International Tables for Crystallography (2019). Vol. H, ch. 7.8, pp. 804-827
https://doi.org/10.1107/97809553602060000982

Chapter 7.8. Ceramic materials

Contents

  • 7.8. Ceramic materials  (pp. 804-827) | html | pdf | chapter contents |
    • 7.8.1. Introduction  (pp. 804-805) | html | pdf |
      • 7.8.1.1. Definition  (p. 804) | html | pdf |
      • 7.8.1.2. A brief history of ceramic development  (p. 804) | html | pdf |
      • 7.8.1.3. Industrial aspects of fine ceramics/advanced ceramics  (p. 804) | html | pdf |
    • 7.8.2. Categories of ceramics  (pp. 805-810) | html | pdf |
      • 7.8.2.1. Art and archaeological ceramics  (p. 805) | html | pdf |
      • 7.8.2.2. Modern technical ceramics  (pp. 805-810) | html | pdf |
        • 7.8.2.2.1. White ware  (p. 805) | html | pdf |
        • 7.8.2.2.2. Structural clay products/building and construction materials (Jones & Berard, 1993)  (pp. 805-806) | html | pdf |
        • 7.8.2.2.3. Machinery (Musikant, 1991)  (p. 806) | html | pdf |
        • 7.8.2.2.4. Cutting tools  (p. 806) | html | pdf |
        • 7.8.2.2.5. Nuclear applications (Musikant, 1991)  (p. 806) | html | pdf |
        • 7.8.2.2.6. Electronic ceramics  (pp. 806-809) | html | pdf |
          • 7.8.2.2.6.1. Batteries and fuel cells  (p. 806) | html | pdf |
          • 7.8.2.2.6.2. Ceramic capacitors  (pp. 806-807) | html | pdf |
          • 7.8.2.2.6.3. High-temperature ceramic superconductors  (p. 807) | html | pdf |
          • 7.8.2.2.6.4. Ferroelectric ceramics  (p. 807) | html | pdf |
          • 7.8.2.2.6.5. Glass ceramics  (p. 807) | html | pdf |
          • 7.8.2.2.6.6. Integrated-circuit packaging and substrates  (pp. 807-808) | html | pdf |
          • 7.8.2.2.6.7. Magnetic ceramics  (p. 808) | html | pdf |
          • 7.8.2.2.6.8. Microwave communication ceramics  (p. 808) | html | pdf |
          • 7.8.2.2.6.9. Piezoelectric ceramics  (p. 808) | html | pdf |
          • 7.8.2.2.6.10. Photovoltaics (solar cells)  (pp. 808-809) | html | pdf |
          • 7.8.2.2.6.11. Thermoelectric ceramics  (p. 809) | html | pdf |
          • 7.8.2.2.6.12. Ceramic sensors  (p. 809) | html | pdf |
          • 7.8.2.2.6.13. Ceramic varistors  (p. 809) | html | pdf |
        • 7.8.2.2.7. Optical ceramics or photonic ceramics  (pp. 809-810) | html | pdf |
        • 7.8.2.2.8. Refractory ceramics  (p. 810) | html | pdf |
        • 7.8.2.2.9. Medical and bioceramics  (p. 810) | html | pdf |
    • 7.8.3. Applications of powder X-ray diffraction to the studies of ceramics  (pp. 810-825) | html | pdf |
      • 7.8.3.1. Phase characterization  (pp. 811-814) | html | pdf |
        • 7.8.3.1.1. Phase identification  (pp. 811-812) | html | pdf |
        • 7.8.3.1.2. Quantitative analysis of phases  (p. 812) | html | pdf |
        • 7.8.3.1.3. Phase equilibria, crystal chemistry and crystallography  (pp. 812-813) | html | pdf |
        • 7.8.3.1.4. Phase evolution  (pp. 813-814) | html | pdf |
        • 7.8.3.1.5. Phase transformation  (p. 814) | html | pdf |
      • 7.8.3.2. Structure and microstructure  (pp. 814-819) | html | pdf |
        • 7.8.3.2.1. Crystal structure  (pp. 814-815) | html | pdf |
        • 7.8.3.2.2. Crystallite size  (pp. 815-816) | html | pdf |
        • 7.8.3.2.3. Imperfection (defects) in ceramics  (pp. 816-817) | html | pdf |
        • 7.8.3.2.4. Residual stress measurements of ceramic components  (pp. 817-818) | html | pdf |
        • 7.8.3.2.5. Texture/preferred orientation  (pp. 818-819) | html | pdf |
        • 7.8.3.2.6. Thickness and roughness of ceramic films  (p. 819) | html | pdf |
      • 7.8.3.3. Processing and performance  (pp. 819-825) | html | pdf |
        • 7.8.3.3.1. Sintering/densification/grain growth  (pp. 819-820) | html | pdf |
        • 7.8.3.3.2. Reaction mechanisms/sequence  (pp. 820-821) | html | pdf |
        • 7.8.3.3.3. Kinetics and reaction rate  (pp. 821-822) | html | pdf |
        • 7.8.3.3.4. Transformation toughening  (p. 822) | html | pdf |
        • 7.8.3.3.5. Degradation/corrosion of ceramics  (pp. 822-824) | html | pdf |
        • 7.8.3.3.6. Glass ceramics (crystallization processes)  (p. 824) | html | pdf |
        • 7.8.3.3.7. Microstructure evolution  (p. 824) | html | pdf |
        • 7.8.3.3.8. Bulk modulus/compressibility  (pp. 824-825) | html | pdf |
    • 7.8.4. Summary  (p. 825) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 7.8.1. Fine/advanced ceramic areas for focus (Musikant, 1991)  (p. 805) | html | pdf |
      • Fig. 7.8.2. Dielectric resonators used in cellular base stations to store and transmit signals to handheld devices such as cell phones (Vanderah, 2002)  (p. 808) | html | pdf |
      • Fig. 7.8.3. A titanium hip prosthesis, with a ceramic head and polyethylene acetabular cup for bone replacement/implant applications  (p. 810) | html | pdf |
      • Fig. 7.8.4. X-ray powder diffraction patterns of (Bi0.5Na0.5)1−1.5xLaxTiO3 ceramics where x = 0, 0.05, 0.10, 0.15 and 0.20 (Eaksuwanchai et al  (p. 811) | html | pdf |
      • Fig. 7.8.5. (a) A GIXD pattern (bottom) for a pentacene monolayer and a diffraction pattern (top) calculated for an energy-minimized crystal structure model based on the GIXD lattice parameters and the (001) layer motif of bulk pentacene as the starting point  (p. 811) | html | pdf |
      • Fig. 7.8.6. (a) Observed (*) and calculated profile intensities of monoclinic [(\bar 111)] (2θ = 28.2°) and (111) (2θ = 31.5°) and tetragonal (101) (2θ = 30.2°) reflections of sample No  (p. 812) | html | pdf |
      • Fig. 7.8.7. In situ XRD patterns demonstrating the phase transition from amorphous to cubic ZrO2 in a reducing atmosphere  (p. 813) | html | pdf |
      • Fig. 7.8.8. (a) XRD plots of astilleros sediment heat-treated in the range 1273–1423 K (Q quartz; H hematite)  (p. 814) | html | pdf |
      • Fig. 7.8.9. A series of HTXRD patterns for CeNbO4+δ  (p. 815) | html | pdf |
      • Fig. 7.8.10. (a) Magnetic structure exhibiting P12′ symmetry for Ba4Fe2Ti10O27  (p. 815) | html | pdf |
      • Fig. 7.8.11. X-ray patterns of natural hydroxyapatite (HA) of bovine bone fired at (a) 673 K, (b) 873 K, (c) 973 K, (d) 1173 K and (e) 1373 K (Monshi et al  (p. 816) | html | pdf |
      • Fig. 7.8.12. (a) X-ray powder pattern for the sample sintered at 2 GPa and 2073 K  (p. 816) | html | pdf |
      • Fig. 7.8.13. (a) A schematic of a Si3N4 ceramic ball cylindrical volume taken for residual stress measurement  (p. 817) | html | pdf |
      • Fig. 7.8.14. (a) Experimental and Gaussian fitted profile of the {003} diffraction peak of [Ca2CoO3]0.62[CoO2] for various χ angles  (p. 818) | html | pdf |
      • Fig. 7.8.15. Measured and normalized X-ray reflectivity curves for a bare Si substrate, a SAM-terminated Si substrate and a ZrO2/SAM/SiO2/Si thin film with 26.8 nm ZrO2  (p. 819) | html | pdf |
      • Fig. 7.8.16. The average grain size of Al2O3 nanoceramics from an α-Al2O3 nanopowder with a mean particle size of 10 nm pressed at 1120 MPa as a function of the sintering temperature (with a fixed sintering time of 1 h)  (p. 819) | html | pdf |
      • Fig. 7.8.17. Transmission electron microscopy micrographs of Al2O3 nanoceramics from an α-Al2O3 nanopowder with a mean particle size of 10 nm pressed at 1120 MPa and sintered according to two different programmes: (a) sintering at 1723 K for 1 h and then at 1623 K for 34 h; (b) sintering at 1653 K for 1 h and then at 1603 K for 50 h  (p. 820) | html | pdf |
      • Fig. 7.8.18. Synchrotron-radiation powder X-ray diffraction (SR-PXD) spectra of milled Ca(BH4)2–MgF2 under a vacuum with the temperature programme of (i) heating from 298 to 663 K and (ii) dwelling at 663 K for 1 h  (p. 820) | html | pdf |
      • Fig. 7.8.19. Sequential X-ray diffraction patterns of a Ba2YCu3O6+x/CeO2 pellet heat-treated at 1103 K for increasing cumulative time (in minutes)  (p. 821) | html | pdf |
      • Fig. 7.8.20. Plots of intensity versus time1/2 (in minutes1/2) for (a) Ba(Ce1−zYz)O3−x, (213), (b) BaY2CuO5 (131) and (c) Ba2YCu3O6+x (031) for a sample heat-treated at 1083 K  (p. 821) | html | pdf |
      • Fig. 7.8.21. A schematic drawing of a crack and its surrounding transformation zone  (p. 822) | html | pdf |
      • Fig. 7.8.22. Comparison of neutron-diffraction profiles at 423, 573, 773, 973 and 1173 K for 8 mol% yttria-stabilized zirconia  (p. 822) | html | pdf |
      • Fig. 7.8.23. A wine glass plagued by `glass disease'  (p. 823) | html | pdf |
      • Fig. 7.8.24. An optical micrograph (with combined analysis from SEM/EDS) showing the corrosion of a mullite refractory  (p. 823) | html | pdf |
      • Fig. 7.8.25. XRD spectra obtained by the 2θ–θ method and the grazing-angle method (at 1 and 2°)  (p. 823) | html | pdf |
      • Fig. 7.8.26. Monoclinic zirconia contents of (a) Y-TZP and (b) ATZ at different sintering temperatures  (p. 823) | html | pdf |
      • Fig. 7.8.27. X-ray patterns recorded on a powdered sample of an LZSA glass ceramic with a composition of 16.9Li2O–5.0ZrO2–65.1SiO2–8.6Al2O3 in the temperature range 923–1223 K (Montedo et al  (p. 824) | html | pdf |
      • Fig. 7.8.28. SANS spectra for a spinel (MgAl2O4) at λ = 0.9 nm  (p. 824) | html | pdf |
      • Fig. 7.8.29. X-ray diffraction patterns of BaNd2CuO5 measured at 0.1 and 8.7 GPa  (p. 825) | html | pdf |