Origin on -6c1
Asymmetric unit | 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1/4 |
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) m x, y, 0 | (5) -6- 0, 0, z; 0, 0, 0 | (6) -6+ 0, 0, z; 0, 0, 0 |
(7) c x, -x, z | (8) c x, 2x, z | (9) c 2x, x, z |
(10) 2 x, -x, 1/4 | (11) 2 x, 2x, 1/4 | (12) 2 2x, x, 1/4 |
Generators selected (1); t(0, 0, 1); (2); (4); (7)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) x, y, -z | (5) -y, x - y, -z | (6) -x + y, -x, -z | (7) -y, -x, z + 1/2 | (8) -x + y, y, z + 1/2 | (9) x, x - y, z + 1/2 | (10) -y, -x, -z + 1/2 | (11) -x + y, y, -z + 1/2 | (12) x, x - y, -z + 1/2 |
| l: l = 2n
|
| | Special: no extra conditions |
| x, y, 0 | -y, x - y, 0 | -x + y, -x, 0 | -y, -x, 1/2 | -x + y, y, 1/2 | x, x - y, 1/2 |
| |
| x, -x, 1/4 | x, 2x, 1/4 | -(2x), -x, 1/4 | x, -x, 3/4 | x, 2x, 3/4 | -(2x), -x, 3/4 |
| |
| 0, 0, z | 0, 0, -z | 0, 0, z + 1/2 | 0, 0, -z + 1/2 |
| |
| | |
| | |
Symmetry of special projections
Along [001] 3m
Origin at 0, 0, z | Along [100] 1m1 a' = 1/2c Origin at x, 0, 0 | Along [210] 2mg a' = c Origin at x, 1/2x, 1/4 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] -611 (-6, 59) | 1; 2; 3; 4; 5; 6 |
| [2] 3c1 (50) | 1; 2; 3; 7; 8; 9 |
| [2] 312 (46) | 1; 2; 3; 10; 11; 12 |
| [3] mc2 (2cm, 19) | 1; 4; 7; 10 |
| [3] mc2 (2cm, 19) | 1; 4; 8; 11 |
| [3] mc2 (2cm, 19) | 1; 4; 9; 12 |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [3] -6c2 (c' = 3c) (72) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] 6/mcc (74); [2] 63/mmc (75) |
II | [2] -6m2 (c' = 1/2c) (71) |
Origin on -61c
Asymmetric unit | 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1/2; y ≤ x |
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) m x, y, 0 | (5) -6- 0, 0, z; 0, 0, 0 | (6) -6+ 0, 0, z; 0, 0, 0 |
(7) 2 x, x, 1/4 | (8) 2 x, 0, 1/4 | (9) 2 0, y, 1/4 |
(10) c x, x, z | (11) c x, 0, z | (12) c 0, y, z |
Generators selected (1); t(0, 0, 1); (2); (4); (7)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) x, y, -z | (5) -y, x - y, -z | (6) -x + y, -x, -z | (7) y, x, -z + 1/2 | (8) x - y, -y, -z + 1/2 | (9) -x, -x + y, -z + 1/2 | (10) y, x, z + 1/2 | (11) x - y, -y, z + 1/2 | (12) -x, -x + y, z + 1/2 |
| l: l = 2n
|
| | Special: no extra conditions |
| x, y, 0 | -y, x - y, 0 | -x + y, -x, 0 | y, x, 1/2 | x - y, -y, 1/2 | -x, -x + y, 1/2 |
| |
| x, 0, 1/4 | 0, x, 1/4 | -x, -x, 1/4 | x, 0, 3/4 | 0, x, 3/4 | -x, -x, 3/4 |
| |
| 0, 0, z | 0, 0, -z + 1/2 | 0, 0, -z | 0, 0, z + 1/2 |
| |
| | |
| | |
Symmetry of special projections
Along [001] 3m
Origin at 0, 0, z | Along [100] 2mg a' = c Origin at x, 0, 1/4 | Along [210] 1m1 a' = 1/2c Origin at x, 1/2x, 0 |
Maximal non-isotypic non-enantiomorphic subgroups
I | [2] -611 (-6, 59) | 1; 2; 3; 4; 5; 6 |
| [2] 31c (3c1, 50) | 1; 2; 3; 10; 11; 12 |
| [2] 321 (312, 46) | 1; 2; 3; 7; 8; 9 |
| [3] m2c (2cm, 19) | 1; 4; 7; 10 |
| [3] m2c (2cm, 19) | 1; 4; 8; 11 |
| [3] m2c (2cm, 19) | 1; 4; 9; 12 |
Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc | [3] -62c (c' = 3c) (-6c2, 72) |
Minimal non-isotypic non-enantiomorphic supergroups
I | [2] 6/mcc (74); [2] 63/mmc (75) |
II | [2] -6m2 (c' = 1/2c) (71) |