[script p]-6c2 -6m2 Hexagonal
No. 72 [script p]-6c2 Patterson symmetry [script p]6/mmm
FIRST SETTING

symmetry group diagram

Origin on -6c1

Asymmetric unit 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1/4

Symmetry operations

(1)  1   (2)  3+   0, 0, z(3)  3-   0, 0, z
(4)  m   xy, 0(5)  -6-   0, 0, z; 0, 0, 0(6)  -6+   0, 0, z; 0, 0, 0
(7)  c   x-xz(8)  c   x, 2xz(9)  c   2xxz
(10)  2   x-x1/4(11)  2   x, 2x1/4(12)  2   2xx1/4

Generators selected (1); t(0, 0, 1); (2); (4); (7)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions

 General:
12 f 1
(1) xyz(2) -yx - yz(3) -x + y-xz
(4) xy-z(5) -yx - y-z(6) -x + y-x-z
(7) -y-xz + 1/2(8) -x + yyz + 1/2(9) xx - yz + 1/2
(10) -y-x-z + 1/2(11) -x + yy-z + 1/2(12) xx - y-z + 1/2
l: l = 2n
  Special: no extra conditions
6 e  m . . 
xy, 0-yx - y, 0-x + y-x, 0-y-x1/2-x + yy1/2xx - y1/2
6 d  . . 2 
x-x1/4x, 2x1/4-(2x), -x1/4x-x3/4x, 2x3/4-(2x), -x3/4
4 c  3 . . 
0, 0, z0, 0, -z0, 0, z + 1/20, 0, -z + 1/2
2 b  -6 . . 
0, 0, 00, 0, 1/2
2 a  3 . 2 
0, 0, 1/40, 0, 3/4

Symmetry of special projections

Along [001]   3m

Origin at 0, 0, z
Along [100]   [script p]1m1
a' = 1/2c   
Origin at x, 0, 0
Along [210]   [script p]2mg
a' = c   
Origin at x1/2x1/4

Maximal non-isotypic non-enantiomorphic subgroups


I[2] [script p]-611 ([script p]-6, 59)1; 2; 3; 4; 5; 6
 [2] [script p]3c1 (50)1; 2; 3; 7; 8; 9
 [2] [script p]312 (46)1; 2; 3; 10; 11; 12
 [3] [script p]mc2 ([script p]2cm, 19)1; 4; 7; 10
 [3] [script p]mc2 ([script p]2cm, 19)1; 4; 8; 11
 [3] [script p]mc2 ([script p]2cm, 19)1; 4; 9; 12
IIa none
IIbnone

Maximal isotypic subgroups and enantiomorphic subgroups of lowest index


IIc[3] [script p]-6c2 (c' = 3c) (72)

Minimal non-isotypic non-enantiomorphic supergroups


I[2] [script p]6/mcc (74); [2] [script p]63/mmc (75)
II[2] [script p]-6m2 (c' = 1/2c) (71)
[script p]-62c -62m Hexagonal
No. 72 [script p]-62c Patterson symmetry [script p]6/mmm
SECOND SETTING

symmetry group diagram

Origin on -61c

Asymmetric unit 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1/2; y ≤ x

Symmetry operations

(1)  1   (2)  3+   0, 0, z(3)  3-   0, 0, z
(4)  m   xy, 0(5)  -6-   0, 0, z; 0, 0, 0(6)  -6+   0, 0, z; 0, 0, 0
(7)  2   xx1/4(8)  2   x, 0, 1/4(9)  2   0, y1/4
(10)  c   xxz(11)  c   x, 0, z(12)  c   0, yz

Generators selected (1); t(0, 0, 1); (2); (4); (7)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions

 General:
12 f 1
(1) xyz(2) -yx - yz(3) -x + y-xz
(4) xy-z(5) -yx - y-z(6) -x + y-x-z
(7) yx-z + 1/2(8) x - y-y-z + 1/2(9) -x-x + y-z + 1/2
(10) yxz + 1/2(11) x - y-yz + 1/2(12) -x-x + yz + 1/2
l: l = 2n
  Special: no extra conditions
6 e  m . . 
xy, 0-yx - y, 0-x + y-x, 0yx1/2x - y-y1/2-x-x + y1/2
6 d  . 2 . 
x, 0, 1/40, x1/4-x-x1/4x, 0, 3/40, x3/4-x-x3/4
4 c  3 . . 
0, 0, z0, 0, -z + 1/20, 0, -z0, 0, z + 1/2
2 b  -6 . . 
0, 0, 00, 0, 1/2
2 a  3 2 . 
0, 0, 1/40, 0, 3/4

Symmetry of special projections

Along [001]   3m

Origin at 0, 0, z
Along [100]   [script p]2mg
a' = c   
Origin at x, 0, 1/4
Along [210]   [script p]1m1
a' = 1/2c   
Origin at x1/2x, 0

Maximal non-isotypic non-enantiomorphic subgroups


I[2] [script p]-611 ([script p]-6, 59)1; 2; 3; 4; 5; 6
 [2] [script p]31c ([script p]3c1, 50)1; 2; 3; 10; 11; 12
 [2] [script p]321 ([script p]312, 46)1; 2; 3; 7; 8; 9
 [3] [script p]m2c ([script p]2cm, 19)1; 4; 7; 10
 [3] [script p]m2c ([script p]2cm, 19)1; 4; 8; 11
 [3] [script p]m2c ([script p]2cm, 19)1; 4; 9; 12
IIa none
IIbnone

Maximal isotypic subgroups and enantiomorphic subgroups of lowest index


IIc[3] [script p]-62c (c' = 3c) ([script p]-6c2, 72)

Minimal non-isotypic non-enantiomorphic supergroups


I[2] [script p]6/mcc (74); [2] [script p]63/mmc (75)
II[2] [script p]-6m2 (c' = 1/2c) (71)








































to end of page
to top of page