International Tables for Crystallography (2006). Vol. F. ch. 11.5, pp. 236-245   | 1 | 2 |
https://doi.org/10.1107/97809553602060000678

Chapter 11.5. The use of partially recorded reflections for post refinement, scaling and averaging X-ray diffraction data

Contents

  • 11.5. The use of partially recorded reflections for post refinement, scaling and averaging X-ray diffraction data  (pp. 236-245) | html | pdf | chapter contents |
    • 11.5.1. Introduction  (p. 236) | html | pdf |
    • 11.5.2. Generalization of the Hamilton, Rollett and Sparks equations to take into account partial reflections  (pp. 236-237) | html | pdf |
    • 11.5.3. Selection of reflections useful for scaling  (p. 237) | html | pdf |
    • 11.5.4. Restraints and constraints  (p. 237) | html | pdf |
    • 11.5.5. Generalization of the procedure for averaging reflection intensities  (p. 238) | html | pdf |
    • 11.5.6. Estimating the quality of data scaling and averaging  (p. 238) | html | pdf |
    • 11.5.7. Experimental results  (pp. 238-241) | html | pdf |
      • 11.5.7.1. Variation of scale factors versus frame number  (pp. 238-239) | html | pdf |
      • 11.5.7.2. R factor as a function of `sum-of-partialities' (method 1)  (p. 239) | html | pdf |
      • 11.5.7.3. Statistics for rejecting reflections and data quality as a function of frame number  (p. 240) | html | pdf |
      • 11.5.7.4. Observed versus calculated partiality  (p. 240) | html | pdf |
      • 11.5.7.5. Anisotropic mosaicity  (p. 240) | html | pdf |
      • 11.5.7.6. Anomalous dispersion  (p. 241) | html | pdf |
    • 11.5.8. Conclusions  (p. 241) | html | pdf |
    • Appendix 11.5.1. Partiality model (Rossmann, 1979; Rossmann et al., 1979)  (pp. 241-242) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 11.5.7.1. Linear scale factors as a function of frame number for a φX174 data set (Dokland et al  (p. 239) | html | pdf |
      • Fig. 11.5.7.2. Linear scale factor as a function of frame number for an HRV14 data set (Rossmann et al  (p. 239) | html | pdf |
      • Fig. 11.5.7.3. Linear scale factor determined by method 2 as a function of frame number for an SCP(114–264) data set (Choi et al  (p. 239) | html | pdf |
      • Fig. 11.5.7.4. R factor as a function of the difference of calculated `sum-of-partialities' and unity for the estimates of full reflections when method 1 is used for the scaling and averaging of a φX174 data set (Dokland et al  (p. 240) | html | pdf |
      • Fig. 11.5.7.5. R factor per frame as a function of frame number for a φX174 data set (Dokland et al  (p. 240) | html | pdf |
      • Fig. 11.5.7.6. The observed partialities plotted against calculated partialities for a φX174 data set (Dokland et al  (p. 240) | html | pdf |
      • Fig. 11.5.7.7. Variation of (unconstrained) mosaicity for a monoclinic crystal of the bacterial virus alpha3 (Bernal et al  (p. 240) | html | pdf |
      • Fig. 11.5.7.8. Quality of anomalous-dispersion data for an SeMet derivative of dioxygenase Rieske ferredoxin (Colbert & Bolin, 1999)  (p. 240) | html | pdf |
      • Fig. A11.5.1.1. Penetration of a reciprocal-lattice point P into the sphere of reflection by rotation around Oy  (p. 241) | html | pdf |
      • Fig. A11.5.1.2. Relationship between the fraction of the path travelled, q, by a reciprocal-lattice point across an Ewald sphere of finite thickness and the fraction of the total scattered intensity, p  (p. 242) | html | pdf |
      • Fig. A11.5.1.3. The four conditions 1, 2, 3 and 4 for partial reflections corresponding to Table A11.5.1.1  (p. 242) | html | pdf |
    • Tables
      • Table 11.5.3.1. Hierarchy of criteria for selecting reflections for scaling and averaging procedures  (p. 237) | html | pdf |
      • Table A11.5.1.1. Calculation of the degree of penetration of the Ewald sphere, q  (p. 242) | html | pdf |