International Tables for Crystallography (2019). Vol. H, ch. 7.12, pp. 855-867
https://doi.org/10.1107/97809553602060000986

Chapter 7.12. Powder-diffraction characterization of cements

Contents

  • 7.12. Powder-diffraction characterization of cements  (pp. 855-867) | html | pdf | chapter contents |
    • 7.12.1. An introduction to cements and types of cements  (p. 855) | html | pdf |
    • 7.12.2. Rietveld quantitative phase analysis of cements  (pp. 855-856) | html | pdf |
      • 7.12.2.1. Obtaining crystal-structure information  (pp. 855-856) | html | pdf |
      • 7.12.2.2. Data analysis  (p. 856) | html | pdf |
    • 7.12.3. Phase quantification of Portland cements  (pp. 856-859) | html | pdf |
      • 7.12.3.1. Quantification of Portland clinkers  (pp. 856-857) | html | pdf |
      • 7.12.3.2. Quantification of Portland cements and blended cements  (pp. 857-858) | html | pdf |
      • 7.12.3.3. Online quantification of Portland clinkers and cements  (pp. 858-859) | html | pdf |
    • 7.12.4. Quantification of other cementitious materials  (pp. 859-861) | html | pdf |
      • 7.12.4.1. Calcium aluminate cements  (p. 859) | html | pdf |
      • 7.12.4.2. Calcium sulfoaluminate cements  (pp. 859-860) | html | pdf |
      • 7.12.4.3. Calcium sulfobelite cements  (p. 860) | html | pdf |
      • 7.12.4.4. Materials with pozzolanic activity  (pp. 860-861) | html | pdf |
      • 7.12.4.5. Other cements  (p. 861) | html | pdf |
    • 7.12.5. Powder-diffraction studies on the hydration of cements  (pp. 861-863) | html | pdf |
      • 7.12.5.1. Hydration studies of Portland cements and blended Portland cements  (pp. 861-862) | html | pdf |
      • 7.12.5.2. Hydration studies of alternative cementitious materials  (pp. 862-863) | html | pdf |
    • 7.12.6. The use of synchrotron and neutron powder diffraction for studying cements  (pp. 863-864) | html | pdf |
    • 7.12.7. Conclusions and outlook  (p. 864) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 7.12.1. Main uses of Rietveld quantitative phase analysis for studying ordinary Portland clinkers, cements and hydration products  (p. 857) | html | pdf |
      • Fig. 7.12.2. Selected region of a Rietveld plot using Cu Kα1 radiation for a commercial grey Portland clinker with the main peaks labelled (Aftit stands for afthitalite)  (p. 858) | html | pdf |
      • Fig. 7.12.3. (a) Selected region of a Rietveld plot using Cu Kα1 radiation for a commercial Portland cement (CEM II/BL 32.5R) with the main peaks labelled  (p. 858) | html | pdf |
      • Fig. 7.12.4. Selected region of a Rietveld plot using Cu Kα1 radiation for a commercial calcium aluminate cement with the main peaks labelled  (p. 859) | html | pdf |
      • Fig. 7.12.5. Selected region of a Rietveld plot using Cu Kα1 radiation for a commercial calcium sulfoaluminate cement with the main peaks labelled  (p. 860) | html | pdf |
      • Fig. 7.12.6. Selected region of a Rietveld plot using Cu Kα1 radiation for a laboratory-prepared calcium sulfobelite cement with the main peaks labelled  (p. 860) | html | pdf |
      • Fig. 7.12.7. Selected region of a Rietveld plot using Cu Kα1 radiation for a commercial pulverized fly ash  (p. 861) | html | pdf |
      • Fig. 7.12.8. (a) Selected region of a Rietveld plot using Cu Kα1 radiation for a hydrated Portland cement after 13 d  (p. 862) | html | pdf |
      • Fig. 7.12.9. Selected region of a Rietveld plot using Cu Kα1 radiation for an alkali-activated fly ash mixed with Al2O3 as an internal standard (weighed: 29.96 wt%) after 180 d of hydration  (p. 863) | html | pdf |