International Tables for Crystallography (2019). Vol. H, ch. 4.2, pp. 395-413
https://doi.org/10.1107/97809553602060000957

Chapter 4.2. Solving crystal structures using reciprocal-space methods

Contents

  • 4.2. Solving crystal structures using reciprocal-space methods  (pp. 395-413) | html | pdf | chapter contents |
    • 4.2.1. Introduction  (p. 395) | html | pdf |
    • 4.2.2. Intensity extraction for RS methods  (p. 395) | html | pdf |
    • 4.2.3. Direct methods  (pp. 395-399) | html | pdf |
      • 4.2.3.1. Normalized structure factors  (pp. 396-397) | html | pdf |
      • 4.2.3.2. Structure invariants  (p. 397) | html | pdf |
      • 4.2.3.3. Triplet invariants  (p. 397) | html | pdf |
      • 4.2.3.4. How direct methods work  (pp. 397-399) | html | pdf |
    • 4.2.4. Improving data normalization  (pp. 399-400) | html | pdf |
      • 4.2.4.1. Pseudotranslational symmetry  (p. 399) | html | pdf |
      • 4.2.4.2. Preferred orientation  (pp. 399-400) | html | pdf |
      • 4.2.4.3. Systematic decomposition  (p. 400) | html | pdf |
    • 4.2.5. Patterson methods  (pp. 400-401) | html | pdf |
      • 4.2.5.1. The use of the Patterson function for estimating integrated intensities  (p. 401) | html | pdf |
    • 4.2.6. Charge flipping  (pp. 401-403) | html | pdf |
    • 4.2.7. Maximum-entropy methods  (pp. 403-404) | html | pdf |
    • 4.2.8. Optimization of the structure model  (pp. 404-406) | html | pdf |
      • 4.2.8.1. Fourier recycling (FR)  (p. 404) | html | pdf |
      • 4.2.8.2. Weighted least-squares (WLSQ) refinement  (pp. 404-405) | html | pdf |
      • 4.2.8.3. Resolution bias modification (RBM)  (pp. 405-406) | html | pdf |
    • 4.2.9. Software packages for powder solution  (pp. 406-410) | html | pdf |
      • 4.2.9.1. Example of structure solution by XLENS  (p. 406) | html | pdf |
      • 4.2.9.2. Example of structure solution by SUPERFLIP  (p. 407) | html | pdf |
      • 4.2.9.3. The input file for a default run of EXPO  (p. 407) | html | pdf |
      • 4.2.9.4. An example of model optimization by EXPO for an inorganic compound  (pp. 407-408) | html | pdf |
      • 4.2.9.5. Example of model optimization by EXPO for an organic compound  (pp. 408-410) | html | pdf |
      • 4.2.9.6. The ALLTRIALS tool in EXPO: exploring all the phase sets  (p. 410) | html | pdf |
      • 4.2.9.7. Graphical tools in EXPO  (p. 410) | html | pdf |
    • 4.2.10. Conclusions  (p. 410) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 4.2.1. Flow chart for the DM procedure  (p. 398) | html | pdf |
      • Fig. 4.2.2. Crystal structure of (S)-(+)-ibuprofen solved by XLENS  (p. 406) | html | pdf |
      • Fig. 4.2.3. Crystal structure of the zeolite ZrPOF-EA solved by SUPERFLIP  (p. 407) | html | pdf |
      • Fig. 4.2.4. Default input file for EXPO for the structure of clomipramine  (p. 407) | html | pdf |
      • Fig. 4.2.5. Structure solution for chromium chromate tetrachromate, Cr8O21: (a) the powder pattern; (b) the DM structure model; (c) the model optimized by the automatic EXPO WLSQ-FR procedure  (p. 408) | html | pdf |
      • Fig. 4.2.6. Structure solution for clomipramine hydrochloride, C19H23ClN2·HCl: (a) the powder pattern; (b) the DM structure model; (c) the model optimized by the automatic EXPO RBM procedure  (p. 409) | html | pdf |
      • Fig. 4.2.7. The ALLTRIALS procedure in EXPO for solving 1,4-bis-(2-phenethyloxy-ethanesulfonyl)-piperazine, C24H34N2O6S2: (a) the phasing sets ranked according to CFOM; (b) the phasing sets ranked according to RF; (c) the correct solution is automatically detected as set No  (p. 409) | html | pdf |