International Tables for Crystallography (2012). Vol. F. ch. 2.1, pp. 45-63
https://doi.org/10.1107/97809553602060000808 |
Chapter 2.1. Introduction to basic crystallography
Contents
- 2.1. Introduction to basic crystallography (pp. 45-63) | html | pdf | chapter contents |
- 2.1.1. Crystals (pp. 45-46) | html | pdf |
- 2.1.2. Symmetry (pp. 46-47) | html | pdf |
- 2.1.3. Point groups and crystal systems (pp. 47-52) | html | pdf |
- 2.1.4. Basic diffraction physics (pp. 52-57) | html | pdf |
- 2.1.4.1. Diffraction by one electron (pp. 52-53) | html | pdf |
- 2.1.4.2. Scattering by a system of two electrons (pp. 53-54) | html | pdf |
- 2.1.4.3. Scattering by atoms (pp. 54-55) | html | pdf |
- 2.1.4.4. Anomalous dispersion (p. 55) | html | pdf |
- 2.1.4.5. Scattering by a crystal (pp. 55-56) | html | pdf |
- 2.1.4.6. The structure factor (pp. 56-57) | html | pdf |
- 2.1.5. Reciprocal space and the Ewald sphere (pp. 57-58) | html | pdf |
- 2.1.6. Mosaicity and integrated reflection intensity (pp. 58-60) | html | pdf |
- 2.1.7. Calculation of electron density (p. 60) | html | pdf |
- 2.1.8. Symmetry in the diffraction pattern (pp. 60-61) | html | pdf |
- 2.1.9. The Patterson function (pp. 62-63) | html | pdf |
- References | html | pdf |
- Figures
- Fig. 2.1.1.1. One unit cell with axes a, b and c (p. 45) | html | pdf |
- Fig. 2.1.1.2. A set of unit cells (p. 45) | html | pdf |
- Fig. 2.1.1.3. A two-dimensional lattice with unit cells (p. 46) | html | pdf |
- Fig. 2.1.1.4. Non-centred and centred unit cells (p. 46) | html | pdf |
- Fig. 2.1.3.1. How to construct a stereographic projection (p. 47) | html | pdf |
- Fig. 2.1.3.2. A rhombohedral unit cell (p. 47) | html | pdf |
- Fig. 2.1.3.3. The 14 Bravais lattices (p. 52) | html | pdf |
- Fig. 2.1.4.1. The electric vector of a monochromatic and polarized X-ray beam is in the plane (p. 53) | html | pdf |
- Fig. 2.1.4.2. The black dots are electrons (p. 53) | html | pdf |
- Fig. 2.1.4.3. The direction of the incident wave is indicated by and that of the scattered wave by s (p. 53) | html | pdf |
- Fig. 2.1.4.4. An Argand diagram for the scattering by two electrons (p. 54) | html | pdf |
- Fig. 2.1.4.5. The atomic scattering factor f for carbon as a function of , expressed in units of the scattering by one electron (p. 54) | html | pdf |
- Fig. 2.1.4.6. S is the X-ray source and D is the detector (p. 55) | html | pdf |
- Fig. 2.1.4.7. Schematic picture of the Argand diagram for the scattering by atoms in a plane (p. 55) | html | pdf |
- Fig. 2.1.4.8. The atomic scattering factor as a vector in the Argand diagram (p. 55) | html | pdf |
- Fig. 2.1.4.9. X-ray diffraction by a crystal is, in Bragg's conception, reflection by lattice planes (p. 56) | html | pdf |
- Fig. 2.1.4.10. The Wilson plot for phospholipase A2 with data to 1.7 Å resolution (p. 57) | html | pdf |
- Fig. 2.1.5.1. A two-dimensional real unit cell is drawn together with its reciprocal unit cell (p. 58) | html | pdf |
- Fig. 2.1.5.2. The circle is, in fact, a sphere with radius (p. 59) | html | pdf |
- Fig. 2.1.7.1. An Argand diagram for the structure factors of the two members of a Friedel pair (p. 61) | html | pdf |
- Fig. 2.1.9.1. (a) A two-dimensional unit cell with two atoms (p. 62) | html | pdf |
- Tables
- Table 2.1.2.1. The most common space groups for protein crystals (p. 47) | html | pdf |
- Table 2.1.3.1. The 11 enantiomorphic point groups (pp. 48-49) | html | pdf |
- Table 2.1.3.2. The 11 point groups with a centre of symmetry (pp. 50-51) | html | pdf |
- Table 2.1.3.3. The icosahedral point group 532 (p. 52) | html | pdf |
- Table 2.1.3.4. The seven crystal systems (p. 52) | html | pdf |
- Table 2.1.4.1. The position of the Kα edge of different elements (p. 54) | html | pdf |