International Tables for Crystallography (2019). Vol. H, ch. 4.9, pp. 489-514
https://doi.org/10.1107/97809553602060000964

Chapter 4.9. Structure validation

Contents

  • 4.9. Structure validation  (pp. 489-514) | html | pdf | chapter contents |
    • 4.9.1. Introduction  (p. 489) | html | pdf |
    • 4.9.2. Statistical measures (with contributions from B. H. Toby)  (pp. 489-490) | html | pdf |
    • 4.9.3. Graphical measures (with contributions from B. H. Toby and J. K. Stalick)  (pp. 490-496) | html | pdf |
    • 4.9.4. Chemical reasonableness  (pp. 496-508) | html | pdf |
      • 4.9.4.1. Organic compounds  (pp. 496-503) | html | pdf |
        • 4.9.4.1.1. Calcium tartrate tetrahydrate  (pp. 497-500) | html | pdf |
        • 4.9.4.1.2. Guaifenesin  (pp. 500-502) | html | pdf |
        • 4.9.4.1.3. Cobalt(II) acetate tetrahydrate, Co(C2H3O2)2(H2O)4  (pp. 502-503) | html | pdf |
      • 4.9.4.2. Inorganic compounds  (pp. 503-508) | html | pdf |
        • 4.9.4.2.1. The bond-valence method  (p. 503) | html | pdf |
        • 4.9.4.2.2. Hexaaquairon(II) tetrafluoroborate, [Fe(H2O)6](BF4)2  (pp. 503-505) | html | pdf |
        • 4.9.4.2.3. (Ba1.5Sr0.5)TiO4  (pp. 505-506) | html | pdf |
        • 4.9.4.2.4. (Ba1.25Sr0.75)TiO4  (pp. 506-507) | html | pdf |
        • 4.9.4.2.5. Mullite, Al4.85Si1.18O9.77  (p. 507) | html | pdf |
        • 4.9.4.2.6. 6H perovskite Ba3CaSb2O9  (pp. 507-508) | html | pdf |
        • 4.9.4.2.7. Quartz  (p. 508) | html | pdf |
    • 4.9.5. Working by analogy  (p. 508) | html | pdf |
      • 4.9.5.1.   (p. 508) | html | pdf |
    • 4.9.6. Structure validation in general  (pp. 508-509) | html | pdf |
    • 4.9.7. CheckCIF/PLATON  (pp. 509-512) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 4.9.1. A `Rietveld' plot from the refinement of calcium tartrate tetrahydrate  (p. 491) | html | pdf |
      • Fig. 4.9.2. The calcium tartrate tetrahydrate Rietveld plot of Fig  (p. 491) | html | pdf |
      • Fig. 4.9.3. The calcium tartrate tetrahydrate Rietveld plot of Fig  (p. 491) | html | pdf |
      • Fig. 4.9.4. A normalized Rietveld plot for calcium tartrate tetrahydrate  (p. 492) | html | pdf |
      • Fig. 4.9.5. A weighted Rietveld plot for calcium tartrate tetrahydrate  (p. 492) | html | pdf |
      • Fig. 4.9.6. (a) A Rietveld plot from a refinement of NIST SRM 660a, LaB6  (p. 492) | html | pdf |
      • Fig. 4.9.7. The calcium tartrate tetrahydrate Rietveld plot of Fig  (p. 492) | html | pdf |
      • Fig. 4.9.8. A normal probability plot from the refinement of calcium tartrate tetrahydrate  (p. 493) | html | pdf |
      • Fig. 4.9.9. A Rietveld plot of calcium tartrate tetrahydrate after refinement of a phase fraction and a three-term shifted Chebyshev background function  (p. 493) | html | pdf |
      • Fig. 4.9.10. A weighted Rietveld plot of calcium tartrate tetrahydrate after refinement of a phase fraction and a three-term shifted Chebyshev background function  (p. 493) | html | pdf |
      • Fig. 4.9.11. A small region of the calcium tartrate tetrahydrate Rietveld plot early in the refinement  (p. 494) | html | pdf |
      • Fig. 4.9.12. The same 34.5–36° region of the pattern of calcium tartrate tetrahydrate after refinement of the cell parameters and specimen displacement  (p. 494) | html | pdf |
      • Fig. 4.9.13. (a) The 34.5–36° region of the calcium tartrate tetrahydrate pattern after refinement of profile coefficients  (p. 494) | html | pdf |
      • Fig. 4.9.14. A full-scale Rietveld plot from the refinement of Ba3CaSb2O9 (Rowda et al  (p. 495) | html | pdf |
      • Fig. 4.9.15. The plot of Fig  (p. 495) | html | pdf |
      • Fig. 4.9.16. Full scale Rietveld plot of (Ba1.25Sr0.75)TiO4  (p. 495) | html | pdf |
      • Fig. 4.9.17. A portion of the plot of Fig  (p. 495) | html | pdf |
      • Fig. 4.9.18. A portion of the Rietveld plot of (Ba1.25Sr0.75)TiO4 after the correct unit cell and structure had been identified  (p. 495) | html | pdf |
      • Fig. 4.9.19. A Rietveld plot of (Ba1.5Sr0.5)TiO4 early in the refinement, with an incorrect unit cell for the major phase  (p. 496) | html | pdf |
      • Fig. 4.9.20. The low-angle portion of the Rietveld plot of (Ba1.5Sr0.5)TiO4, showing that the unit cell predicts many peaks which are not observed  (p. 496) | html | pdf |
      • Fig. 4.9.21. The structure of a tartrate anion  (p. 497) | html | pdf |
      • Fig. 4.9.22. A Mercury plot of the distribution of the lengths of the central C3—C4 bond in tartrate anions  (p. 497) | html | pdf |
      • Fig. 4.9.23. A Mercury histogram of the O8—C3—C4 bond angle in tartrate anions  (p. 497) | html | pdf |
      • Fig. 4.9.24. A Mercury polar histogram of the O8—C3—C4—O9 torsion angles in tartrate anions  (p. 497) | html | pdf |
      • Fig. 4.9.25. Refined molecular structure of guaifenesin  (p. 500) | html | pdf |
      • Fig. 4.9.26. A Mogul Geometry Check histogram of the `unusual' C5—O16 distance in guaifenesin, showing its position in the histogram of equivalent distances  (p. 501) | html | pdf |
      • Fig. 4.9.27. A Mogul Geometry Check histogram of the `unusual' C6—O11 distance in guaifenesin, showing its position in the histogram of equivalent distances  (p. 501) | html | pdf |
      • Fig. 4.9.28. A Mogul Geometry Check histogram of the `unusual' C12—O11—C6 angle in guaifenesin, showing its position in the histogram of equivalent angles  (p. 501) | html | pdf |
      • Fig. 4.9.29. A Mogul Geometry Check histogram of the `unusual' C17—O16—C5 angle in guaifenesin, showing its position in the histogram of equivalent angles  (p. 501) | html | pdf |
      • Fig. 4.9.30. A Mogul Geometry Check histogram of the O20—C19—C18—C17 torsion angle in guaifenesin, showing its position in the histogram of equivalent angles  (p. 501) | html | pdf |
      • Fig. 4.9.31. Comparison of the isotropic displacement coefficients for the powder (PANKUL01) and two single-crystal (PANKUL and PANKUL02) structures of guaifenesin  (p. 502) | html | pdf |
      • Fig. 4.9.32. Mercury overlay of the two single-crystal structures (PANKUL and PANKUL02) of guaifenesin, showing the differences in the positions of the hydroxyl protons  (p. 502) | html | pdf |
      • Fig. 4.9.33. Comparison of the experimental powder pattern of [Fe(H2O)6](BF4)2 and the PDF entry 00–021-0427 reported for this compound  (p. 505) | html | pdf |
      • Fig. 4.9.34. The observed pattern of (Ba1.5Sr0.5)TiO4 compared with the experimental and calculated PDF entries for Ba2TiO4  (p. 505) | html | pdf |
      • Fig. 4.9.35. A Rietveld plot from an incorrect refinement of the structure of (Ba1.5Sr0.5)TiO4  (p. 506) | html | pdf |
    • Tables
      • Table 4.9.1. Average bond distances in a tartrate anion  (p. 497) | html | pdf |
      • Table 4.9.2. Average bond angles in a tartrate anion  (p. 497) | html | pdf |
      • Table 4.9.3. Bond distances (Å) and angles (°) in cobalt(II) acetate tetrahydrate (Kaduk & Partenheimer, 1997)  (p. 503) | html | pdf |
      • Table 4.9.4. Root-mean-square density-weighted displacements (Å) of atoms in various refinements of cobalt(II) acetate tetrahydrate (Kaduk & Partenheimer, 1997)  (p. 503) | html | pdf |
      • Table 4.9.5. Displacement coefficients (Å2) from various refinements of cobalt(II) acetate tetrahydrate  (p. 504) | html | pdf |
      • Table 4.9.6. Average bond distances and angles from 26 experimental determinations of α-quartz compared with average values from 20 determinations in the ICSD  (p. 508) | html | pdf |
      • Table 4.9.7. R.m.s. differences Δ (Å) between the non-H atoms in experimental and DFT-optimized crystal structures of the citrate group in group-1 citrate salts  (p. 509) | html | pdf |