International Tables for Crystallography (2013). Vol. D. ch. 1.5, pp. 106-153
https://doi.org/10.1107/97809553602060000904 |
Chapter 1.5. Magnetic properties
Contents
- 1.5. Magnetic properties (pp. 106-153) | html | pdf | chapter contents |
- 1.5.1. Introduction (pp. 106-110) | html | pdf |
- 1.5.2. Magnetic symmetry (pp. 110-117) | html | pdf |
- 1.5.3. Phase transitions into a magnetically ordered state (pp. 117-126) | html | pdf |
- 1.5.4. Domain structure (pp. 126-128) | html | pdf |
- 1.5.5. Weakly non-collinear magnetic structures (pp. 128-132) | html | pdf |
- 1.5.6. Reorientation transitions (pp. 132-133) | html | pdf |
- 1.5.7. Piezomagnetism (pp. 133-139) | html | pdf |
- 1.5.8. Magnetoelectric effect (pp. 139-145) | html | pdf |
- 1.5.9. Magnetostriction (pp. 145-148) | html | pdf |
- 1.5.10. Connection between Gaussian and SI units (p. 148) | html | pdf |
- 1.5.11. Glossary (p. 149) | html | pdf |
- References | html | pdf |
- Figures
- Fig. 1.5.1.1. Temperature dependence of at high temperatures for different types of materials (p. 108) | html | pdf |
- Fig. 1.5.1.2. Ordered arrangements of magnetic moments in: (a) an ordinary ferromagnet ; (b) a ferrimagnet ; (c) a weak ferromagnet , , ; (p. 109) | html | pdf |
- Fig. 1.5.1.3. Ordered arrangements of magnetic moments in: (a) an ordinary two-sublattice antiferromagnet ; (b) a weakly non-collinear four-sublattice antiferromagnet − − + , − + − ; (c) a strongly non-collinear three-sublattice antiferromagnet − , + − (p. 109) | html | pdf |
- Fig. 1.5.1.4. Helical and sinusoidal magnetic structures (p. 110) | html | pdf |
- Fig. 1.5.2.1. Magnetic lattices of the triclinic system (p. 114) | html | pdf |
- Fig. 1.5.2.2. Magnetic lattices of the monoclinic system (p. 114) | html | pdf |
- Fig. 1.5.2.3. Magnetic lattices of the orthorhombic system (p. 115) | html | pdf |
- Fig. 1.5.2.4. Magnetic lattices of the tetragonal system (p. 116) | html | pdf |
- Fig. 1.5.2.5. Magnetic lattices of the rhombohedral system (p. 116) | html | pdf |
- Fig. 1.5.2.6. Magnetic lattices of the hexagonal system (p. 116) | html | pdf |
- Fig. 1.5.2.7. Magnetic lattices of the cubic system (p. 117) | html | pdf |
- Fig. 1.5.3.1. Arrangement of the symmetry elements of the group (p. 118) | html | pdf |
- Fig. 1.5.3.2. Crystallographic structure of transition-metal oxides of the type -Fe2O3 (p. 118) | html | pdf |
- Fig. 1.5.3.3. Crystallographic structure of transition-metal carbonates of the type MnCO3 (p. 119) | html | pdf |
- Fig. 1.5.3.4. Four types of magnetic structures of rhombohedral oxides of transition metals (p. 119) | html | pdf |
- Fig. 1.5.3.5. The conventional unit cell of UO2 (p. 122) | html | pdf |
- Fig. 1.5.3.6. Temperature dependence of the mass susceptibility for a uniaxial antiferromagnet along () and perpendicular () to the axis of antiferromagnetism (p. 125) | html | pdf |
- Fig. 1.5.3.7. Dependence of the relative magnetization on the magnetic field at (p. 126) | html | pdf |
- Fig. 1.5.3.8. Magnetic phase diagram for a uniaxial antiferromagnet in a magnetic field applied parallel to the axis (p. 126) | html | pdf |
- Fig. 1.5.3.9. Phase diagram for a uniaxial antiferromagnet in the proximity of , calculated for MnCl2·4H2O (p. 126) | html | pdf |
- Fig. 1.5.4.1. Magnetization curves of hexagonal cobalt (p. 127) | html | pdf |
- Fig. 1.5.4.2. Magnetization curves of two cubic crystals (iron and nickel) for three crystallographic directions (p. 127) | html | pdf |
- Fig. 1.5.4.3. Schematic display of the magnetization: (a) H along the easy axis; (b) H at an arbitrary angle to the easy axis; (c) H perpendicular to the easy axis (p. 127) | html | pdf |
- Fig. 1.5.4.4. A 180° domain wall in an antiferromagnet (p. 128) | html | pdf |
- Fig. 1.5.5.1. Diagrams demonstrating two weakly ferromagnetic structures in rhombohedral crystals with two magnetic ions in the primitive cell (p. 129) | html | pdf |
- Fig. 1.5.5.2. Dependence of magnetization and on the magnetic field H for the weak ferromagnet MnCO3 at 4.2 K (p. 129) | html | pdf |
- Fig. 1.5.5.3. Magnetic structures of fluorides of transition metals (p. 130) | html | pdf |
- Fig. 1.5.5.4. Magnetic structures of orthoferrites and orthochromites RMO3 (p. 131) | html | pdf |
- Fig. 1.5.5.5. Temperature dependence of the susceptibility for CoCO3 (p. 131) | html | pdf |
- Fig. 1.5.5.6. A weakly non-collinear magnetic structure corresponding to (1.5.5.12) (p. 132) | html | pdf |
- Fig. 1.5.6.1. Schematic representation of the rotation of the vectors and (in the xz plane) at a reorientation transition in orthoferrites (p. 133) | html | pdf |
- Fig. 1.5.6.2. Schematic representation of the rotation of the vector under the action of a magnetic field applied to CoF2 perpendicular to the fourfold axis z (reorientation transition) (p. 133) | html | pdf |
- Fig. 1.5.7.1. The dependence of the magnetic moment of CoF2 on the magnetic field (p. 136) | html | pdf |
- Fig. 1.5.7.2. Linear magnetostriction of CoF2 (p. 137) | html | pdf |
- Fig. 1.5.7.3. Variation of symmetry of the crystal field in the presence of the piezomagnetic effect in CoF2 (p. 139) | html | pdf |
- Fig. 1.5.8.1. Temperature dependence of the components and in Cr2O3 (p. 141) | html | pdf |
- Fig. 1.5.8.2. The hysteresis loop of the linear magnetoelectric effect in ferroelectric and weakly ferromagnetic Ni3B7O13I at 46 K (p. 144) | html | pdf |
- Fig. 1.5.9.1. Diagram explaining the occurrence of magnetostrictive strains in the demagnetized and saturated states of a cube-shaped crystal with a cubic prototype (p. 147) | html | pdf |
- Tables
- Table 1.5.2.1. Comparison of different symbols for magnetic point groups (p. 110) | html | pdf |
- Table 1.5.2.2. Comparison of different symbols for the elements of magnetic point groups (p. 110) | html | pdf |
- Table 1.5.2.3. The 90 magnetic point groups of types 2 and 3 (pp. 111-112) | html | pdf |
- Table 1.5.2.4. List of the magnetic classes in which ferromagnetism is admitted (p. 113) | html | pdf |
- Table 1.5.3.1. Two types of symbols for collinear antiferromagnetic and ferromagnetic structures (p. 119) | html | pdf |
- Table 1.5.3.2. Sign variation of the components of antiferromagnetic and ferromagnetic vectors during transformations of the group in rhombohedral crystals with four magnetic ions (p. 120) | html | pdf |
- Table 1.5.3.3. Magnetic groups of symmetry in rhombohedral oxides of trivalent transition-metal ions (p. 120) | html | pdf |
- Table 1.5.3.4. Magnetic point groups in rhombohedral oxides of transition metals (p. 120) | html | pdf |
- Table 1.5.3.5. The signs of for four sites of the conventional unit cell (the corners of a primitive cell) (p. 123) | html | pdf |
- Table 1.5.3.6. Characters of the irreducible representations of the group and corresponding magnetic structures (p. 123) | html | pdf |
- Table 1.5.5.1. The numbers of the crystallographic space groups that allow a phase transition into a weakly ferromagnetic state and the invariants of lowest order that are responsible for weak ferromagnetism (p. 130) | html | pdf |
- Table 1.5.5.2. Magnetic point groups that allow weak ferromagnetism (p. 131) | html | pdf |
- Table 1.5.7.1. The forms of the matrix characterizing the piezomagnetic effect (p. 135) | html | pdf |
- Table 1.5.7.2. Experimental data for the piezomagnetic effect (PM) and for linear magnetostriction (LM) (p. 138) | html | pdf |
- Table 1.5.8.1. The forms of the tensor characterizing the linear magnetoelectric effect (p. 139) | html | pdf |
- Table 1.5.8.2. A list of some magnetoelectrics (p. 141) | html | pdf |
- Table 1.5.8.3. Classification of the 122 magnetic point groups according to magnetoelectric types (p. 142) | html | pdf |
- Table 1.5.8.4. List of the magnetic point groups of the ferromagnetoelectrics (p. 143) | html | pdf |
- Table 1.5.8.5. Irreducible representations of the group Gk for TbMnO3 (Kenzelmann et al., 2005) (p. 144) | html | pdf |
- Table 1.5.9.1. Correspondence between matrix indices , A and tensor indices of the tensors describing spontaneous magnetostriction (p. 146) | html | pdf |
- Table 1.5.9.2. Magnetostriction data for ferromagnets with prototype symmetry (p. 147) | html | pdf |
- Table 1.5.10.1. Conversion of non-rationalized (except for α) Gaussian units to SI units (p. 148) | html | pdf |