International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 23.2, pp. 579-587   | 1 | 2 |
https://doi.org/10.1107/97809553602060000715

Chapter 23.2. Protein–ligand interactions

A. E. Hodela and F. A. Quiochob

aDepartment of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA, and  bHoward Hughes Medical Institute and Department of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

References

Åqvist, J., Luecke, H., Quiocho, F. A. & Warshel, A. (1991). Dipoles localized at helix termini of proteins stabilize charges. Proc. Natl Acad. Sci. USA, 88, 2026–2030.Google Scholar
Blake, C. C. F., Mair, G. A., North, A. C. T., Phillips, D. C. & Sarma, V. R. (1967). On the conformation of the hen egg-white lysozyme molecule. Proc. R. Soc. London Ser. B Biol. Sci. 167, 365–377.Google Scholar
Bochkarev, A., Pfuetzner, R. A., Edwards, A. M. & Frappier, L. (1997). Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature (London), 385, 176–181.Google Scholar
Burd, C. G. & Dreyfuss, G. (1994). Conserved structures and diversity of functions of RNA-binding proteins. Science, 265, 615–621.Google Scholar
Cheng, X. (1995). DNA modification by methyltransferases. Curr. Opin. Struct. Biol. 5, 4–10.Google Scholar
Cleland, W. W. & Kreevoy, M. M. (1994). Low-barrier hydrogen bonds and enzymic catalysis. Science, 264, 1887–1890.Google Scholar
Cotton, F. A., Hazen, E. E. Jr & Legg, M. J. (1979). Staphylococcal nuclease: proposed mechanism of action based on structure of enzyme–thymidine 3′,5′-bisphosphate–calcium ion complex at 1.5-Å resolution. Proc. Natl Acad. Sci. USA, 76, 2551–2555.Google Scholar
Cusack, S., Yaremchuk, A. & Tukalo, M. (1996a). The crystal structure of the ternary complex of T. thermophilus seryl-tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J. 15, 2834–2842.Google Scholar
Cusack, S., Yaremchuk, A. & Tukalo, M. (1996b). The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J. 15, 6321–6334.Google Scholar
Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A. L., Gulbis, J. M., Cohen, S. L., Chait, B. T. & MacKinnon, R. (1998). Science, 280, 68–77.Google Scholar
Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R. & Steitz, T. A. (1988). Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. Natl Acad. Sci. USA, 85, 8924–8928.Google Scholar
Gerlt, J. A. & Gassman, P. G. (1993). Understanding the rates of certain enzyme-catalyzed reactions: proton abstraction from carbon acids, acyl-transfer reaction, and displacement reactions of phosphodiesters. Biochemistry, 32, 1943–1952.Google Scholar
Glusker, J. P. (1991). Structural aspects of metal liganding to functional groups in proteins. Adv. Protein Chem. 42, 1–76.Google Scholar
Goldgur, Y., Mosyak, L., Reshetnikova, L., Ankilova, V., Lavrik, O., Khodyreva, S. & Safro, M. (1997). The crystal structure of phenylalanyl-tRNA synthetase from Thermus Thermophilus complexed with cognate tRNAPhe. Structure, 5, 59–68.Google Scholar
Harrington, R. E. & Winicov, I. (1994). New concepts in protein–DNA recognition: sequence-directed DNA bending and flexibility. Prog. Nucleic Acid Res. Mol. Biol. 47, 195–270.Google Scholar
He, J. J. & Quiocho, F. A. (1993). Dominant role of local dipoles in stabilizing uncompensated charges on a sulphate sequestered in a periplasmic active transport. Protein Sci. 2, 1643–1647.Google Scholar
Hibbert, F. & Emsley, J. (1990). Hydrogen bonding and chemical reactivity. Adv. Phys. Org. Chem. 226, 255–379.Google Scholar
Hodel, A. E., Gershon, P. D. & Quiocho, F. A. (1998). Structural basis for sequence non-specific recognition of 5′-capped mRNA by a cap-modifying enzyme. Mol. Cell, 1, 443–447.Google Scholar
Hodel, A. E., Gershon, P. D., Shi, X., Wang, S. M. & Quiocho, F. A. (1997). Specific protein recognition of an mRNA cap through its alkylated base. (Letter.) Nature Struct. Biol. 4, 350–354.Google Scholar
Jacobson, B. L. & Quiocho, F. A. (1988). Sulphate-binding protein dislikes protonated oxyacids: a molecular explanation. J. Mol. Biol. 204, 783–787.Google Scholar
Joachimiak, A., Schevitz, R. W., Kelley, R. L., Yanofsky, C. & Sigler, P. B. (1983). Functional inferences from crystals of Escherichia coli trp repressor. J. Biol. Chem. 258, 12641–12643.Google Scholar
Kissinger, C. R., Liu, B. S., Martin-Blanco, E., Kornberg, T. B. & Pabo, C. O. (1990). Crystal structure of an engrailed homeodomain–DNA complex at 2.8 Å resolution: a framework for understanding homeodomain–DNA interactions. Cell, 63, 579–590.Google Scholar
Labahn, J., Scharer, O. D., Long, A., Ezaz-Nikpay, K., Verdine, G. L. & Ellenberger, T. E. (1996). Structural basis for the excision repair of alkylation-damaged DNA. Cell, 86, 321–329.Google Scholar
Ledvina, P. S., Tsai, A.-H., Wang, Z., Koehl, E. & Quiocho, F. A. (1998). Dominant role of local dipolar interactions in phosphate binding to a receptor cleft with an electronegative charge surface potential: equilibrium, kinetic and crystallographic studies. Protein Sci. 7, 2550–2559.Google Scholar
Ledvina, P. S., Yao, N., Choudhary, A. & Quiocho, F. A. (1996). Negative electrostatic surface potential of protein sites specific for anionic ligands. Proc. Natl Acad. Sci. USA, 93, 6786–6791.Google Scholar
Lindahl, T. (1982). DNA repair enzymes. Annu. Rev. Biochem. 51, 61–87.Google Scholar
Luecke, H. & Quiocho, F. A. (1990). High specificity of a phosphate transport protein determined by hydrogen bonds. Nature (London), 347, 402–406.Google Scholar
Marcotrigiano, J., Gingras, A. C., Sonenberg, N. & Burley, S. K. (1997). X-ray studies of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Nucleic Acids Symp. Ser. pp. 8–11.Google Scholar
Meador, W. E., George, S. E., Means, A. R. & Quiocho, F. A. (1995). X-ray analysis reveals conformational adaptation of the linker in functional calmodulin mutants. (Letter.) Nature Struct. Biol. 2, 943–945.Google Scholar
Medveczky, N. & Rosenberg, H. (1971). Phosphate transport in Escherichia coli. Biochim. Biophys. Acta, 241, 494–506.Google Scholar
Nagai, K. (1996). RNA–protein complexes. Curr. Opin. Struct. Biol. 6, 53–61.Google Scholar
Nagai, K., Oubridge, C., Ito, N., Jessen, T. H., Avis, J. & Evans, P. (1995). Crystal structure of the U1A spliceosomal protein complexed with its cognate RNA hairpin. Nucleic Acids Symp. Ser. 1–2.Google Scholar
Nicholls, A., Sharp, K. & Honig, B. (1991). Protein folding and association; insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins, 11, 281–296.Google Scholar
Orgel, L. E. (1966). An introduction to transition-metal chemistry. Ligand-field theory, 2nd ed. London: Methuen and New York: Wiley.Google Scholar
Otwinowski, Z., Schevitz, R. W., Zhang, R. G., Lawson, C. L., Joachimiak, A., Marmorstein, R. Q., Luisi, B. F. & Sigler, P. B. (1988a). Crystal structure of trp repressor/operator complex at atomic resolution. Nature (London), 335, 321–329.Google Scholar
Otwinowski, Z., Schevitz, R. W., Zhang, R. G., Lawson, C. L., Joachimiak, A., Marmorstein, R. Q., Luisi, B. F. & Sigler, P. B. (1988b). Crystal structure of trp repressor/operator complex at atomic resolution. Erratum. Nature (London), 335, 837.Google Scholar
Pabo, C. O. & Sauer, R. T. (1992). Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61, 1053–1095.Google Scholar
Pardee, A. B. (1966). Purification and properties of a sulfate-binding protein from Salmonella typhimurium. J. Biol. Chem. 241, 5886–5892.Google Scholar
Pavletich, N. P. & Pabo, C. O. (1991). Zinc finger–DNA recognition: crystal structure of a Zif268–DNA complex at 2.1 Å. Science, 252, 809–817.Google Scholar
Pflugrath, J. W. & Quiocho, F. A. (1985). Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature (London), 314, 257–260.Google Scholar
Quiocho, F. A. (1986). Carbohydrate-binding proteins: tertiary structures and protein–sugar interactions. Annu. Rev. Biochem. 55, 287–315.Google Scholar
Quiocho, F. A., Sack, J. S. & Vyas, N. K. (1989). Substrate specificity and affinity of a protein modulated by bound water molecules. Nature (London), 340, 404–407.Google Scholar
Quiocho, F. A., Wilson, D. K. & Vyas, N. K. (1987). Stabilization of charges on isolated charged groups sequestered in proteins by polarized peptide units. Nature (London), 329, 561–564.Google Scholar
Rademacher, T. W., Parekh, R. B. & Dwek, R. A. (1988). Glycobiology. Annu. Rev. Biochem. 57, 785–838.Google Scholar
Rould, M. A., Perona, J. J. & Steitz, T. A. (1991). Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature (London), 352, 213–218.Google Scholar
Seeman, N. C., Rosenberg, J. M. & Rich, A. (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA, 73, 804–808.Google Scholar
Shimon, L. J. & Harrison, S. C. (1993). The phage 434 OR2/R1–69 complex at 2.5 Å resolution. J. Mol. Biol. 232, 826–838.Google Scholar
Steitz, T. A. (1990). Structural studies of protein–nucleic acid interaction: the sources of sequence-specific binding. Q. Rev. Biophys. 23, 205–280.Google Scholar
Sutton, R. B., Fasshauer, D., Jan, R. & Brunger, A. T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature (London), 395, 347–353.Google Scholar
Tucker, P. W., Hazen, E. E. Jr & Cotton, F. A. (1979). Staphylococcal nuclease reviewed: a prototypic study in contemporary enzymology. III. Correlation of the three-dimensional structure with the mechanisms of enzymatic action. Mol. Cell. Biochem. 23, 67–86.Google Scholar
Ueda, H., Iyo, H., Doi, M., Inoue, M. & Ishida, T. (1991). Cooperative stacking and hydrogen bond pairing interactions of fragment peptide in cap binding protein with mRNA cap structure. Biochim. Biophys. Acta, 1075, 181–186.Google Scholar
Ueda, H., Iyo, H., Doi, M., Inoue, M., Ishida, T., Morioka, H., Tanaka, T., Nishikawa, S. & Uesugi, S. (1991). Combination of Trp and Glu residues for recognition of mRNA cap structure. Analysis of m7G base recognition site of human cap binding protein (IF-4E) by site-directed mutagenesis. FEBS Lett. 280, 207–210.Google Scholar
Varani, G. (1997). A cap for all occasions. Structure, 5, 855–858.Google Scholar
Volbeda, A., Fontecilla-Camps, J. C. & Frey, M. (1996). Novel metal sites in protein structures. Curr. Opin. Struct. Biol. 6, 804–812.Google Scholar
Vyas, N. K. (1991). Atomic features of protein–carbohydrate interactions. Curr. Opin. Struct. Biol. 1, 732–740.Google Scholar
Vyas, N. K., Vyas, M. N. & Quiocho, F. A. (1988). Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science, 242, 1290–1295.Google Scholar
Wang, Z., Luecke, H., Yao, N. & Quiocho, F. A. (1997). Nature Struct. Biol. 4, 519–522.Google Scholar
Weis, W. I. & Drickamer, K. (1996). Structural basis of lectin–carbohydrate recognition. Annu. Rev. Biochem. 65, 441–473.Google Scholar
Werner, M. H., Gronenborn, A. M. & Clore, G. M. (1996a). Intercalation, DNA kinking, and the control of transcription. Science, 271, 778–784.Google Scholar
Werner, M. H., Gronenborn, A. M. & Clore, G. M. (1996b). Intercalation, DNA kinking, and the control of transcription. Erratum. Science, 272, 19.Google Scholar
Worm, S. H. van den, Stonehouse, N. J., Valegard, K., Murray, J. B., Walton, C., Fridborg, K., Stockley, P. G. & Liljas, L. (1998). Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments. Nucleic Acids Res. 26, 1345–1351.Google Scholar
Yao, N., Ledvina, P. S., Choudhary, A. & Quiocho, F. A. (1996). Modulation of a salt link does not affect binding of phosphate to its specific active transport receptor. Biochemistry, 35, 2079–2085.Google Scholar