International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 20.1, pp. 481-488   | 1 | 2 |
https://doi.org/10.1107/97809553602060000705

Chapter 20.1. Molecular-dynamics simulation of protein crystals: convergence of molecular properties of ubiquitin

U. Stockera and W. F. van Gunsterena

aLaboratory of Physical Chemistry, ETH-Zentrum, 8092 Zürich, Switzerland

References

First citation Berendsen, H. J. C., van Gunsteren, W. F., Zwinderman, H. R. J. & Geurtsen, R. (1986). Simulations of proteins in water. Ann. N. Y. Acad. Sci. 482, 269–285.Google Scholar
First citation Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690.Google Scholar
First citation Berendsen, H. J. C., Postma, J. P. M.,van Gunsteren, W. F. & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In Intermolecular forces, edited by B. Pullman, pp. 331–342. Dordrecht: Reidel.Google Scholar
First citation Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr, Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977). The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.Google Scholar
First citation Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Crystallographic R-factor refinement by molecular dynamics. Science, 235, 458–460.Google Scholar
First citation Fennen, J., Torda, A. E. & van Gunsteren, W. F. (1995). Structure refinement with molecular dynamics and a Boltzmann-weighted ensemble. J. Biomol. NMR, 6, 163–170.Google Scholar
First citation Fujinaga, M., Gros, P. & van Gunsteren, W. F. (1989). Testing the method of crystallographic refinement using molecular dynamics. J. Appl. Cryst. 22, 1–8.Google Scholar
First citation Gros, P. & van Gunsteren, W. F. (1993). Crystallographic refinement and structure-factor time-averaging by molecular dynamics in the absence of a physical force field. Mol. Simul. 10, 377–395.Google Scholar
First citation Gros, P., van Gunsteren, W. F. & Hol, W. G. J. (1990). Inclusion of thermal motion in crystallographic structures by restrained molecular dynamics. Science, 249, 1149–1152.Google Scholar
First citation Gunsteren, W. F. van & Berendsen, H. J. C. (1990). Computer simulations of molecular dynamics: methodology, applications and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 29, 992–1023.Google Scholar
First citation Gunsteren, W. F. van, Berendsen, H. J. C., Hermans, J., Hol, W. G. J. & Postma, J. P. M. (1983). Computer simulation of the dynamics of hydrated protein crystals and its comparison with X-ray data. Proc. Natl Acad. Sci. USA, 80, 4315–4319.Google Scholar
First citation Gunsteren, W. F. van, Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P., Mark, A. E., Scott, W. R. P. & Tironi, I. G. (1996). Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag, Zürich, Switzerland.Google Scholar
First citation Gunsteren, W. F. van, Bonvin, A. M. J. J., Daura, X. & Smith, L. J. (1997). Aspects of modelling biomolecular structures on the basis of spectroscopic or diffraction data. In Modern techniques in protein NMR, edited by Krishna & Berliner. Plenum.Google Scholar
First citation Gunsteren, W. F. van, Brunne, R. M., Gros, P., van Schaik, R. C., Schiffer, C. A. & Torda, A. E. (1994). Accounting for molecular mobility in structure determination based on nuclear magnetic resonance spectroscopic and X-ray diffraction data. Methods Enzymol. 239, 619–654.Google Scholar
First citation Gunsteren, W. F. van, Kaptein, R. & Zuiderweg, E. R. P. (1984). Use of molecular dynamics computer simulations when determining protein structure by 2D-NMR. In Proceedings of the NATO/CECAM workshop on nucleic acid conformation and dynamics, edited by W. K. Olson, pp. 79–97. France: CECAM.Google Scholar
First citation Gunsteren, W. F. van & Karplus, M. (1981). Effect of constraints, solvent and crystal environment on protein dynamics. Nature (London), 293, 677–678.Google Scholar
First citation Gunsteren, W. F. van & Karplus, M. (1982). Protein dynamics in solution and in crystalline environment: a molecular dynamics study. Biochemistry, 21, 2259–2274.Google Scholar
First citation Harvey, T. S. & van Gunsteren, W. F. (1993). The application of chemical shift calculation to protein structure determination by NMR. In Techniques in protein chemistry IV, pp. 615–622. New York: Academic Press.Google Scholar
First citation Heiner, A. P., Berendsen, H. J. C. &van Gunsteren, W. F. (1992). MD simulation of subtilisin BPN′ in a crystal environment. Proteins, 14, 451–464.Google Scholar
First citation Kaptein, R., Zuiderweg, E. R. P., Scheek, R. M., Boelens, R. & van Gunsteren, W. F. (1985). A protein structure from nuclear magnetic resonance data, lac repressor headpiece. J. Mol. Biol. 182, 179–182.Google Scholar
First citation Levitt, M., Hirshberg, M., Sharon, R. & Daggett, V. (1995). Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput. Phys. Commun. 91, 215–231.Google Scholar
First citation Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341.Google Scholar
First citation Scheek, R. M., Torda, A. E., Kemmink, J. & van Gunsteren, W. F. (1991). Structure determination by NMR: the modelling of NMR parameters as ensemble averages. In Computational aspects of the study of biological macromolecules by nuclear magnetic resonance spectroscopy, edited by J. C. Hoch, F. M. Poulsen & C. Redfield, NATO ASI Series, Vol. A225, pp. 209–217. New York: Plenum Press.Google Scholar
First citation Schiffer, C. A., Gros, P. & van Gunsteren, W. F. (1995). Time-averaging crystallographic refinement: possibilities and limitations using α-cyclodextrin as a test system. Acta Cryst. D51, 85–92.Google Scholar
First citation Schiffer, C. A., Huber, R., Wüthrich, K. & van Gunsteren, W. F. (1994). Simultaneous refinement of the structure of BPTI against NMR data measured in solution and X-ray diffraction data measured in single crystals. J. Mol. Biol. 241, 588–599.Google Scholar
First citation Shi, Y.-Y., Yun, R.-H. & van Gunsteren, W. F. (1988). Molecular dynamics simulation of despentapeptide insulin in a crystalline environment. J. Mol. Biol. 200, 571–577.Google Scholar
First citation Smith, P. E. & van Gunsteren, W. F. (1995). Reaction field effects on the simulated properties of liquid water. Mol. Simul. 15, 233–245.Google Scholar
First citation Torda, A. E., Brunne, R. M., Huber, T., Kessler, H. & van Gunsteren, W. F. (1993). Structure refinement using time-averaged J-coupling constant restraints. J. Biomol. NMR, 3, 55–66.Google Scholar
First citation Torda, A. E., Scheek, R. M. & van Gunsteren, W. F. (1990). Time-averaged nuclear Overhauser effect distance restraints applied to tendamistat. J. Mol. Biol. 214, 223–235.Google Scholar
First citation Vijay-Kumar, S., Bugg, C. E. & Cook, W. J. (1987). Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 194, 531–544.Google Scholar