International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 23.4, pp. 623-647   | 1 | 2 |
https://doi.org/10.1107/97809553602060000717

Chapter 23.4. Solvent structure

C. Mattosa* and D. Ringeb

aDepartment of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Raleigh, NC 02795, USA, and  bRosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St, Waltham, MA 02254, USA
Correspondence e-mail:  mattos@bchserver.bch.ncsu.edu

References

Allen, K. N., Bellamacina, C. R., Ding, X., Jeffery, C. J., Mattos, C., Petsko, G. A. & Ringe, D. (1996). An experimental approach to mapping the binding surfaces of crystalline proteins. J. Phys. Chem. 100, 2605–2611.Google Scholar
Badger, J. (1993). Multiple hydration layers in cubic insulin crystals. Biophys. J. 65, 1656–1659.Google Scholar
Baker, E. N. & Hubbard, R. E. (1984). Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol. 44, 97–179.Google Scholar
Beglov, D. & Roux, B. (1997). An integral equation to describe the solvation of polar molecules in liquid water. J. Phys. Chem. 101, 7821–7826.Google Scholar
Bellamacina, C., Mattos, C., Griffith, D., Ivanov, D., Stanton, M., Petsko, G. A. & Ringe, D. (1999). Unpublished results.Google Scholar
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Res. 28, 235–242.Google Scholar
Bhat, T. N., Bentley, G. A., Boulot, G., Greene, M. I., Tello, D., Dall'Acqua, W., Souchon, H., Schwarz, F. P., Maiuzza, R. A. & Poljak, R. J. (1994). Bound water molecules and conformational stabilization help mediate an antigen–antibody association. Proc. Natl Acad. Sci. USA, 91, 1089–1093.Google Scholar
Blake, C. C. F., Pulford, W. C. A. & Artymiuk, P. J. (1983). X-ray studies of water in crystals of lysozyme. J. Mol. Biol. 167, 693–723.Google Scholar
Brooks, C. L. & Karplus, M. (1989). Solvent effects on protein motion and protein effects on solvent motion. Dynamics of the active site region of lysozyme. J. Mol. Biol. 208, 159–181.Google Scholar
Bryant, R. G. (1996). The dynamics of water–protein interactions. Annu. Rev. Biophys. Biomol. Struct. 25, 29–53.Google Scholar
Chervenak, M. C. & Toone, E. J. (1994). A direct measure of the contribution of solvent reorganization to the enthalpy of ligand binding. J. Am. Chem. Soc. 116, 10533–10539.Google Scholar
Clackson, T. & Wells, J. T. (1995). A hot spot of binding energy in a hormone–receptor interface. Science, 267, 383–386.Google Scholar
Clark, K. L., Halay, E. D., Lai, E. & Burley, S. K. (1993). Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature (London), 364, 412–420.Google Scholar
Clore, G. M., Bax, A., Omichinski, J. G. & Gronenborn, A. M. (1994). Localization of bound water in the solution structure of a complex of the erythroid transcription factor GATA-1 with DNA. Curr. Biol. 2, 89–94.Google Scholar
Condon, P. & Royer, W. (1994). Crystal structure of oxygenated Scapharca dimeric hemoglobin at 1.7 Å resolution. J. Biol. Chem. 269, 25259–25267.Google Scholar
Deisenhofer, J. & Steigemann, W. (1975). Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1.5 Å resolution. Acta Cryst. B31, 238–250.Google Scholar
Edsall, J. T. & McKenzie, H. A. (1978). Water and proteins. I. The significance and structure of water; its interaction with electrolytes and non-electrolytes. Adv. Biophys. 10, 137–207.Google Scholar
Edsall, J. T. & McKenzie, H. A. (1983). Water and proteins. II. The location and dynamics of water in protein systems and its relation to their stability and properties. Adv. Biophys. 16, 53–183.Google Scholar
Gunsteren, W. F. van, Luque, F. J., Timms, D. & Torda, A. E. (1994). Molecular mechanics in biology: from structure to function, taking account of solvation. Annu. Rev. Biophys. Biomol. Struct. 23, 847–863.Google Scholar
Hayward, S., Kitao, A., Hirata, F. & Go, N. (1993). Effect of solvent on collective motions in globular protein. J. Mol. Biol. 234, 1207–1217.Google Scholar
Hendrickson, W. A. & Teeter, M. M. (1981). Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature (London), 290, 107–113.Google Scholar
Hendsch, Z. S., Jonsson, T., Sauer, R. T. & Tidor, B. (1996). Protein stabilization by removal of unsatisfied polar groups: computational approaches and experimental tests. Biochemistry, 35, 7621–7625.Google Scholar
Hendsch, Z. S. & Tidor, B. (1994). Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 3, 211–226.Google Scholar
Herron, J. N., Terry, A. H., Johnston, S., He, S.-M., Guddat, L. W., Voss, E. W. & Edmundson, A. B. (1994). High resolution structures of the 4-4-20 Fab–fluorescein complex in two solvent systems: effects of solvent on structure and antigen-binding affinity. Biophys. J. 67, 2167–2175.Google Scholar
Holdgate, G., Tunnicliffe, A., Ward, W. H. J., Weston, S. A., Rosenbrock, G., Barth, P. T., Taylor, I. W. F., Pauptit, R. A. & Timms, D. (1997). The entropic penalty of ordered water accounts for weaker binding of the antibiotic Novobiocin to a resistant mutant of DNA gyrase: a thermodynamic and crystallographic study. Biochemistry, 36, 9663–9673.Google Scholar
Hubbard, S. J., Gross, K.-H. & Argos, P. (1994). Intramolecular cavities in globular proteins. Protein Eng. 7, 613–626.Google Scholar
Jiang, J.-S. & Brünger, A. (1994). Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100–115.Google Scholar
Karplus, P. A. & Faerman, C. (1994). Ordered water in macromolecular structure. Curr. Opin. Struct. Biol. 4, 770–776.Google Scholar
Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63.Google Scholar
Kendrew, J. C. (1963). Myoglobin and the structure of proteins. Science, 139, 1259–1266.Google Scholar
Komives, E. A., Lougheed, J. C., Liu, K., Sugio, S., Zhang, Z., Petsko, G. A. & Ringe, D. (1995). The structural basis for pseudoreversion of the E165D lesion by the secondary S96P mutation in triosephosphate isomerase depends on the positions of active site water molecules. Biochemistry, 34, 13612–13621.Google Scholar
Kossiakoff, A. A., Sintchak, M. D., Shpungin, J. & Presta, L. G. (1992). Analysis of solvent structure in proteins using neutron D2O − H2O solvent maps: pattern of primary and secondary hydration of trypsin. Proteins Struct. Funct. Genet. 12, 223–236.Google Scholar
Kraulis, P. J. (1991). MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950.Google Scholar
Kuhn, L., Siani, M. A., Pique, M. E., Fisher, C. L., Getzoff, E. D. & Tainer, J. A. (1992). The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures. J. Mol. Biol. 228, 13–22.Google Scholar
Kuhn, L. A., Swanson, C. A., Pique, M. E., Tainer, J. A. & Getzoff, E. D. (1995). Atomic and residue hydrophilicity in the context of folded protein structures. Proteins Struct. Funct. Genet. 23, 536–547.Google Scholar
Ladbury, J. E. (1996). Just add water! The effect of water on the specificity of protein–ligand binding sites and its potential application to drug design. Chem. Biol. 3, 973–980.Google Scholar
Lam, P. Y. S., Jadhav, P. K., Eyermann, C. J., Hodge, C. N., Ru, Y., Bacheler, L. T., Meek, J. L., Otto, M. J., Rayner, M. M., Wong, Y. N., Chang, C.-H., Weber, P. C., Jackson, D. A., Sharpe, T. R. & Erickson-Vitanen, S. (1994). Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science, 263, 380–384.Google Scholar
Lazaridis, T., Archontis, G. & Karplus, M. (1995). Enthalpic contribution to protein stability: insights from atom-based calculations and statistical mechanics. Adv. Protein Chem. 47, 231–306.Google Scholar
Levitt, M. & Park, B. H. (1993). Water: now you see it, now you don't. Structure, 1, 223–226.Google Scholar
Loris, R., Langhorst, U., De Vos, S., Decanniere, K., Bouckaert, J., Maes, D., Transue, T. R. & Steyaert, J. (1999). Conserved water molecules in a large family of microbial ribonucleases. Proteins Struct. Funct. Genet. 36, 117–134.Google Scholar
Loris, R., Stas, P. P. G. & Wyns, L. (1994). Conserved waters in legume lectin crystal structures. The importance of bound water for the sequence–structure relationship within the legume lectin family. J. Biol. Chem. 269, 26722–26733.Google Scholar
Lounnas, V. & Pettitt, B. M. (1994). Distribution function implied dynamics versus residence times and correlations: solvation shells of myoglobin. Proteins Struct. Funct. Genet. 18, 148–160.Google Scholar
Lounnas, V., Pettitt, B. M. & Phillips, G. N. Jr (1994). A global model of the protein–solvent interface. Biophys. J. 66, 601–614.Google Scholar
McDowell, R. S. & Kossiakoff, A. A. (1995). A comparison of neutron diffraction and molecular dynamics structures: hydroxyl group and water molecule orientations in trypsin. J. Mol. Biol. 250, 553–570.Google Scholar
Malin, R., Zielenkiewicz, P. & Saenger, W. (1991). Structurally conserved water molecules in ribonuclease T1. J. Biol. Chem. 266, 4848–4852.Google Scholar
Mattos, C., Bellamacina, C., Amaral, A., Peisach, E., Vitkup, D., Petsko, G. A. & Ringe, D. (2000). The application of the multiple solvent crystal structures method to porcine pancreatic elastase. In preparation.Google Scholar
Mattos, C., Giammona, D. A., Petsko, G. A. & Ringe, D. (1995). Structural analysis of the active site of porcine pancreatic elastase based on the X-ray crystal structures of complexes with trifluoroacetyl-dipeptide-anilide inhibitors. Biochemistry, 34, 3193–3203.Google Scholar
Mattos, C., Rasmussen, B., Ding, X., Petsko, G. A. & Ringe, D. (1994). Analogous inhibitors of elastase do not always bind analogously. Nature Struct. Biol. 1, 55–58.Google Scholar
Mattos, C. & Ringe, D. (1996). Locating and characterizing binding sites on proteins. Nature Biotech. 14, 595–599.Google Scholar
Meiering, E. M. & Wagner, G. (1995). Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH. J. Mol. Biol. 247, 294–308.Google Scholar
Meyer, E. (1992). Internal water molecules and H-bonding in biological macromolecules: a review of structural features with functional implications. Protein Sci. 1, 1543–1562.Google Scholar
Meyer, E., Cole, G., Radhakrishnan, R. & Epp, O. (1988). Structure of native porcine pancreatic elastase at 1.65 Å resolution. Acta Cryst. B44, 26–38.Google Scholar
Momany, F. A., McGuire, R. F., Burgess, A. W. & Scheraga, H. A. (1975). Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occuring amino acids. J. Phys. Chem. 79, 2361–2381.Google Scholar
Morton, C. J. & Ladbury, J. E. (1996). Water mediated protein–DNA interactions: the relationship of thermodynamics to structural detail. Protein Sci. 5, 2115–2118.Google Scholar
Nicholls, A., Sharp, K. A. & Honig, B. (1991). Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296.Google Scholar
Omichinski, J. G., Clore, G. M., Schaad, O., Felsenfeld, G., Trainor, C., Appella, E., Stahl, S. J. & Gronenborn, A. (1993). NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science, 261, 438–446.Google Scholar
Oprea, T. I., Hummer, G. & Garcia, A. E. (1997). Identification of a functional water channel in cytochrome P450 enzymes. Proc. Natl Acad. Sci. USA, 94, 2133–2138.Google Scholar
Otting, G., Liepinsh, E. & Wuthrich, K. (1991). Protein hydration in aqueous solution. Science, 254, 974–980.Google Scholar
Otting, G. & Wuthrich, K. (1989). Studies of protein hydration in aqueous solution by direct NMR observation of individual protein-bound water molecules. J. Am. Chem. Soc. 111, 1871–1875.Google Scholar
Otwinowski, Z., Schevitz, R. W., Zhang, R.-G., Lawson, C. L., Joachimiak, A., Marmorstein, R. Q., Luisi, B. F. & Sigler, P. B. (1988). Crystal structure of trp repressor/operator complex at atomic resolution. Nature (London), 335, 321–329.Google Scholar
Pardanani, A., Gibson, Q. H., Colotti, G. & Royer, W. E. (1997). Mutation of residue Phe97 to Leu disrupts the central allosteric pathway in Scapharca dimeric hemoglobin. J. Biol. Chem. 272, 13171–13179.Google Scholar
Pletinckx, J., Steyaert, J., Zegers, I., Choe, H.-W., Heinemann, U. & Wyns, L. (1994). Crystallographic study of Glu58Ala RNase T1-2′-guanosine monophosphate at 1.9 Å resolution. Biochemistry, 33, 1654–1662.Google Scholar
Pomes, R. & Roux, B. (1996). Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys. J. 71, 19–39.Google Scholar
Poormina, C. S. & Dean, P. M. (1995a). Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins. J. Comput.-Aided Mol. Des. 9, 521–531.Google Scholar
Poormina, C. S. & Dean, P. M. (1995b). Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions. J. Comput.-Aided Mol. Des. 9, 500–512.Google Scholar
Poormina, C. S. & Dean, P. M. (1995c). Hydration in drug design. 2. Influence of local site surface shape on water binding. J. Comput.-Aided Mol. Des. 9, 513–520.Google Scholar
Privé, G. G., Milburn, M. V., Tong, L., DeVos, A. M., Yamaizumi, Z., Nishimura, S. & Kim, S. H. (1992). X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis. Proc. Natl Acad. Sci. 89, 3649–3653.Google Scholar
Quiocho, F. A., Wilson, D. K. & Vyas, N. K. (1989). Substrate specificity and affinity of a protein modulated by bound water molecules. Nature (London), 340, 404–407.Google Scholar
Rand, R. P. (1992). Raising water to new heights. Science, 256, 618.Google Scholar
Rashin, A. A., Iofin, M. & Honig, B. (1986). Internal cavities and buried waters in globular proteins. Biochemistry, 25, 3619–3625.Google Scholar
Ringe, D. (1995). What makes a binding site a binding site? Curr. Opin. Struct. Biol. 5, 825–829.Google Scholar
Robinson, C. R. & Siglar, S. G. (1993). Molecular recognition mediated by bound water. A mechanism for star activity of the restriction endonuclease EcoRI. J. Mol. Biol. 234, 302–306.Google Scholar
Roe, S. M. & Teeter, M. M. (1993). Patterns for prediction of hydration around polar residues in proteins. J. Mol. Biol. 229, 419–427.Google Scholar
Roux, B., Nina, M., Pomes, R. & Smith, J. C. (1996). Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy pertubation study. Biophys. J. 72, 670–681.Google Scholar
Royer, W. (1994). High-resolution crystallographic analysis of a co-operative dimeric hemoglobin. J. Mol. Biol. 235, 657–681.Google Scholar
Royer, W. E., Fox, R. A. & Smith, F. R. (1997). Ligand linked assembly of Scapharca dimeric hemoglobin. J. Biol. Chem. 272, 5689–5694.Google Scholar
Royer, W. E. Jr, Hendrickson, W. A. & Chiancone, E. (1990). Structural transitions upon ligand binding in a cooperative dimeric hemoglobin. Science, 249, 518–521.Google Scholar
Royer, W. E., Pardanani, A., Gibson, Q. H., Peterson, E. S. & Friedman, J. M. (1996). Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin. Proc. Natl Acad. Sci. USA, 93, 14526–14531.Google Scholar
Savage, H. (1986). Water structure in vitamin B12 coenzyme crystals. Biophys. J. 50, 967–980.Google Scholar
Savage, H. & Wlodawer, A. (1986). Determination of water structure around biomolecules using X-ray and neutron diffraction methods. Methods Enzymol. 127, 162–183.Google Scholar
Shakked, Z., Guzikevich-Guerstein, G., Frolow, F., Rabinovich, D., Joachimiak, A. & Sigler, P. B. (1994). Determinants of repressor/operator recognition from the structure of the trp operator binding site. Nature (London), 368, 469–473.Google Scholar
Shaltiel, S., Cox, S. & Taylor, S. (1998). Conserved water molecules contribute to the extensive network of interactions at the active site of protein kinase A. Proc. Natl Acad. Sci. USA, 95, 484–491.Google Scholar
Shpungin, J. & Kossiakoff, A. A. (1986). A method of solvent structure analysis for proteins using D2O − H2O neutron difference maps. Methods Enzymol. 127, 329–342.Google Scholar
Singer, P., Smalas, A., Carty, R. P., Mangel, W. F. & Sweet, R. M. (1993). The hydrolytic water molecule in trypsin, revealed by time-resolved Laue crystallography. Science, 259, 669–673.Google Scholar
Sreenivasan, U. & Axelsen, P. H. (1992). Buried water in homologous serine proteases. Biochemistry, 31, 12785–12791.Google Scholar
Teeter, M. M. (1984). Water structure of a hydrophobic protein at atomic resolution: pentagon rings of water molecules in crystals of crambin. Proc. Natl Acad. Sci. USA, 81, 6014–6018.Google Scholar
Teeter, M. M. (1991). Water–protein interactions: theory and experiment. Annu. Rev. Biophys. Biophys. Chem. 20, 577–600.Google Scholar
Teeter, M. M. & Hendrickson, W. A. (1979). Highly ordered crystals of the plant seed protein crambin. J. Mol. Biol. 127, 219–223.Google Scholar
Thanki, N., Thornton, J. M. & Goodfellow, J. M. (1988). Distribution of water around amino acid residues in proteins. J. Mol. Biol. 202, 637–657.Google Scholar
Thanki, N., Thornton, J. M. & Goodfellow, J. M. (1990). Influence of secondary structure on the hydration of serine, threonine and tyrosine residues in proteins. Protein Eng. 3, 495–508.Google Scholar
Thanki, N., Umrania, Y., Thornton, J. M. & Goodfellow, J. M. (1991). Analysis of protein main-chain solvation as a function of secondary structure. J. Mol. Biol. 221, 669–691.Google Scholar
Walshaw, J. & Goodfellow, J. M. (1993). Distribution of solvent molecules around apolar side-chains in protein crystals. J. Mol. Biol. 231, 392–414.Google Scholar
Weaver, L. & Matthews, B. (1987). Structure of bacteriophage T4 lysozyme refined at 1.7 Å resolution. J. Mol. Biol. 193, 189–199.Google Scholar
Williams, M. A., Goodfellow, J. M. & Thornton, J. M. (1994). Buried waters and internal cavities in monomeric proteins. Protein Sci. 3, 1224–1235.Google Scholar
Wlodawer, A., Walter, J., Huber, R. & Sjolin, L. (1984). Structure of bovine pancreatic trypsin inhibitor. Results of joint neutron and X-ray refinement of crystal form II. J. Mol. Biol. 180, 301–329.Google Scholar
Zegers, I., Maes, D., Dao-Thi, M.-H., Poortmans, F., Palmer, R. & Wyns, L. (1994). The structures of RNase A complexed with 3′-CMP and d(CpA): active site conformation and conserved water molecules. Protein Sci. 3, 2322–2339.Google Scholar
Zhang, X.-J. & Matthews, B. W. (1994). Conservation of solvent-binding sites in 10 crystal forms of T4 lysozyme. Protein Sci. 3, 1031–1039.Google Scholar