International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 13.2, pp. 273-274   | 1 | 2 |
https://doi.org/10.1107/97809553602060000682

Appendix A13.2.1. Formulae for the derivation and computation of the fast rotation function

J. Navazaa*

aLaboratoire de Génétique des Virus, CNRS-GIF, 1. Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
Correspondence e-mail: jnavaza@pasteur.fr

This appendix aims to present a complete set of formulae which allow the derivation and computation of the fast rotation function. They involve a particular convention for the definition of the irreducible representations of the rotation group suitable for crystallographic computations.

A13.2.1.1. Euler parameterization

| top | pdf |

By applying the group property of rotations [equation (13.2.2.2)[link]], the Euler parameterization may be expressed as rotations around fixed axis (see Fig. 13.2.2.1b[link]): [\eqalignno{{\bf R}(\alpha,\beta,\gamma) &= {\bf R}(\gamma,{\bf p}) {\bf R}(\beta,{\bf n}) {\bf R}(\alpha,{\bf z})\cr &= \left[{\bf R}(\beta,{\bf n}) {\bf R}(\gamma,{\bf z}) {\bf R}(\beta,{\bf n})^{-1}\right] {\bf R}(\beta,{\bf n}) {\bf R}(\alpha,{\bf z})\cr &= {\bf R}(\beta,{\bf n}) {\bf R}(\gamma,{\bf z}) {\bf R}(\alpha,{\bf z})\cr &= \left[{\bf R}(\alpha,{\bf z}) {\bf R}(\beta,{\bf y}) {\bf R}(\alpha,{\bf z})^{-1}\right] {\bf R}(\gamma,{\bf z}) {\bf R}(\alpha,{\bf z})\cr &= {\bf R}(\alpha,{\bf z}) {\bf R}(\beta,{\bf y}) {\bf R}(\gamma,{\bf z}). &(\hbox{A}13.2.1.1)}]

A13.2.1.2. The [D^{\ell}_{m, \, m'}] matrices

| top | pdf |

A linear representation of dimension n of the rotation group is a correspondence between rotations and matrices of order n. The matrices [D^{\ell}_{m, \, m'}({\bf R})], with [-\ell \leq m,m' \leq \ell], are associated with the irreducible representation of dimension [2\ell + 1] ([0 \leq \ell \lt \infty]). They have the following properties (Brink & Satchler, 1968[link]):

  • (1) Group multiplication: [D^{\ell}_{m, \, m'}({\bf RR'}) = {\textstyle\sum\limits_{n=-\ell}^{\ell}} D^{\ell}_{m, \, n}({\bf R}) D^{\ell}_{n, \, m'}({\bf R'}). \eqno\hbox{(A13.2.1.2)}]

  • (2) Complex conjugation: [D^{\ell}_{m, \, m'}({\bf R}^{-1}) = \overline{D^{\ell}_{m', \, m}({\bf R})}. \eqno\hbox{(A13.2.1.3)}]

  • (3) Euler parameterization: [D^{\ell}_{m, \, m'}(\alpha,\beta,\gamma) = d^{\ell}_{m, \, m'}(\beta) \exp [i(m\alpha+m'\gamma)]. \eqno\hbox{(A13.2.1.4)}]

  • (4) Recurrence relation for the reduced matrices: [\eqalignno{d^{\ell}_{m-1, \, m'}(\beta) &= {[m'-m \cos(\beta)]^{2} \over [(\ell-m+1)(\ell+m)]^{1/2} \sin(\beta)} d^{\ell}_{m, \, m'}(\beta)\cr &\quad - \left[{(\ell-m)(\ell+m+1) \over (\ell-m+1)(\ell+m)}\right]^{1/2} d^{\ell}_{m+1, \, m'}(\beta). &\hbox{(A13.2.1.5)}}]

  • (5) Initial values (bottom row of [d^{\ell}]): [d^{\ell}_{\ell, \, m}(\beta) = (-1)^{\ell-m} \left[{(2\ell)! \over (\ell-m)!(\ell+m)!}\right]^{1/2} \sin(\beta/2)^{\ell-m} \cos(\beta/2)^{\ell+m}. \eqno\hbox{(A13.2.1.6)}]

  • (6) Symmetry relations: [d^{\ell}_{-m, \, -m'}(\beta) = d^{\ell}_{m', \, m}(\beta) = (-1)^{m-m'} d^{\ell}_{m, \, m'}(\beta). \eqno\hbox{(A13.2.1.7)}]

A13.2.1.3. Spherical harmonics

| top | pdf |

The [Y_{\ell, \, m}]'s, with [-\ell \leq m \leq \ell] and [0 \leq \ell \lt \infty], constitute a complete set of functions of the unit vector u, having the following properties (Brink & Satchler, 1968[link]):

  • (1) Transformation under rotations: [\eqalignno{Y_{\ell, \, m}({\bf R}^{-1}{\bf u}) &= {\textstyle\sum\limits_{m'=-\ell}^{\ell}} D^{\ell}_{m, \, m'}({\bf R}^{-1}) Y_{\ell, \, m'}({\bf u})\cr &= {\textstyle\sum\limits_{m'=-\ell}^{\ell}} Y_{\ell, \, m'}({\bf u}) \overline{D^{\ell}_{m', \, m}({\bf R})}. &\hbox{(A13.2.1.8)}}]

  • (2) Orthogonality condition: [{\textstyle\int} \overline{Y_{\ell, \, m}({\bf u})} Y_{\ell',m'}({\bf u})\ \hbox{d}^{2}{\bf u} = \delta_{\ell, \, \ell'} \delta_{m, \, m'.} \eqno\hbox{(A13.2.1.9)}]

  • (3) Inversion: [Y_{\ell, \, m}({\bf -u}) = (-1)^{\ell} \ Y_{\ell, \, m}({\bf u}). \eqno\hbox{(A13.2.1.10)}]

  • (4) Relation with rotation-matrix elements: [Y_{\ell, \, m}(\theta,\varphi) = i^{\ell} [(2\ell+1)/4\pi]^{1/2} D^{\ell}_{m, \, 0}(\varphi,\theta,0), \eqno\hbox{(A13.2.1.11)}] where (θ, φ) are the polar coordinates of u.

A13.2.1.4. Spherical Bessel functions

| top | pdf |

The [j_{\ell}]'s, with [0 \leq \ell \lt \infty], constitute a complete set of functions having the following properties (Watson, 1958[link]):

  • (1) Recurrence relation: [j_{\ell-1}(x) - (2\ell+1) [\ j_{\ell}(x)/x] + j_{\ell+1}(x) = 0. \eqno\hbox{(A13.2.1.12)}]

  • (2) Initial values: [\eqalignno{j_{0}(x) &= \sin(x)/x\cr j_{1}(x) &= [\sin(x) - x \ \cos(x)]/x^{2}.&(\hbox{A}13.2.1.13)}]

  • (3) Integral of a product of spherical Bessel functions: [\eqalignno{U^{\ell}(\;p, q) &= {\textstyle\int\limits_{0}^{1}} j_{\ell}(\;px) j_{\ell}(qx) x^{2}\ \hbox{d}x\cr &= \cases{[\ j_{\ell}(p)j_{\ell - 1}(q)q - j_{\ell}(q)j_{\ell - 1}(\;p)p] / (\;p^{2} - q^{2})\;\; \hbox{if } {p} \neq {q} \cr {1 \over 2} [\ j_{\ell}(p)^{2} - j_{\ell - 1}(\;p)j_{\ell + 1}(\;p)] {\hbox to 5.3pc{}} \hbox{if } {\it p} = {\it q} \cr}\cr &= (2\ell + 3) [\ j_{\ell + 1}(\;p) j_{\ell + 1}(q)]/pq + U^{\ell + 2}(\;p, q)\cr &= {\textstyle\sum\limits_{n = 1}^{\infty}} [2(\ell + 2n)-1] [\ j_{\ell + 2n-1}(\;p)j_{\ell + 2n-1}(q)]/pq.\cr& &(\hbox{A}13.2.1.14)}]

A13.2.1.5. Expansion of [\exp (2\pi i{\bf sr})]

| top | pdf |

This is also called the plane-wave expansion or Laplace's expansion (Landau & Lifschitz, 1972[link]): [\exp (2\pi i{\bf sr}) = 4\pi {\textstyle\sum\limits_{\ell = 0}^{\infty}} i^{\ell} {\textstyle\sum\limits_{m = -\ell}^{\ell}} j_{\ell}(2\pi sr) \overline{Y_{\ell, \, m}({\hat {\bf s}})} Y_{\ell, \, m}({\hat {\bf r}}). \eqno(\hbox{A}13.2.1.15)]

A13.2.1.6. Expansion of the interference function

| top | pdf |

[\eqalignno{{\cal \chi}_{b}({\bf h - hR}^{-1}) &= (3/4\pi b^{3}) {\textstyle\int\limits_{0}^{b}} {\textstyle\int\limits_{0}^{\pi}} {\textstyle\int\limits_{0}^{2 \pi}} \exp[2\pi i({\bf h - kR}^{-1}){\bf r}] r^{2} \sin (\theta)\ \hbox{d}r\ \hbox{d}\theta\ \hbox{d}\varphi\cr &= {\textstyle\sum\limits_{\ell, \, \ell' = 0}^{\infty}}\ {\textstyle\sum\limits_{m = -\ell}^{\ell}}\ {\textstyle\sum\limits_{m'= -\ell'}^{\ell'} i^{\ell - \ell'}} \overline{Y_{\ell, \, m}({\hat {\bf h}})} Y_{\ell', \, m'}({\hat {\bf k}})\cr &\quad \times (12\pi/b^{3}) {\textstyle\int\limits_{0}^{b}} j_{\ell} (2\pi hr)\ j_{\ell'} (2\pi kr)r^{2}\ \hbox{d}r\cr &\quad \times {\textstyle\int\limits_{0}^{\pi}} {\textstyle\int\limits_{0}^{2\pi}} Y_{\ell, \, m} (\hat{{\bf r}}) \overline{Y_{\ell', \, m'} ({\bf R}^{-1} \hat{{\bf r}})} \sin (\theta)\ \hbox{d}\theta\ \hbox{d}\varphi\cr &= {\textstyle\sum\limits_{\ell = 0}^{\infty}}\ {\textstyle\sum\limits_{m=-\ell}^{\ell}}\ {\textstyle\sum\limits_{\ell'=0}^{\infty}}\ {\textstyle\sum\limits_{m'=-\ell'}^{\ell'} i^{\ell - \ell'}} \overline{Y_{\ell, \, m} (\hat{{\bf h}})} Y_{\ell', \, m'} (\hat{{\bf k}})\cr &\quad \times (12\pi/b^{3}) {\textstyle\int\limits_{0}^{b}} j_{\ell} (2\pi hr)\ j_{\ell'} (2\pi kr) r^{2}\ \hbox{d}r\cr &\quad \times {\textstyle\sum\limits_{m''=-\ell'}^{\ell'}} {\textstyle\int\limits_{0}^{\pi}} {\textstyle\int\limits_{0}^{2\pi}} Y_{\ell, \, m} (\hat{{\bf r}}) \overline{Y_{\ell', \, m''} (\hat{{\bf r}})} \sin (\theta)\ \hbox{d}\theta\ \hbox{d}\varphi \ D_{m'', \, m'}^{\ell'} ({\bf R})\cr &= {\textstyle\sum\limits_{\ell = 0}^{\infty}}\ {\textstyle\sum\limits_{m'=-\ell}^{\ell}} \overline{Y_{\ell, \, m} (\hat{{\bf h}})} Y_{\ell, \, m'} (\hat{{\bf k}}) 12\pi U^{\ell} (2\pi hb, 2\pi kb) D_{m, \, m'}^{\ell} ({\bf R}).\cr &&(\rm A13.2.1.16)}]

References

First citation Brink, D. M. & Satchler, G. R. (1968). Angular momentum, 2nd ed. Oxford University Press.Google Scholar
First citation Landau, L. D. & Lifschitz, E. M. (1972). Théorie quantique relativiste, pp. 109–196. Moscow: Editions MIR.Google Scholar
First citation Watson, G. N. (1958). A treatise on the theory of Bessel functions, 2nd ed. Cambridge University Press.Google Scholar








































to end of page
to top of page