International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 18.3, p. 384   | 1 | 2 |

Section 18.3.2.3.1. Peptide parameters: proline, glycine, alanine and CB substitution

R. A. Engha* and R. Huberb

a Pharmaceutical Research, Roche Diagnostics GmbH, Max Planck Institut für Biochemie, 82152 Martinsried, Germany, and bMax-Planck-Institut für Biochemie, 82152 Martinsried, Germany
Correspondence e-mail:  engh@biochem.mpg.de

18.3.2.3.1. Peptide parameters: proline, glycine, alanine and CB substitution

| top | pdf |

Fragments representing five-atom lengths of the backbone currently provide adequate statistics for peptide compositions of varieties including glycine, proline and side chains branched at CB. Peptide cyclicity was generally allowed on the assumption that this does not introduce distortions greater than typical protein secondary-structure interactions. The results are presented in Table 18.3.2.3[link]. With one exception, none of the values deviates from those of 1991 by more than one sample standard deviation. However, the very large σ values for the proline C—N—CA and C—N—CD angles (Table 18.3.2.1[link]) are conspicuous. Using high-resolution protein structures, Lamzin et al. (1995)[link] identified geometries of proline that were inconsistent with high-resolution protein structures and also noted inconsistencies in C—CA—CB angle parameters (see also the sections on individual amino acids below). In the case of proline, a bimodal distribution of these parameters could be resolved with the discrimination between cis and trans forms (Fig. 18.3.2.1[link]). A scatter plot of the angles against ω torsion angle resolves the averages (and σ's) of 122.6 (50) and 125.4 (44)° for C—N—CA and C—N—CD, respectively, into cis- and trans-dependent values with much smaller sample deviations (see Table 18.3.2.2[link]). The large σ value for CB—CG remains, however, particularly for trans-proline. Its origin is unknown, but proline pucker may play a role.

Table 18.3.2.1| top | pdf |
Bond lengths of standard amino-acid side chains

EH denotes the values of Engh & Huber (1991)[link], which were clustered according to atom type. The EH99 values are taken from recent Cambridge Structural Database releases with clustering of parameters only in the choice of fragments, based on amino acids. Parameters marked with an asterisk involving CA—CB bonds were taken from peptide fragment geometries. Two asterisks mark long-chain aliphatic parameters taken from arginine statistics. The number of fragments and the number of structures containing these fragments are noted after the amino-acid name. The fragments used for generating the statistics are described after the amino-acid name: incomplete valences indicate unspecified substituents with, however, specified orbital hybridization.

Alanine, 163/268, CO—NH—CH(CH3)—CO—NH

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5210.0331.5200.021

Arginine, 71/98, CH—(CH2)3—NH—C(NH2)2

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.5200.0301.5210.027
CG—CD1.5200.0301.5150.025
CD—NE1.4600.0181.4600.017
NE—CZ1.3290.0141.3260.013
CZ—NH(1,2)1.3260.0181.3260.013

Asparagine, 145/247, —C—CH2—CO—NH2

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.5270.026
CB—CG1.5160.0251.5060.023
CG—OD11.2310.0201.2350.022
CG—ND21.3280.0211.3240.025

Aspartate, 265/404, C—CH2—CO2

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.5160.0251.5130.021
CG—OD(1,2)1.2490.0191.2490.023

Cysteine, 10/17, N—CH(CO)—CH2—SH

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.5260.013
CB—SG1.8080.0331.8120.016

Disulfides, 53/68, C—CH2—S—S—CH2—C

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—SG1.8080.0331.8180.017
SG—SG2.0300.0082.0330.016

Glutamate, 74/88, C—CH2—CH2—CO2

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.5200.0301.5170.019
CG—CD1.5160.0251.5150.015
CD—OE(1,2)1.2490.0191.2520.011

Glutamine, 145/247, —C—CH2—CO—NH2

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.5200.0301.521[^{**}]0.027[^{**}]
CG—CD1.5160.0251.5060.023
CD—OE11.2310.0201.2350.022
CD—NE21.3280.0211.3240.025

Glycine: see peptide parameters, Table 18.3.2.3[link]

Histidine (HISE), 35/37, C—CH2—imidazole; NE protonated

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.4970.0141.4960.018
CG—ND11.3710.0171.3830.022
CG—CD21.3560.0111.3530.014
ND1—CE11.3190.0131.3230.015
CD2—NE21.3740.0211.3750.022
CE1—NE21.3450.0201.3330.019

Histidine (HISD), 10/12, C—CH2—imidazole; ND protonated

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.4970.0141.4920.016
CG—ND11.3780.0111.3690.015
CG—CD21.3560.0111.3530.017
ND1—CE11.3450.0201.3430.025
CD2—NE21.3820.0301.4150.021
CE1—NE21.3190.0131.3220.023

Histidine (HISH), 50/54, C—CH2—imidazole; NE, ND protonated

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.4970.0141.4920.010
CG—ND11.3780.0111.3800.010
CG—CD21.3540.0111.3540.009
ND1—CE11.3210.0101.3260.010
CD2—NE21.3740.0111.3730.011
CE1—NE21.3210.0101.3170.011

Isoleucine, 54/80, NH—CH(CO)—CH(CH3)—CH2—CH3

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5400.0271.5440.023
CB—CG11.5300.0201.5360.028
CB—CG21.5210.0331.5240.031
CG1—CD11.5130.0391.5000.069[^{*}]

Leucine, 178/288, NH—CH(CO)—CH2—CH(CH3)2

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.5330.023
CB—CG1.5300.0201.5210.029
CG—CD(1,2)1.5210.0331.5140.037

Lysine, 232/380, —(CH2)3—NH3

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.5200.0301.521[^{**}]0.027[^{**}]
CG—CD1.5200.0301.5200.034
CD—CE1.5200.0301.5080.025
CE—NZ1.4890.0301.4860.025

Methionine, 37/49, C—(CH2)2—S—CH3

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.5200.0301.5090.032
CG—SD1.8030.0341.8070.026
SD—CE1.7910.0591.7740.056[^{*}]

Phenylalanine, 1076/1616, C—CH2—phenyl

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.5020.0231.5090.017
CG—CD(1,2)1.3840.0211.3830.015
CD(1,2)—CE(1,2)1.3820.0301.3880.020
CE(1,2)—CZ1.3820.0301.3690.019

Proline, 262/255, trans, C—CO—pyrrolidine—CO—N

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.5310.020
CB—CG1.4920.0501.4950.050
CG—CD1.5030.0341.5020.033
CD—N1.4730.0141.4740.014

Proline, 262/158, cis, C—CO—pyrrolidine—CO—N

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.5330.018
CB—CG1.4920.0501.5060.039
CG—CD1.5030.0341.5120.027
CD—N1.4730.0141.4740.014

Serine, 33/39, NH—CH(CO)—CH2—OH

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.5250.015
CB—OG1.4170.0201.4180.013

Threonine, 20/25, NH—CH(CO)—CH(OH)—CH3

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5400.0271.5290.026
CB—OG11.4330.0161.4280.020
CB—CG21.5210.0331.5190.033

Tryptophan, 123/135, CH2—indole

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.4980.0311.4980.018
CG—CD11.3650.0251.3630.014
CG—CD21.4330.0181.4320.017
CD1—NE11.3740.0211.3750.017
NE1—CE21.3700.0111.3710.013
CD2—CE21.4090.0171.4090.012
CD2—CE31.3980.0161.3990.015
CE2—CZ21.3940.0211.3930.017
CE3—CZ31.3820.0301.3800.017
CZ2—CH21.3680.0191.3690.019
CZ3—CH21.4000.0251.3960.016

Tyrosine, 124/161, para-(—C—CH2)—phenol

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5300.0201.535[^{*}]0.022[^{*}]
CB—CG1.5120.0221.5120.015
CG—CD(1,2)1.3890.0211.3870.013
CD(1,2)—CE(1,2)1.3820.0301.3890.015
CE(1,2)—CZ1.3780.0241.3810.013
CZ—OH1.3760.0211.3740.017

Valine, 198/313, N—CH(CO)—CH—(CH3)2

BondEH (Å)σ EH (Å)EH99 (Å)σ EH99 (Å)
CA—CB1.5400.0271.5430.021
CB—CG(1,2)1.5210.0331.5240.021

Table 18.3.2.2| top | pdf |
Bond angles of standard amino-acid side chains

For details see Table 18.3.2.1[link].

Alanine, 163/268, CO—NH—CH(CH3)—CO—NH

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.41.5110.11.4
CB—CA—C110.51.5110.11.5

Arginine, 71/98, CH—(CH2)3—NH—C(NH2)2

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG114.12.0113.42.2
CB—CG—CD111.32.3111.62.6
CG—CD—NE112.02.2111.82.1
CD—NE—CZ124.21.5123.61.4
NE—CZ—NH(1,2)120.01.9120.30.5
NH1—CZ—NH2119.71.8119.41.1

Asparagine, 145/247, —C—CH2—CO—NH2

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG112.61.0113.4[^{**}]2.2[^{**}]
CB—CG—ND2116.41.5116.72.4
CB—CG—OD1120.82.0121.62.0
ND2—CG—OD1122.61.0121.92.3

Aspartate, 265/404, C—CO2

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG112.61.0113.4[^{*}]2.2[^{**}]
CB—CG—OD(1,2)118.42.3118.30.9
OD1—CG—OD2122.92.4123.31.9

Cysteine, 10/17, N—CH(CO)—CH2—SH

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.81.5
CB—CA—C110.11.9111.51.2
CA—CB—SG114.42.3114.21.1

Disulfides, 53/68, C—CH2—S—S—CH2—C

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—SG114.42.3114.01.8
CB—SG—SG103.81.8104.32.3

Glutamate, 74/88, C—CH2—CH2—CO2

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG114.12.0113.4[^{**}]2.2[^{**}]
CB—CG—CD112.61.7114.22.7
CG—CD—OE(1,2)118.42.3118.32.0
OE1—CD—OE2122.92.4123.31.2

Glutamine, 145/247, —C—CH2—CO—NH2

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG114.12.0113.4[^{**}]2.2[^{**}]
CB—CG—CD112.61.7111.6[^{**}]2.6[^{**}]
CG—CD—OE1120.82.0121.62.0
CG—CD—NE2116.41.5116.72.4
OE1—CD—NE2122.61.0121.92.3

Glycine: see Table 18.3.2.3[link]

Histidine (HISE), 35/37, C—CH2—imidazole; NE protonated

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG113.81.0113.61.7
CB—CG—ND1121.61.5121.41.3
CB—CG—CD2129.11.3129.71.6
CG—ND1—CE1105.61.0105.71.3
ND1—CE1—NE2111.71.3111.51.3
CE1—NE2—CD2106.91.3107.11.1
NE2—CD2—CG106.51.0106.71.2
CD2—CG—ND1109.20.7108.81.4

Histidine (HISD), 10/12, C—CH2— imidazole; ND protonated

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG113.81.0113.61.7
CB—CG—ND1122.71.5123.22.5
CB—CG—CD2129.11.3130.83.1
CG—ND1—CE1109.01.7108.21.4
ND1—CE1—NE2111.71.3109.92.2
CE1—NE2—CD2107.03.0106.62.5
NE2—CD2—CG109.52.3109.21.9
CD2—CG—ND1105.21.0106.01.4

Histidine (HISH), 50/54, C—CH2—imidazole; NE, ND protonated

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG113.81.0113.61.6
CB—CG—ND1122.71.5122.51.3
CB—CG—CD2131.21.3131.41.2
CG—ND1—CE1109.31.7109.01.0
ND1—CE1—NE2108.41.0108.51.1
CE1—NE2—CD2109.01.0109.00.7
NE2—CD2—CG107.21.0107.30.7
CD2—CG—ND1106.11.0106.10.8

Isoleucine, 54/80, NH—CH(CO)—CH(CH3)—CH2—CH3

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB111.51.7110.82.3
CB—CA—C109.12.2111.62.0
CA—CB—CG1110.41.7111.01.9
CB—CG1—CD1113.82.1113.92.8
CA—CB—CG2110.51.7110.92.0
CG1—CB—CG2110.73.0111.42.2

Leucine, 178/288, NH—CH(CO)—CH2—CH(CH3)2

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.42.0
CB—CA—C110.11.9110.21.9
CA—CB—CG116.33.5115.32.3
CB—CG—CD(1,2)110.73.0111.01.7
CD1—CG—CD2110.82.2110.53.0

Lysine, 232/380, —(CH2)3—NH3

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG114.12.0113.4[^{*}]2.2[^{**}]
CB—CG—CD111.32.3111.6[^{**}]2.6[^{**}]
CG—CD—CE111.32.3111.93.0
CD—CE—NZ111.93.2111.72.3

Methionine, 37/49, C—(CH2)2—S—CH3

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG114.12.0113.31.7
CB—CG—SD112.73.0112.43.0
CG—SD—CE100.92.2100.21.6

Phenylalanine, 1076/1616, C—CH2—phenyl

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG113.81.0113.92.4
CB—CG—CD(1,2)120.71.7120.80.7
CD(1,2)—CG—CD(2,1)118.61.5118.31.3
CG—CD(1,2)—CE(1,2)120.71.7120.81.1
CD(1,2)—CE(1,2)—CZ120.01.8120.11.2
CE(1,2)—CZ—CE(2,1)120.01.8120.01.8

Proline, 262/255, trans, C—CO—pyrrolidine—CO—N

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB103.01.1103.31.2
CB—CA—C110.11.9111.72.1
CA—CB—CG104.51.9104.81.9
CB—CG—CD106.13.2106.53.9
CG—CD—N103.21.5103.21.5
CA—N—CD112.01.4111.71.4
C—N—CA122.65.0119.31.5
C—N—CD125.04.1128.42.1

Proline, 262/158, cis, C—CO—pyrrolidine—CO—N

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB103.01.1102.61.1
CB—CA—C110.11.9112.02.5
CA—CB—CG104.51.9104.01.9
CB—CG—CD106.13.2105.42.3
CG—CD—N103.21.5103.81.2
CA—N—CD112.01.4111.51.4
C—N—CA122.65.0127.02.4
C—N—CD125.04.1120.62.2

Serine, 33/39, NH—CH(CO)—CH2—OH

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.51.5
CB—CA—C110.11.9110.11.9
CA—CB—OG111.12.0111.22.7

Threonine, 20/25, NH—CH(CO)—CH(OH)—CH3

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB111.51.7110.31.9
CB—CA—C109.12.2111.62.7
CA—CB—OG1109.61.5109.02.1
CA—CB—CG2110.51.7112.41.4
OG1—CB—CG2109.32.0110.02.3

Tryptophan, 123/135, CH2—indole

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG113.61.9113.71.9
CB—CG—CD1126.91.5127.01.3
CB—CG—CD2126.81.4126.61.3
CD1—CG—CD2106.31.6106.30.8
CG—CD1—NE1110.21.3110.11.0
CD1—NE1—CE2108.91.8109.00.9
NE1—CE2—CD2107.41.3107.31.0
CE2—CD2—CG107.21.2107.30.8
CG—CD2—CE3133.91.0133.90.9
NE1—CE2—CZ2130.11.5130.41.1
CE3—CD2—CE2118.81.0118.71.2
CD2—CE2—CZ2122.41.0122.31.2
CE2—CZ2—CH2117.51.3117.41.0
CZ2—CH2—CZ3121.51.3121.61.2
CH2—CZ3—CE3121.11.3121.21.1
CZ3—CE3—CD2118.61.3118.81.3

Tyrosine 124/161, para—C—CH2—phenyl—OH

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB110.51.7110.6[^{*}]1.8[^{*}]
CB—CA—C110.11.9110.4[^{*}]2.0[^{*}]
CA—CB—CG113.91.8113.41.9
CB—CG—CD(1,2)120.81.5121.00.6
CD(1,2)—CG—CD(2,1)118.11.5117.91.1
CG—CD(1,2)—CE(1,2)121.21.5121.30.8
CD(1,2)—CE(1,2)—CZ119.61.8119.80.9
CE(1,2)—CZ—CE(2,1)120.32.0119.81.6
CE(1,2)—CZ—OH119.93.0120.12.7

Valine, 198/313, N—CH(CO)—CH—(CH3)2

AngleEH (°)σ EH (°)EH99 (°)σ EH99 (°)
N—CA—CB111.51.7111.52.2
CB—CA—C109.12.2111.41.9
CA—CB—CG(1,2)110.51.7110.91.5
CG1—CB—CG2110.82.2110.91.6
Alternate fragment definition including CA.
Bimodal distribution (see text).
[Figure 18.3.2.1]

Figure 18.3.2.1| top | pdf |

Torsion dependence of proline angle geometry. A one-dimensional frequency plot of either C—N—Cα or C—N—Cδ angles shows a broad and bimodal distribution. (a) A scatter plot of the two angles shows a very strong anticorrelation and suggests two minima. (b) Plotting either angle against the ω torsion angle resolves the broad distribution into two separate peaks.

Glycine, with its unique CH2 as CA, required new atom-type definitions for Engh & Huber (EH) (1991)[link] parameterization to account for parameter-average differences of about one-half of a sample standard deviation. These also included C—N—CA, for which the average angles were 120.6° for glycine and 121.7° for the rest. The new statistics with 83 C—CO—NH—CH2—C fragments estimate a larger value of 122.3° for the glycine C—N—CA angle.

`Extended atom'-type parameterizations, which cluster carbon atoms according to the number of bound hydrogen atoms, naturally separate parameters involving CB into values representing alanine and branched and unbranched side chains. Separate analyses of the bonds and angles for fragments depending on the number of hydrogen atoms at CB (1, 2 or 3) revealed significant variation for the C—CA—CB and N—CA—CB angles. The fragments chosen for peptide parameterization did not cover all possibilities for the peptide chain. In particular, effects of charges at the termini were not analysed. Also, specific residue sequences likely to have statistical effects, such as Pro-Pro (Bansal & Ananthanarayanan, 1988[link]), were not analysed here. With 50–60 relevant fragments from the predominantly α-helical ROP protein, Vlassi et al. (1998)[link] were able to compile statistics for main-chain bonds and angles and compare them with protein refinement parameters. Differences from EH were particularly significant for CO and CA—C bonds (1.237 and 1.508 Å, respectively) and for the O—C—N angle (121.35°). Excepting the proline O—C—N angle, for which the new CSD statistics predict an average value lowered to 121.1°, these values remained relatively unchanged. A likely source of the difference might be the predominantly helical structure of the ROP protein; the helical hydrogen bonding directly involves the C—O group in a systematic way.

References

First citation Bansal, M. & Ananthanarayanan, V. S. (1988). The role of hydroxyproline in collagen folding: conformational energy calculations on oligopeptides containing proline and hydroxyproline. Biopolymers, 27, 299–312.Google Scholar
First citation Engh, R. A. & Huber, R. (1991). Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst. A47, 392–400.Google Scholar
First citation Lamzin, V. S., Dauter, Z. & Wilson, K. S. (1995). Dictionary of protein stereochemistry. J. Appl. Cryst. 28, 338–340.Google Scholar
First citation Vlassi, M., Dauter, Z., Wilson, K. S. & Kokkinidis, M. (1998). Structural parameters for proteins derived from the atomic resolution (1.09 Å) structure of a designed variant of the ColE1 ROP protein. Acta Cryst. D54, 1245–1260.Google Scholar








































to end of page
to top of page