International Tables for Crystallography (2019). Vol. H, ch. 4.5, pp. 442-451
https://doi.org/10.1107/97809553602060000960

Chapter 4.5. Solving and refining inorganic structures

Contents

  • 4.5. Solving and refining inorganic structures  (pp. 442-451) | html | pdf | chapter contents |
    • 4.5.1. The molecular/non-molecular and the organic/inorganic boundaries  (p. 442) | html | pdf |
    • 4.5.2. Modelling of non-molecular compounds  (p. 442) | html | pdf |
      • 4.5.2.1. Principles  (p. 442) | html | pdf |
      • 4.5.2.2. Building units  (pp. 442-443) | html | pdf |
      • 4.5.2.3. Special positions and the sharing of atoms between building units  (pp. 443-444) | html | pdf |
      • 4.5.2.4. Is there a need for precise unit-cell contents?  (p. 444) | html | pdf |
      • 4.5.2.5. Building units and the convergence of the DSM algorithm  (p. 444) | html | pdf |
      • 4.5.2.6. Random versus non-random DSM algorithms  (pp. 444-445) | html | pdf |
      • 4.5.2.7. The choice of the cost function in DSM algorithms  (p. 445) | html | pdf |
    • 4.5.3. Solving, refining and completing inorganic structures  (pp. 445-448) | html | pdf |
      • 4.5.3.1. A general problem: poor quality powder data  (p. 445) | html | pdf |
      • 4.5.3.2. Indexing of multiphase samples  (p. 445) | html | pdf |
      • 4.5.3.3. X-rays versus neutrons  (pp. 445-446) | html | pdf |
      • 4.5.3.4. Chemical and positional disorder  (pp. 446-447) | html | pdf |
      • 4.5.3.5. Structure validation – theoretical issues  (pp. 447-448) | html | pdf |
    • 4.5.4. Examples  (pp. 448-450) | html | pdf |
      • 4.5.4.1. Polyhedral compounds  (pp. 448-449) | html | pdf |
      • 4.5.4.2. Hybrid compounds  (p. 449) | html | pdf |
      • 4.5.4.3. Close-packed compounds  (p. 450) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 4.5.1. A non-molecular crystal can be described by primary building units (PBUs), which can be (a) isolated atoms, (b) coordination polyhedra, (c) molecules, or a more complex and flexible arrangement of secondary building units (SBUs)  (p. 442) | html | pdf |
      • Fig. 4.5.2. Ab initio structure-solution algorithms working in direct space must be able to automatically handle (a) atoms that are shared between individual building units and (b) atoms that are on special positions  (p. 443) | html | pdf |
      • Fig. 4.5.3. Modelling of the aluminium methylphosphonate structure using: (left) three H3C-PO3 blocks MP1–MP3 and two Al atoms, and (right) one AlO5 trigonal bipyramid for Al1, one AlO4 tetrahedron for Al2 and three H3C-P groups MP1–MP3  (p. 444) | html | pdf |
      • Fig. 4.5.4. In situ synchrotron-radiation X-ray powder diffraction data as a function of temperature for a ball-milled sample of LiBH4:CsBH4 (2:1) (room temperature to 428 K, λ = 0.8210 Å)  (p. 446) | html | pdf |
      • Fig. 4.5.5. Yttrium borohydride appears to show positional disorder on the BH4 groups when only XPD data are used (left: Ravnsbaek, Filinchuk, Černý, Ley et al  (p. 446) | html | pdf |
      • Fig. 4.5.6. XPD (Cu Kα1, left) and NPD (λ = 1.5558 Å, right) patterns for the high-temperature modification of yttrium borohydride  (p. 447) | html | pdf |
      • Fig. 4.5.7. Structural model of Li4Al3(BH4)13 as solved from synchrotron XPD (left) and as corrected by DFT optimization (right)  (p. 447) | html | pdf |
      • Fig. 4.5.8. Structural fragment of a nanocrystalline inorganic–organic hybrid compound VO(C6H5COO)2 (Djerdj et al  (p. 448) | html | pdf |
      • Fig. 4.5.9. Structural model of Mg(BH4)2 as solved from XPD using a DSM (Černý et al  (p. 448) | html | pdf |
      • Fig. 4.5.10. The crystal structure of MOF-525 (Morris et al  (p. 449) | html | pdf |
      • Fig. 4.5.11. The crystal structure of the close-packed intermetallic phase MgIr (Černý et al  (p. 450) | html | pdf |