International Tables for Crystallography (2012). Vol. F. ch. 10.3, pp. 256-261
https://doi.org/10.1107/97809553602060000829 |
Chapter 10.3. Radiation damage
Contents
- 10.3. Radiation damage (pp. 256-261) | html | pdf | chapter contents |
- 10.3.1. Introduction (p. 256) | html | pdf |
- 10.3.2. Cryocrystallography as a mitigation strategy (pp. 256-257) | html | pdf |
- 10.3.3. Characteristics of radiation damage at cryotemperatures (pp. 257-258) | html | pdf |
- 10.3.4. Understanding radiation damage (pp. 258-259) | html | pdf |
- 10.3.5. Mitigating and correcting for radiation damage (p. 259) | html | pdf |
- 10.3.6. Using radiation damage (p. 260) | html | pdf |
- 10.3.7. Open questions (p. 260) | html | pdf |
- References | html | pdf |
- Figures
- Fig. 10.3.3.1. Global radiation-damage indicators as a function of dose for four holoferritin crystals (p. 257) | html | pdf |
- Fig. 10.3.3.2. Specific structural damage inflicted on a cryocooled crystal of apoferritin during sequential data sets collected at ID14–4, ESRF (p. 258) | html | pdf |
- Fig. 10.3.3.3. Photograph of a 400 µm neuraminidase crystal (subtype N9 from avian influenza isolated from a Noddy Tern) that has been irradiated on ID14–4 at the ESRF at 100 K and then allowed to warm to room temperature (p. 258) | html | pdf |
- Fig. 10.3.4.1. Microspectrophotometer absorption spectra of native and ascorbate-soaked hen egg-white lysozyme crystals at 100 K (p. 259) | html | pdf |