Origin on -6m2
Asymmetric unit | y ≤ x/2; -x ≤ y; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) m x, y, 0 | (5) -6- 0, 0, z; 0, 0, 0 | (6) -6+ 0, 0, z; 0, 0, 0 |
(7) m x, -x, z | (8) m x, 2x, z | (9) m 2x, x, z |
(10) 2 x, -x, 0 | (11) 2 x, 2x, 0 | (12) 2 2x, x, 0 |
Generators selected (1); t(0, 0, 1); (2); (4); (7)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) x, y, -z | (5) -y, x - y, -z | (6) -x + y, -x, -z | (7) -y, -x, z | (8) -x + y, y, z | (9) x, x - y, z | (10) -y, -x, -z | (11) -x + y, y, -z | (12) x, x - y, -z |
| no conditions |
| | Special: no extra conditions |
| x, -x, z | x, 2x, z | -(2x), -x, z | x, -x, -z | x, 2x, -z | -(2x), -x, -z |
| |
| x, y, 1/2 | -y, x - y, 1/2 | -x + y, -x, 1/2 | -y, -x, 1/2 | -x + y, y, 1/2 | x, x - y, 1/2 |
| |
| x, y, 0 | -y, x - y, 0 | -x + y, -x, 0 | -y, -x, 0 | -x + y, y, 0 | x, x - y, 0 |
| |
| x, -x, 1/2 | x, 2x, 1/2 | -(2x), -x, 1/2 |
| |
| x, -x, 0 | x, 2x, 0 | -(2x), -x, 0 |
| |
| | |
| | |
| | |
Symmetry of special projections
Along [001] 3m
Origin at 0, 0, z | Along [100] 1m1 a' = c Origin at x, 0, 0 | Along [210] 2mm a' = c Origin at x, 1/2x, 0 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] -611 (-6, 59) | 1; 2; 3; 4; 5; 6 |
| [2] 3m1 (49) | 1; 2; 3; 7; 8; 9 |
| [2] 312 (46) | 1; 2; 3; 10; 11; 12 |
| [3] mm2 (2mm, 18) | 1; 4; 7; 10 |
| [3] mm2 (2mm, 18) | 1; 4; 8; 11 |
| [3] mm2 (2mm, 18) | 1; 4; 9; 12 |
IIb | [2] -6c2 (c' = 2c) (72) |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [2] -6m2 (c' = 2c) (71) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] 6/mmm (73); [2] 63/mmc (75) |