pdf |
- 1.3.6.5. Expansion of elastic constants for small initial stress (pp. 93-94) | html | pdf |
- 1.3.6.6. Elastic strain-energy density (pp. 94-95) | html | pdf |
- 1.3.7. Nonlinear dynamic elasticity (pp. 95-98) | html | pdf |
- 1.3.7.1. Introduction (p. 95) | html | pdf |
- 1.3.7.2. Equation of motion for elastic waves (p. 95) | html | pdf |
- 1.3.7.3. Wave propagation in a nonlinear elastic medium (pp. 95-97) | html | pdf |
- 1.3.7.4. Harmonic generation (p. 97) | html | pdf |
- 1.3.7.5. Small-amplitude waves in a strained medium (p. 97) | html | pdf |
- 1.3.7.6. Experimental determination of third- and higher-order elastic constants (pp. 97-98) | html | pdf |
- 1.3.8. Glossary (p. 98) | html | pdf |
- References | html | pdf |
- Figures
- Fig. 1.3.1.1. Displacement vector, (p. 72) | html | pdf |
- Fig. 1.3.1.2. Elongation, (p. 73) | html | pdf |
- Fig. 1.3.1.3. Quadric of elongations (p. 74) | html | pdf |
- Fig. 1.3.1.4. Geometrical interpretation of the components of the strain tensor (p. 75) | html | pdf |
- Fig. 1.3.1.5. Special deformations (p. 75) | html | pdf |
- Fig. 1.3.2.1. Definition of stress (p. 76) | html | pdf |
- Fig. 1.3.2.2. Stress, , applied to the surface of an internal volume (p. 76) | html | pdf |
- Fig. 1.3.2.3. Equilibrium of a small volume element (p. 77) | html | pdf |
- Fig. 1.3.2.4. Symmetry of the stress tensor (p. 78) | html | pdf |
- Fig. 1.3.2.5. Special forms of the stress tensor (p. 79) | html | pdf |
- Fig. 1.3.2.6. Normal () and shearing () stress (p. 79) | html | pdf |
- Fig. 1.3.2.7. The stress quadric (p. 80) | html | pdf |
- Fig. 1.3.2.8. Determination of the energy density in a deformed medium (p. 80) | html | pdf |
- Fig. 1.3.3.1. Bar loaded in pure tension (p. 80) | html | pdf |
- Fig. 1.3.3.2. Schematic stress–strain curve (p. 81) | html | pdf |
- Fig. 1.3.3.3. Spherical coordinates (p. 84) | html | pdf |
- Fig. 1.3.3.4. Representation surface of the inverse of Young's modulus (p. 85) | html | pdf |
- Fig. 1.3.4.1. Resonance technique: standing waves excited in a parallelepiped (p. 89) | html | pdf |
- Fig. 1.3.4.2. Block diagram of the pulse-echo technique (p. 89) | html | pdf |
- Fig. 1.3.5.1. Temperature dependence of the elastic stiffnesses of an aluminium single crystal (p. 90) | html | pdf |
- Fig. 1.3.5.2. Pressure dependence of the elastic stiffness of a KZnF3 crystal (p. 91) | html | pdf |
- Fig. 1.3.5.3. Temperature dependence of the elastic constant in RbCdF3, CsCdF3 and TlCdF3 crystals (p. 91) | html | pdf |
- Fig. 1.3.5.4. Temperature dependence of the elastic constant in KNiF3 (p. 91) | html | pdf |
- Fig. 1.3.5.5. Temperature dependence of in DyVO4 (p. 91) | html | pdf |
- Fig. 1.3.5.6. Pressure dependence of the elastic constants in TlCdF3 (p. 91) | html | pdf |
- Tables
- Table 1.3.2.1. Stresses applied to the faces surrounding a volume element (p. 77) | html | pdf |
- Table 1.3.3.1. Number of independent components of the elastic compliances and stiffnesses for each Laue class (p. 82) | html | pdf |
- Table 1.3.3.2. Elastic compliances of some cubic materials in (GPa)−1 (after Every & McCurdy, 1992) (p. 83) | html | pdf |
- Table 1.3.3.3. Relations between elastic coefficients in isotropic media (p. 85) | html | pdf |
- Table 1.3.4.1. Velocity of propagation when the wavevector is parallel to [100] (cubic crystals) (p. 87) | html | pdf |
- Table 1.3.4.2. Velocity of propagation when the wavevector is parallel to [110] (cubic crystals) (p. 87) | html | pdf |
- Table 1.3.4.3. Velocity of propagation when the wavevector is parallel to [111] (cubic crystals) (p. 87) | html | pdf |
- Table 1.3.4.4. Velocity of propagation when the wavevector is parallel to [001] (hexagonal crystals) (p. 87) | html | pdf |
- Table 1.3.4.5. Velocity of propagation when the wavevector is parallel to [100] (hexagonal crystals) (p. 87) | html | pdf |
- Table 1.3.4.6. Velocity of propagation when the wavevector is parallel to [001] (tetragonal crystals) (p. 87) | html | pdf |
- Table 1.3.4.7. Velocity of propagation when the wavevector is parallel to [100] (tetragonal crystals) (p. 87) | html | pdf |
- Table 1.3.5.1. Temperature dependence of the elastic stiffnesses for some cubic crystals (p. 90) | html | pdf |
- Table 1.3.5.2. Order of magnitude of the temperature dependence of the elastic stiffnesses for different types of crystals (p. 91) | html | pdf |
- Table 1.3.6.1. Number of independent third-order elastic stiffnesses for each Laue class (p. 93) | html | pdf |
- Table 1.3.6.2. Third-order elastic stiffnesses of some materials in (GPa)−1 (after Every & McCurdy, 1992) (p. 94) | html | pdf |
- Table 1.3.7.1. Relationships between , its pressure derivatives and the second- and third-order elastic constants (p. 98) | html | pdf |
- 1.3.1. Strain tensor (pp. 72-76) | html | pdf |