International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 1.3, p. 21   | 1 | 2 |

Section 1.3.4.3.1. Cancers

W. G. J. Hola* and C. L. M. J. Verlindea

aBiomolecular Structure Center, Department of Biological Structure, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7742, USA
Correspondence e-mail:  hol@gouda.bmsc.washington.edu

1.3.4.3.1. Cancers

| top | pdf |

Over a hundred different cancers have been described and clearly the underlying defect, loss of control of cell division, can be the result of many different shortcomings in different cells. The research in this area proceeds at a feverish pace, yet the development, discovery and design of effective but safe anti-cancer agents are unbelievably difficult challenges. The modifications needed to turn a normal cell into a malignant one are very small, hence the chance of arriving at `true' anti-cancer drugs that exploit such small differences between normal and abnormal cells is exceedingly small. Nevertheless, such selective anti-cancer agents would leave normal cells essentially unaffected and are therefore the holy grail of cancer therapy. Few if any such compounds have been found so far, but cancer therapy is benefiting from a gradual increase in the number of useful compounds. Many have serious side effects, weaken the immune system and are barely tolerated by patients. However, they rescue large numbers of patients and hence it is of interest that many targets of these compounds, proteins and DNA molecules, have been structurally elucidated by crystallographic methods – often in complex with the cancer drug. The mode of action of many anti-cancer compounds is well understood, e.g. methotrexate targeting dihydrofolate reductase, and fluorouracil targeting thymidilate synthase. These are specific enzyme inhibitors acting along principles well known in other areas of medicine. Several anti-cancer drugs display unusual modes of action, such as:

  • (a) the DNA intercalators daunomycin (Wang et al., 1987[link]) and adriamycin (Zhang et al., 1993[link]);

  • (b) cisplatin, which forms DNA adducts (Giulian et al., 1996[link]);

  • (c) taxol, which not only binds to tubulin but also to bcl-2, thereby blocking the machinery of cancer cells in two entirely different ways (Amos & Lowe, 1999[link]);

  • (d) camptothecin analogues, such as irinotecan and topotecan, which have the unusual property of prolonging the lifetime of a covalent topoisomerase–DNA complex, generating major road blocks on the DNA highway and causing DNA breakage and cell death;

  • (e) certain compounds function as minor-groove binders, e.g. netropsin and distamycin (Kopka et al., 1985[link]);

  • (f) completely new drugs which were developed based on the structures of matrix metalloproteinases, purine nucleotide phosphorylase and glycinamide ribonucleotide formyltransferase and which are in clinical trials (Jackson, 1997[link]).

Meanwhile, it is sad that crystallography has not yet made any contribution to the molecular understanding of multi-drug resistance in cancer. The resistance is caused by cellular pumps that efficiently pump out the drugs, often leading to failed chemotherapy (Borst, 1999[link]). On the other hand, the structures of major oncogenic proteins such as p21 (DeVos et al.[link], 1988; Pai et al., 1989[link]; Krengel et al., 1990[link]; Scheffzek et al., 1997[link]) and p53 (Cho et al., 1994[link]; Gorina & Pavletich, 1996[link]) are of tremendous importance for future structure-based design of anti-neoplastic agents.

References

First citation Amos, L. A. & Lowe, J. (1999). How Taxol stabilises microtubule structure. Chem. Biol. 6, R65–R69.Google Scholar
First citation Borst, P. (1999). Multidrug resistance: a solvable problem? Ann. Oncol. 10, S162–S164.Google Scholar
First citation Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science, 265, 346–355.Google Scholar
First citation DeVos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E. & Kim, S. H. (1988). Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. Science, 239, 888–893.Google Scholar
First citation Giulian, D., Corpuz, M., Richmond, B., Wendt, E. & Hall, E. R. (1996). Activated microglia are the principal glial source of thromboxane in the central nervous system. Neurochem. Int. 29, 65–76.Google Scholar
First citation Gorina, S. & Pavletich, N. P. (1996). Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science, 274, 1001–1005.Google Scholar
First citation Jackson, R. C. (1997). Contributions of protein structure-based drug design to cancer chemotherapy. Semin. Oncol. 24, 164–172.Google Scholar
First citation Kopka, M. L., Yoon, C., Goodsell, D., Pjura, P. & Dickerson, R. E. (1985). The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc. Natl Acad. Sci. USA, 82, 1376–1380.Google Scholar
First citation Krengel, U., Petsko, G. A., Goody, R. S., Kabsch, W. & Wittinghofer, A. (1990). Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35-Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359.Google Scholar
First citation Pai, E. F., Kabsch, W., Krengel, U., Holmes, K. C., John, J. & Wittinghofer, A. (1989). Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature (London), 341, 209–214.Google Scholar
First citation Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F. & Wittinghofer, A. (1997). The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science, 277, 333–338.Google Scholar
First citation Wang, A. H., Ughetto, G., Quigley, G. J. & Rich, A. (1987). Interactions between an anthracycline antibiotic and DNA: molecular structure of daunomycin complexed to d(CpGpTpApCpG) at 1.2 Å resolution. Biochemistry, 26, 1152–1163.Google Scholar
First citation Zhang, H., Gao, Y. G., van der Marel, G. A., van Boom, J. H. & Wang, A. H. (1993). Simultaneous incorporations of two anticancer drugs into DNA. The structures of formaldehyde-cross-linked adducts of daunorubicin-d(CG(araC)GCG) and doxorubicin-d(CA(araC)GTG) complexes at high resolution. J. Biol. Chem. 268, 10095–10101.Google Scholar








































to end of page
to top of page