International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 19.7, pp. 464-479   | 1 | 2 |
https://doi.org/10.1107/97809553602060000704

Chapter 19.7. Nuclear magnetic resonance (NMR) spectroscopy

K. Wüthricha

aInstitut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, CH-8093 Zürich, Switzerland

References

Banci, L., Bertini, I., Cremonini, M. A., Gori-Savellini, G., Luchinat, C., Wüthrich, K. & Güntert, P. (1998). PSEUDYANA for NMR structure calculation of paramagnetic metalloproteins using torsion angle molecular dynamics. J. Biomol. NMR, 12, 553–557.Google Scholar
Bax, A. & Grzesiek, S. (1993). Methodological advances in protein NMR. Acc. Chem. Res. 26, 131–138.Google Scholar
Billeter, M. (1992). Comparison of protein structures determined by NMR in solution and by X-ray diffraction in single-crystals. Q. Rev. Biophys. 25, 325–377.Google Scholar
Billeter, M., Braun, W. & Wüthrich, K. (1982). Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra: computation of sterically allowed proton–proton distances and statistical analysis of proton–proton distances in single crystal protein conformations. J. Mol. Biol. 155, 321–346.Google Scholar
Billeter, M., Güntert, P., Luginbühl, P. & Wüthrich, K. (1996). Hydration and DNA recognition by homeodomains. Cell, 85, 1057–1065.Google Scholar
Braun, W., Epp, O., Wüthrich, K. & Huber, R. (1989). Solution of the phase problem in the X-ray diffraction method for proteins with the nuclear magnetic resonance solution structure as initial model. J. Mol. Biol. 206, 669–676.Google Scholar
Brünger, A. T., Clore, G. M., Gronenborn, A. M. & Karplus, M. (1986). Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints. Application to crambin. Proc. Natl Acad. Sci. USA, 83, 3801–3805. Google Scholar
Brunne, R. M., Liepinsh, E., Otting, G., Wüthrich, K. & van Gunsteren, W. F. (1993). Hydration of proteins. A comparison of experimental residence times of water molecules solvating the bovine pancreatic trypsin inhibitor with theoretical model calculations. J. Mol. Biol. 231, 1040–1048. Google Scholar
Brüschweiler, R. & Wright, P. E. (1994). Water self-diffusion model for protein–water NMR cross relaxation. Chem. Phys. Lett. 229, 75–81.Google Scholar
Cavanagh, J., Fairbrother, W. J., Palmer, A. G. III & Skelton, N. J. (1996). Protein NMR spectroscopy, principles and practice. New York: Academic Press.Google Scholar
Denisov, V. P., Peters, J., Hörlein, H. D. & Halle, B. (1996). Using buried water molecules to explore the energy landscape of proteins. Nature Struct. Biol. 3, 505–509.Google Scholar
Dubs, A., Wagner, G. & Wüthrich, K. (1979). Individual assignments of amide proton resonances in the proton NMR spectrum of the basic pancreatic trypsin inhibitor. Biochim. Biophys. Acta, 577, 177–194.Google Scholar
Ernst, R. R., Bodenhausen, G. & Wokaun, A. (1987). Principles of nuclear magnetic resonance in one and two dimensions. Oxford: Clarendon Press.Google Scholar
Güntert, P., Berndt, K. D. & Wüthrich, K. (1993). The program ASNO for computer-supported collection of NOE upper distance constraints as input for protein structure determination. J. Biomol. NMR, 3, 601–606.Google Scholar
Güntert, P., Mumenthaler, C. & Wüthrich, K. (1997). Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298.Google Scholar
Havel, T. F. & Wüthrich, K. (1985). An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformations in solution. J. Mol. Biol. 182, 281–294.Google Scholar
Kallen, J., Spitzfaden, C., Zurini, M. G. M., Wider, G., Widmer, H., Wüthrich, K. & Walkinshaw, M. D. (1991). Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy. Nature (London), 353, 276–279.Google Scholar
Kay, L. E. & Gardner, K. H. (1997). Solution NMR spectroscopy beyond 25 kDa. Curr. Opin. Struct. Biol. 7, 722–731.Google Scholar
Otting, G., Liepinsh, E. & Wüthrich, K. (1991). Protein hydration in aqueous solution. Science, 254, 974–980.Google Scholar
Otting, G., Liepinsh, E. & Wüthrich, K. (1993). Disulfide bond isomerization in BPTI and BPTI(G36S): an NMR study of correlated mobility in proteins. Biochemistry, 32, 3571–3582.Google Scholar
Peng, J. W. & Wagner, G. (1992). Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 98, 308–332.Google Scholar
Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. (1997). Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl Acad. Sci. USA, 94, 12366–12371.Google Scholar
Qian, Y. Q., Billeter, M., Otting, G., Müller, M., Gehring, W. J. & Wüthrich, K. (1989). The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: comparison with prokaryotic repressors. Cell, 59, 573–580.Google Scholar
Riek, R., Wider, G., Pervushin, K. & Wüthrich, K. (1999). Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc. Natl Acad. Sci. USA, 96, 4918–4923.Google Scholar
Salzmann, M., Pervushin, K., Wider, G., Senn, H. & Wüthrich, K. (1998). TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. Natl Acad. Sci. USA, 95, 13585–13590.Google Scholar
Tjandra, N. & Bax, A. (1997). Direct measurement of distances and angles in biomolecules by NMR in dilute liquid crystalline medium. Science, 278, 1111–1114.Google Scholar
Wagner, G. (1980). Activation volumes for the rotational motion of interior aromatic rings in globular proteins determined by high resolution 1H NMR at variable pressure. FEBS Lett. 112, 280–284.Google Scholar
Wagner, G. & Wüthrich, K. (1982). Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra: basic pancreatic trypsin inhibitor. J. Mol. Biol. 155, 347–366.Google Scholar
Wishart, D. S., Sykes, B. D. & Richards, F. M. (1991). Relationship between nuclear-magnetic-resonance chemical shift and protein secondary structure. J. Mol. Biol. 222, 311–333.Google Scholar
Wüthrich, K. (1976). NMR in biological research: peptides and proteins. Amsterdam: North Holland.Google Scholar
Wüthrich, K. (1986). NMR of proteins and nucleic acids. New York: Wiley.Google Scholar
Wüthrich, K. (1989). Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science, 243, 45–50.Google Scholar
Wüthrich, K. (1995). NMR – this other method for protein and nucleic acid structure determination. Acta Cryst. D51, 249–270.Google Scholar
Wüthrich, K., Billeter, M. & Braun, W. (1984). Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton–proton distances. J. Mol. Biol. 180, 715–740.Google Scholar
Wüthrich, K. & Wagner, G. (1975). NMR investigations of the dynamics of the aromatic amino acid residues in the basic pancreatic trypsin inhibitor. FEBS Lett. 50, 265–268.Google Scholar