International
Tables for
Crystallography
Volume I
X-ray absorption spectroscopy and related techniques
Edited by C. T. Chantler, F. Boscherini and B. Bunker

International Tables for Crystallography (2024). Vol. I. ch. 7.4, pp. 867-925
https://doi.org/10.1107/S1574870721011010

Chapter 7.4. Tables and supplementary material for X-ray absorption spectroscopy, pre-edge, XANES and XAFS

Christopher T. Chantlera*

aSchool of Physics, University of Melbourne, Australia
Correspondence e-mail: chantler@unimelb.edu.au

This chapter attempts to address two challenges: to present a representative set of reduced XAFS data sets, including illustrative pre-edge and XANES; and to discuss scientific purposes to which each may – or may not – properly be put, as we understand at the current time. Comparisons of standards of quality and portability of data sets for different purposes are therefore core to this. The user can happily extract ideas, applications or data for their purposes from this selection, and one hopes this chapter can thereby inform data-collection and quality-control procedures that more readily allow a particular experiment to address a particular scientific purpose. The illustrations herein are arranged mainly in time order. The illustrations and discussion included in tables and the online supporting information can be used as guides towards templates for XAFS, XANES and pre-edge data standards in CIF, eFEFFit or iFEFFit formats.

Keywords: XAFS data; XANES data; data quality.

1. Introduction

X-ray diffraction and crystallography in general have for a long time defined standards for reporting crystal and diffraction data, allowing these to be checked automatically according to important criteria to judge the suitability, accuracy and self-consistency of the data with the scientific result that was sought and is claimed in a publication. X-ray absorption spectroscopy (XAS) and X-ray fluorescence spectroscopy (XFS) or X-ray emission spectroscopy (XES) have been developing in this respect, and it is the intention of this chapter to discuss and illustrate some of the opportunities, needs and requirements to develop this further, especially for X-ray absorption fine structure (XAFS) studies, X-ray absorption near-edge structure (XANES) studies and pre-edge studies.

The illustrations herein are clearly only a selection, which one hopes will nonetheless be useful and lead to further development and discussion. Since there are several thousand XAFS and XANES publications a year, there is no possibility that this can or should be exhaustive. Many publications do not provide reduced data in a form that is portable for other researchers to use, and in addition the dominant modes of presentation are χ(k) versus k plots or transformed χ(r) versus r plots, thus representing the data after extensive reduction and transformation, and without presentation of the uncertainties. For most purposes, these studies have made many assumptions regarding the science which could and should be questioned, including uncertainties, grid spacing, background subtraction, normalization, interpolation, definition of edge energy and spline fitting, among others. Less common are publications with plots of scaled or normalized μ versus E values or [μ/ρ] versus E values. For many purposes there remains a critical need for tabulations of pre-processed data which can be ported to and from a database, preferably with defined uncertainties. The present chapter might hopefully encourage further work towards this goal.

2. Pre-synchrotron and early synchrotron studies. Purpose – XAFS: developing ideas of spherical wavefronts and phase offsets, presenting processed figures and illustrations

XAFS began with local sources (Fricke, 1920[link]; Kievit & Lindsay, 1930[link]; Lindsay, 1931[link]; Coster & Veldkamp, 1931[link]; Lytle, 1965[link], 1966[link]; Lytle et al., 1975[link]), but it was soon understood that synchrotron sources would dominate for the acquisition of high-flux, high-precision data sets (Lapeyre et al., 1983[link]; Doniach et al., 1997[link]; Lynch, 1997[link]). Indirectly, this focus led to the development of some standard practices at synchrotron beamlines for sample preparation and data collection (Newville, 2004[link]; Bunker, 2010[link]). In early publications there are few tables. Papers report plots, usually without supplementary material, e.g. Chantler et al. (2001c). There tended to be individual, personal collections of spectra of mixed statistical quality and characterization, including the Farrel Lytle database (http://ixs.iit.edu/database/data/Farrel_Lytle_data ) and spectral profiles of Wong (1999)[link] used as standards by numerous beamlines, but without absolute calibration. [Note that the results of Wong (1999) have a very fine grid giving the local structure with greater detail than most published results. These data, after scaling to give absolute results, are excellent for testing reproducibility of structure in XAFS.] Following the pioneers and founders of the modern XAFS data collection and analysis techniques, different beamlines developed raw or fully processed reference data sets, usually for their internal processes and usually not suitable for cross-portability. This early work and history was discussed recently by Chantler et al. (2018[link]).

3. Early work with the purpose of determining absolute attenuation coefficients

The International Union of Crystallography (IUCr) and the extended XAFS community began to develop a series of recommendations of methodology, in separate works and meetings and as part of the IUCr Attenuation Project. This produced a number of excellent works by Barnea, Creagh and others (Mika et al., 1985[link]; Creagh & Hubbell, 1987[link], 1990[link]), particularly focused on attenuation on the one hand, and on processed data on the other hand, as synchrotron science developed.

Some work, translated from high-accuracy fields, focused on the determination of absolute coefficients of attenuation or photoelectric absorption for ideal systems, with the early development of the X-ray extended range technique (XERT), such as shown in Table 2 (Gerward et al., 1989[link], 1981[link]; Chantler et al., 2001a[link]).

A particular purpose of these studies was to compare these data with recent theoretical tabulations of mass attenuation coefficients, mass absorption coefficients and atomic form factors, including comparisons with data from XCOM (Scofield, 1973[link]; Berger & Hubbell, 1987[link]; Gerward et al., 2004[link]), FFAST (Chantler, 1995[link], 2000[link]; Chantler et al., 2000[link]), International Tables for Crystallography Volume C (Creagh, 1999[link]) and other tabulations (Hubbell & Øverbø, 1979[link]; Schaupp et al., 1983[link]). The data were also compared with experimental data and mixed experimental–theoretical tabulations and databases of elemental attenuation coefficients (Hubbell et al., 1980[link]; Hubbell, 1994[link], 1996[link]; Perkins et al., 1991[link]; Henke et al., 1993[link]; Cullen et al., 1997[link]) and to individual measurements (Wang et al., 1992[link]; Sandiago et al., 1997[link]; Stanglmeier et al., 1992[link]). This effort culminated in achieving accuracies of attenuation coefficients to 0.27% with reproducibility (precision) to 0.02%. For many materials, and even for reference materials, a typical best level of accuracy is no better than 1–15% even now (2024). This led very clearly to a call for a round-robin project to investigate data quality, reproducibility, cross-portability, optimized experimental methodologies and analytic approaches (Chantler et al., 2018[link]).

Comparison was made of the X-ray absorption fine structure, at least in the XANES region, with data (Wong, 1999[link]; Aberdam et al., 1980[link]) and theory (Joly et al., 1999[link]; Joly, 2001[link]). A key issue during this period was the selection of an optimal thickness of material or ideal foil (Chantler et al., 2001a[link]) and the optimization of this remains ongoing. A good statistical accuracy of the data can be obtained over a wide range of thicknesses ([0.5\leq\left[{{\mu} / {\rho}}\right]\left[\rho t\right]\leq 6]) with similar data-collection times, well beyond the Nordfors attenuation criterion ([2\leq\left[{{\mu} / {\rho}}\right]\left[\rho t\right]\leq 4]) (Nordfors, 1960[link]; Creagh & Hubbell, 1987[link]; Chantler et al., 2001a[link]). However, it is well known that dominant systematic errors arise either for thin or for thick samples. The nature of different systematic effects and errors and the magnitudes of corrections are a key theme of this volume of International Tables for Crystallography. An early conclusion was that multiple samples across a range of thicknesses will best achieve an accurate result in the face of common systematic errors.

For more recent work, see the remainder of this chaper and other chapters in this volume. One should also note the current joint efforts of the round-robin collaboration of the IUCr Commission on XAFS and the International XAFS Society (Chantler et al., 2018[link]), the compilation efforts of the Japanese XAFS Society (Asakura et al., 2018[link]) and the IXAS Lytle compendium (http://ixs.iit.edu/database/ ), restricted or open local synchrotron databases (http://cars.uchicago.edu/xaslib/search , https://sp8dr.spring8.or.jp/portal/dspace , https://www.esrf.eu/home/UsersAndScience/Experiments/XNP/ID21/php.html ), an ongoing effort to aggregate experimental spectra within the XAS part of the Materials Genome Initiative (Strange & Feiters, 2008[link]; Chantler et al., 2019[link]), and the recent development of immense populations of theoretical spectra that are being created, (usually) catalogued and made public, typically with the goal of use in machine-learning applications (Timoshenko et al., 2017[link], 2018[link]; Mathew et al., 2018[link]; Zheng et al., 2018[link]; Guda et al., 2019[link], 2020[link]; Martini et al., 2020[link]).

4. Summary of data sets featured in this chapter and their purposes

All the data sets discussed herein are appropriate for use as reference standards and for calibration purposes, and all formats are suitable for deposition – indeed all have been deposited in these forms. However, discussions within the international community, the International XAFS Society, the IUCr Commission on XAFS and the Q2XAFS meetings, and the associated reports have led to the recommendation of text-based and computer-readable forms, in particular the .dat (eFEFFit or iFEFFit) or .cif formats described in later sections. All of the data sets are available as supplementary files at https://it.iucr.org/I as specified in each section below. Some of these data sets have been measured following the principles of XERT; some following hybrid methodology [as explained in Chapter 3.14 (Best & Chantler, 2024)[link]].

Some are primarily useful for measurement and determination of the mass attenuation coefficient, the mass absorption coefficient and the imaginary component of the (atomic) form factor. These XAS studies and data sets are also particularly useful for investigating theory and for comparison with form factors in crystallographic and attenuation databases. In general these data sets attempt to quantify an uncertainty in the X-ray energy, an uncertainty in the absolute value of the mass attenuation, a pointwise uncertainty in the mass attenuation coefficient, an uncertainty in the extracted mass absorption coefficient, and hence in the imaginary component of the (atomic) form factor. Near any absorption edge any extracted form factor is just that – solid-state effects typically exceed 1% and hence the accuracy of the form factor in an atomic sense is reduced. Far from an edge and in particular well above the K edge, the form factor has been shown to be accurate as an atomic form factor to within 1%.

A subset of these data sets are suitable or ideal for XAFS investigation, and are indicated as such in Table 1[link]. This selection is illustrative and personal. It includes XAS data sets (i.e. absorption or transmission spectra) and fluorescence XAS data sets (labelled XFS to avoid confusion with the characteristic fluorescence spectra, but note that these both follow second-order Hamiltonian operators and selection rules instead of first order as for absorption/transmission XAS spectra). Most relate to K-edge XAFS, but some cover regions away from any edges, some cover L edges and some cover an edge but with sparse or limited energy steps in the XANES or XAFS region. The data sets cover examples of K-edge spectra, L-edge spectra, metal foils, elemental crystals, binary crystals, dilute solutions and cryostatic measurements.

Table 1
A checklist of corrections and purposes for the data sets featured in this chapter

Column (A): dark-current correction? Column (B): blank measurement normalization for XERT or solvent measurement normalization for hybrid method? Column (C): fluorescence correction for XAS data; absorption and self-absorption correction for fluorescence data? Column (D): energy calibration? Column (E): absolute measurement/calibration? Column (F): harmonics determination and correction? Column (G): bandwidth determination and correction? Column (H): roughness determination and correction? (See Section 4[link] for more details on each of these.)

Section for this data set; substance or material; [edge(s) measured]TablesFiguresE (keV)ReferenceXAS?XAFS?(A)(B)(C)(D)(E)(F)(G)(H)
(5), Cu metal 2–4   8.9–20.0 Chantler et al. (2001a[link]) XAS Y Y Y Y Y Y N N
(6), Si crystal 5, 6   5.0–20.0 Tran et al. (2003c[link]) XAS Y Y Y Y Y Y N N
(7), Ag metal 7, 8 1 15.3–49.9 Tran et al. (2005[link]) XAS `K' Y Y Y Y Y Y N N
(8), Mo metal 9, 10 2 13.5–41.5 de Jonge et al. (2005[link]) XAS K Y Y Y Y Y Y Y Y
(9), Sn metal 11, 12 3 29.0–60.1 de Jonge et al. (2007[link]) XAS K Y Y Y Y Y Y Y Y
(10), Cu metal 13–15   5.0–20.1 Glover et al. (2008[link]) XAS K Y Y Y Y Y Y Y Y
(11), Zn metal 16   7.2–15.2 Rae et al. (2010a[link]) XAS Y Y Y Y Y Y Y Y
(12), Au metal 17   38.0–49.9 Islam et al. (2010b[link]) XAS Y Y Y Y Y Y N N
(13), Au metal 18, 19 4, 5 14.2–21.1 Glover et al. (2010[link]) XAS LI Y Y Y Y Y Y N Y
(14), Ag metal 20   5.0–20.1 Islam et al. (2014[link]) XAS Y Y Y Y Y Y N Y
(15), Ag metal 21 6, 7 11.0–28.1 Tantau et al. (2015[link]) XAS K Y Y Y Y Y Y Y N
(16), 15 mM i-pr Ni [Ni] 22–24 8–14 7.02–9.52 Chantler et al. (2015[link]) XAS K Y Y Y Y Y Y N N
(16), 1.5 mM i-pr Ni [Ni]     8.10–9.02 Chantler et al. (2015[link]) XAS K Y Y Y Y Y Y N N
(16), 15 mM n-pr Ni [Ni]     7.92–9.52 Chantler et al. (2015[link]) XAS K Y Y Y Y Y Y N N
(17), 15 mM Fc [Fe] 25–28 15–19 6.91–9.01 Islam et al. (2016[link]) XAS K Y Y Y Y Y Y N N
(17), 3 mM Fc [Fe]     6.91–7.80 Islam et al. (2016[link]) XAS K Y Y Y Y Y Y N N
(17), 15 mM DMFc [Fe]     7.01–8.52 Islam et al. (2016[link]) XAS K Y Y Y Y Y Y N N
(17), 3 mM DMFc [Fe]     7.01–8.52 Islam et al. (2016[link]) XAS K Y Y Y Y Y Y N N
(18), 15 mM n-pr Ni [Ni] 29 20, 21 7.91–9.52 Schalken & Chantler (2018[link]) XAS K Y Y Y Y Y Y N N
(19), 15 mM n-pr Ni [Ni] 30, 31 22, 23 8.14–9.32 Trevorah et al. (2019[link]) XFS K Y Y Y Y Y Y
(19), 15 mM i-pr Ni [Ni]     8.14–9.32 Trevorah et al. (2019[link]) XFS K Y Y Y Y Y Y
(20), ZnSe crystal [Zn, Se] 32, 33 24–27 6.82–15.07 Sier et al. (2020[link]) XAS K Y Y Y Y Y Y Y N
(21), Zn metal 34, 35 28–30 8.51–11.59 Ekanayake et al. (2021a[link]) XAS K Y Y Y Y Y Y Y Y
Based around the K edge but not directly including the edge region.

Checklist-style columns in Table 1 are given for key aspects of data collection, analysis and possible sources of systematic errors. More details on these are provided below.

Column (A). All detectors have a dark current or signal in the absence of the beam, which is usually energy-dependent and time-dependent during an experiment. Regular dark-current measurements are generally critical for assessing detector linearity and accuracy for all samples, but particularly for thicker foil or solution samples. This requires regular measurement during a long data collection method or if the sample is relatively thick. This is characterized and corrected for in all these data sets (Chantler et al., 2001a[link]).

Column (B). Beamlines always have windows, air paths and an upstream detector, so it is important to regularly measure a `blank' or take measurements with the sample absent to correct for background attenuation, especially in transmission measurements. For solutions one should use a solvent blank or cell to calibrate the sample. All these data sets have been corrected for this.

Column (C). For absorption measurements, what is actually measured is always attenuation with feedback from fluorescence into upstream and downstream detectors, so this should be measured and corrected for to obtain the actual attenuation (and from thence to be able to obtain the absorption coefficient to compare with theory) (Chantler et al., 2001b[link]). Conversely, for fluorescence measurements (XFS) the absorption and self-absorption corrections are often dominant and it is important to make these corrections before, for example, applying a spline to extract χ versus k values (Chantler et al., 2012b[link]; Trevorah et al., 2019[link]).

Column (D). If the data are not to have an arbitrary energy fitting offset they need to be calibrated using reference materials and not just a single edge (Rae et al., 2010c[link]; Tantau et al., 2014[link]). Where the energy or an uncertainty is determined, it has often been the case that a single reference edge defined by an inflection point defines a possible energy or energy offset with unknown error or uncertainty of the slope or the range of XAS. The energy and uncertainty can be defined directly by crystal or powder diffraction, or by multiple inflection points of reference materials; these each have their own accuracies and limitations.

Column (E). In the same manner, if the value of the attenuation or absorption is to be compared with theory or used to define the absorption profile with energy, it is important to characterize the samples both in the beam and off site, especially to measure and quantify distortions of amplitudes as a function of k (de Jonge et al., 2004a[link]; Islam et al., 2010a[link]; Rae et al., 2010b[link]).

Column (F). Harmonics affect the measured attenuation and absorption coefficients, especially in the upstream and downstream ion chambers and for thicker samples. In XFS, harmonics affect the upstream detector, but with suitable choice of regions of interest harmonics should not directly affect the fluorescence detector (Tran et al., 2003a[link], 2004b[link]; Glover & Chantler, 2009[link]).

Column (G). The synchrotron bandwidth at the sample or upstream and downstream detectors particularly broadens the edge, pre-edge and white line at the beginning of the XANES, so acts somewhat like an augmented hole width, except that it is most significant in a critical region for chemical fingerprinting (de Jonge et al., 2004b[link]; Sier et al., 2020[link]).

Column (H). Sample roughness affects transmission measurements especially as a function of attenuation, so distorts high-k versus low-k oscillations and pre-edge versus above-edge structure (Glover et al., 2009[link]; Ekanayake et al., 2021a[link]).

The form of the material and factors like the temperature dictate the dominant systematic effects to be investigated or corrected for; there is certainly more than one approach to estimating an uncertainty or error or correcting for it. For an ideal solid metal foil, the blank normalization is particularly important for transmission (XAS) measurements; for a dilute liquid or frozen solution, the solvent measurement normalization is particularly critical for transmission (XAS) measurements; and for a fluorescence measurement (XFS), the absorption and self-absorption effects may be dominant. Some uncertainties may inevitably be unmeasured or unaccounted for or unknown. When a data set is deposited in a database or used as the basis of a study, these uncertainties should be noted where they may be significant. Whilst a summary checklist is provided in Table 1[link], there are potentially several other sources of systematic errors, including monochromator drift, Bragg glitches, thermal diffuse scattering etc., which may be important contributions in particular data sets.

In general, the data sets that are described in Sections 5 to 17 were presented as tables in pdf format in the associated publications, or deposited as text files and readme files (Section 8[link]), or deposited as sets of pdfs of tabulated data of results (Sections 16[link] and 17[link]). However, from Section 18[link] onwards (starting around 2018), following the work of Q2XAFS and the joint work of the IUCr Commission on XAFS and the International XAFS Society, it was seen to be important to develop some standard formats of data sets for direct input into XANES and XAFS fitting packages. Section 18[link] provides minimal examples of these for mu2chi, iFEFFit and eFEFFit. These examples were later developed much further, as described in the last sections of this chapter, to recommended formats for CIF and eFEFFit/iFEFFit.

5. Copper foils, 8.9–20.0 keV. XAS: systematic errors, portability and theory

The publication by Chantler et al. (2001a)[link] is representative of some achievements of this early period (Table 2[link]). The grid was designed for attenuation measurement and accuracy; with 84 points across an 11 keV energy range, the grid is far too coarse for XAFS or to determine any XAFS nanostructure. Nonetheless, it illustrates the need to provide an uncertainty in the energy E, the mass attenuation [μ/ρ] and the extracted form factors f′′. This work investigated ideal copper metal foils, and used data from foils of nominal thicknesses of 5 µm, 10 µm, 15 µm, 20 µm, 30 µm and 100 µm, using at least three foils at each energy whether above or below the edge. Typical accuracies were 0.27% to 0.467%, i.e. well below 1%, which had proven nearly impossible to achieve before. The precision (reproducibility) was 0.024% to 0.58%, the latter typically at the rising slope of the edge, as expected. This enabled a range of studies of systematic errors, statistics at a typical synchrotron beamline, harmonic determination and direct observation of fluorescence in XAS measurements. Despite the sparseness of this XAFS data set, it could be modelled and provided insight for more advanced theory on XAFS (Witte et al., 2006[link]; Bourke & Chantler, 2010a[link]) and photoelectron inelastic mean free paths (Bourke et al., 2007[link]). The data are available in the supporting information to this chapter as file bz5029sup1.pdf.

Table 2
Copper, 8.9–20.0 keV (Chantler et al., 2001a[link]): copper bulk metal foil attenuation coefficients [\left[{{\mu} / {\rho}}\right]] (cm2 g−1) and the imaginary part of the atomic form factors f′′ with uncertainties

Notes. (a) Precision, from repeated measurements at the same energies to give the reproducibility of the measurement (σμ,se is the standard error). (b) Absolute standard error uncertainty in calibrated energy. (c) Percentage accuracy in sample thickness determination. (d) Percentage precision including uncertainty due to impurity, in quadrature. (e) [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}} = \sigma_{\mu,{\rm se}}+\mu_{i}]. (f) Final percentage accuracy. (g) f′′, after subtraction of scattering contribution following FFAST (Chantler, 1995[link]). (h) f′′, after subtraction of scattering contribution following XCOM (Hubbell et al., 1980[link]).

E (keV)σE †  (eV)[μ/ρ] (cm2 g−1)σμ, se (%) [Note (a)]σt (%) [Note (b)][\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%) [Note (c)][\sigma_{\left[{{\mu} / {\rho}}\right]}] (%) [Note (d)]f′′FFAST (e atom−1) [Note (e)]f′′XCOM (e atom−1) [Note (f)][\sigma_{f^{\prime\prime}}] (e atom−1)
8.8709 1.02 37.989 0.063 0.332 0.064 0.338 0.4861 0.4866 0.0016
8.9722 0.60 39.368 0.037 0.332 0.037 0.334 0.5089 0.5095 0.0017
8.9824 0.56 174.797 0.585 0.332 0.585 0.673 2.3570 2.3564 0.0159
9.0025 0.49 301.251 0.468 0.332 0.468 0.574 4.0711 4.0699 0.0234
9.0125 0.45 299.160 0.264 0.332 0.264 0.424 4.0473 4.0462 0.0172
9.0225 0.42 280.720 0.072 0.332 0.072 0.340 3.8020 3.8009 0.0129
9.0326 0.38 315.383 0.175 0.332 0.175 0.375 4.2762 4.2750 0.0160
9.0426 0.35 285.828 0.151 0.332 0.151 0.365 3.8797 3.8787 0.0142
9.0526 0.33 289.036 0.132 0.332 0.132 0.357 3.9275 3.9265 0.0140
9.0627 0.30 295.361 0.070 0.332 0.071 0.340 4.0179 4.0169 0.0136
9.0727 0.28 308.366 0.220 0.332 0.220 0.398 4.1994 4.1983 0.0167
9.0827 0.27 311.230 0.312 0.332 0.312 0.456 4.2430 4.2420 0.0193
9.0928 0.26 290.999 0.071 0.332 0.072 0.340 3.9715 3.9706 0.0135
9.1029 0.26 277.705 0.202 0.332 0.202 0.389 3.7943 3.7934 0.0147
9.1129 0.26 285.118 0.265 0.332 0.265 0.425 3.8998 3.8989 0.0166
9.1229 0.28 293.393 0.162 0.332 0.162 0.369 4.0173 4.0164 0.0148
9.1325 0.30 305.582 0.346 0.332 0.346 0.480 4.1886 4.1877 0.0201
9.1828 0.40 290.361 0.127 0.332 0.127 0.355 4.0016 4.0008 0.0142
9.2329 0.30 283.693 0.068 0.332 0.068 0.339 3.9308 3.9301 0.0133
9.2833 0.39 279.171 0.068 0.332 0.068 0.339 3.8890 3.8884 0.0132
9.3334 0.33 270.757 0.030 0.332 0.030 0.333 3.7919 3.7914 0.0126
9.3836 0.33 267.573 0.093 0.332 0.093 0.345 3.7673 3.7668 0.0130
9.4338 0.33 261.422 0.056 0.332 0.056 0.337 3.7001 3.6998 0.0125
9.6343 0.34 245.000 0.083 0.332 0.083 0.342 3.5406 3.5405 0.0121
9.8349 0.31 229.967 0.062 0.332 0.063 0.338 3.3918 3.3918 0.0115
9.8356 0.29 230.996 0.068 0.332 0.068 0.339 3.4072 3.4072 0.0115
10.0362 0.38 217.705 0.059 0.332 0.060 0.337 3.2759 3.2760 0.0111
10.4387 0.30 195.954 0.039 0.332 0.040 0.334 3.0656 3.0658 0.0103
10.6410 0.17 186.096 0.014 0.332 0.015 0.332 2.9671 2.9674 0.0099
10.8417 0.34 176.827 0.043 0.332 0.043 0.335 2.8719 2.8722 0.0096
11.0433 0.34 168.259 0.017 0.332 0.017 0.332 2.7830 2.7832 0.0093
11.2451 0.58 160.321 0.045 0.332 0.045 0.335 2.6996 2.6998 0.0090
11.4464 0.64 152.792 0.030 0.332 0.030 0.333 2.6184 2.6185 0.0087
11.6479 0.73 145.906 0.063 0.332 0.063 0.338 2.5438 2.5439 0.0086
11.8489 0.74 139.292 0.026 0.332 0.027 0.333 2.4699 2.4700 0.0082
12.0510 0.71 133.237 0.020 0.332 0.020 0.333 2.4023 2.4023 0.0080
12.4533 0.72 121.921 0.048 0.332 0.048 0.335 2.2706 2.2705 0.0076
12.6555 0.94 116.835 0.045 0.332 0.046 0.335 2.2107 2.2105 0.0074
12.8570 0.98 111.836 0.075 0.332 0.075 0.340 2.1493 2.1491 0.0073
13.0586 1.17 107.355 0.047 0.332 0.048 0.335 2.0950 2.0947 0.0070
13.2595 0.91 102.906 0.056 0.332 0.056 0.337 2.0387 2.0383 0.0069
13.4607 0.95 98.892 0.045 0.332 0.046 0.335 1.9884 1.9880 0.0067
13.6624 0.91 94.917 0.052 0.332 0.052 0.336 1.9366 1.9362 0.0065
13.8635 1.05 91.348 0.054 0.332 0.054 0.336 1.8908 1.8903 0.0064
14.0651 1.02 87.914 0.024 0.332 0.025 0.333 1.8457 1.8452 0.0061
14.2668 1.13 84.635 0.024 0.332 0.025 0.333 1.8020 1.8013 0.0060
14.4680 1.06 81.430 0.075 0.332 0.075 0.340 1.7577 1.7570 0.0060
14.6698 1.31 78.555 0.036 0.332 0.036 0.334 1.7190 1.7181 0.0057
14.8711 1.47 75.598 0.087 0.332 0.088 0.343 1.6765 1.6756 0.0058
15.0727 1.31 73.016 0.042 0.332 0.042 0.335 1.6407 1.6399 0.0055
15.2741 1.16 70.361 0.053 0.332 0.053 0.336 1.6019 1.6009 0.0054
15.4762 0.62 68.049 0.011 0.332 0.012 0.332 1.5694 1.5683 0.0052
15.4764 0.75 67.962 0.070 0.332 0.070 0.339 1.5674 1.5663 0.0053
15.5776 0.91 66.765 0.036 0.332 0.036 0.334 1.5496 1.5486 0.0052
15.6768 0.70 65.683 0.007 0.332 0.009 0.332 1.5340 1.5330 0.0051
15.6768 0.70 65.702 0.012 0.332 0.013 0.332 1.5345 1.5334 0.0051
15.6773 1.46 65.713 0.097 0.299 0.097 0.314 1.5348 1.5337 0.0048
15.8795 1.26 63.409 0.080 0.299 0.081 0.310 1.4997 1.4986 0.0046
16.0817 1.46 61.365 0.072 0.299 0.074 0.308 1.4694 1.4683 0.0045
16.2832 0.87 59.271 0.067 0.299 0.068 0.307 1.4367 1.4355 0.0044
16.4854 1.28 57.361 0.107 0.299 0.108 0.318 1.4073 1.4061 0.0045
16.6875 1.29 55.420 0.058 0.299 0.060 0.305 1.3760 1.3747 0.0042
16.8892 1.10 53.730 0.068 0.299 0.069 0.307 1.3499 1.3485 0.0041
17.0915 1.36 51.960 0.093 0.299 0.094 0.313 1.3207 1.3193 0.0041
17.2929 1.17 50.392 0.072 0.299 0.073 0.308 1.2956 1.2941 0.0040
17.4954 1.45 48.758 0.074 0.299 0.075 0.308 1.2680 1.2664 0.0039
17.6967 0.64 47.393 0.023 0.299 0.026 0.300 1.2464 1.2447 0.0037
17.6967 0.64 47.401 0.048 0.299 0.050 0.303 1.2466 1.2449 0.0038
17.6972 1.26 47.337 0.055 0.271 0.056 0.277 1.2450 1.2432 0.0034
17.8995 1.75 45.875 0.063 0.271 0.064 0.278 1.2200 1.2182 0.0034
18.1004 0.99 44.519 0.042 0.271 0.044 0.275 1.1969 1.1951 0.0033
18.3022 1.03 43.158 0.068 0.271 0.069 0.280 1.1729 1.1711 0.0033
18.5049 1.37 41.913 0.042 0.271 0.044 0.275 1.1514 1.1495 0.0032
18.7054 0.82 40.723 0.031 0.271 0.034 0.273 1.1306 1.1286 0.0031
18.7054 0.82 40.725 0.023 0.271 0.027 0.272 1.1306 1.1286 0.0031
18.7060 1.02 40.682 0.043 0.271 0.045 0.275 1.1295 1.1275 0.0031
18.9061 1.17 39.494 0.050 0.271 0.051 0.276 1.1079 1.1059 0.0031
19.1049 1.53 38.372 0.028 0.271 0.031 0.273 1.0874 1.0853 0.0030
19.3001 1.74 37.318 0.023 0.271 0.027 0.272 1.0681 1.0660 0.0029
19.4919 2.37 36.301 0.018 0.271 0.022 0.272 1.0491 1.0468 0.0029
19.6777 3.14 35.373 0.066 0.271 0.067 0.279 1.0318 1.0295 0.0029
19.8558 4.01 34.525 0.012 0.271 0.017 0.272 1.0159 1.0135 0.0028
20.0286 0.84 33.761 0.034 0.271 0.037 0.274 1.0018 0.9994 0.0027
20.0286 0.84 33.750 0.023 0.271 0.026 0.272 1.0015 0.9991 0.0027

Table 3[link] illustrates the discussion of specific sources of uncertainty and systematic errors and their dominant or typical contribution in different regions of the spectrum, leading towards the detailed tabulation. In principle, this provides a basis for cross-portability between beamlines, samples or data sets. Table 4[link] illustrates the use of powder diffraction standards to calibrate the monochromated energy at the sample, in the potential presence of variations due to monochromator heat load, hysteresis, drift or detuning.

Table 3
Copper, 8.9–20.0 keV: uncertainties (standard errors) of the mass attenuation coefficient [μ/ρ], the photoelectric (mass absorption) coefficient [\left[{{\mu} / {\rho}}\right]_{\rm pe}] and f′′ (Chantler et al., 2001a[link])

 % Contribution, ±1 standard deviation 
Source of uncertaintyNear edge, ∼9 keVAbove edge, 12–20 keVNotes
Energy drift (on edge) 0.04–0.59   ±0.003% to ±0.011% in energy
Monochromator hysteresis   <0.06 δE = 1–4 eV at 19–20 keV
Energy calibration elsewhere 0.01–0.03 0.01–0.03 ±0.003% to ±0.009% in energy
Overall system statistics 0.02 0.02 Reproducibility without sample
       
Experimental precision 0.03–0.59 0.007–0.107 Including above contributions
Sample thickness 0.33 0.27 With δρ = 0.04% and thickness transfer uncertainty
       
Impurity contamination 0.002–0.01 0.002–0.01  
Oxidation <0.025 <0.003 ±35 Å
Detector linearity and harmonic contamination <0.03 <0.03  
Scattering 0.01 0.02 From theory and aperture tests
       
Rayleigh scattering (for [\left[{{\mu} / {\rho}}\right]_{\rm pe}] and f′′) 0.075 0.15 Variation in theory

Table 4
Copper, 8.9–20.0 keV: energy calibration

Weighted sum and uncertainty of energies using Si and LaB6 powder diffraction samples (uncertainties [\sigma\times\sqrt{{\chi^{2}_{\rm r}}}]) (Chantler et al., 2001a[link]).

SiLaB6Final average
[E_{w = \sigma\left({\chi^{2}_{\rm r}} \right)^{1/2}}] (keV)[\sigma\left({\chi^{2}_{r}} \right)^{1/2}] (eV)[E_{w = \sigma\left({\chi^{2}_{\rm r}} \right)^{1/2}}] (keV)[\sigma\left({\chi^{2}_{r}} \right)^{1/2}] (eV)[E_{w = \sigma\left({\chi^{2}_{\rm r}} \right)^{1/2}}] (keV)[\sigma\left({\chi^{2}_{\rm r}} \right)^{1/2}] (eV)
8.9817 0.38 8.9828 0.35 8.9823 0.56
9.1322 0.40 9.1328 0.35 9.1325 0.29
10.0386 1.23 10.0361 0.19 10.0362 0.37
11.0429 0.39 11.0433 0.16 11.0432 0.14
12.0500 0.37 12.0515 0.26 12.0510 0.70
13.0575 0.45 13.0588 0.26 13.0585 0.56
14.0638 0.40 14.0659 0.30 14.0651 1.01
15.6762 0.36 15.6776 0.39 15.6768 0.70
17.6959 0.59 17.6972 0.51 17.6967 0.64
18.7043 0.61 18.7060 0.47 18.7054 0.82
20.0279 0.55 20.0296 0.62 20.0286 0.84

6. Silicon crystals, 5–20 keV. XAS: systematic errors, portability and theory

Another key example was presented in the work by Tran et al. (2003b[link],c)[link] on silicon crystal samples (Table 5[link]). In the X-ray energy range 5–20 keV there is no silicon edge and no XAFS, so this is both an XAS study and a study of attenuation coefficients and elemental form factors. The data are available in the supporting information to this chapter as file bz5029sup2.pdf. There were 123 measured data points.

Table 5
Silicon crystals, 5–20 keV (Tran et al., 2003b[link],c[link]): mass attenuation coefficients [μ/ρ] and the imaginary part of the atomic form factor f′′ versus E

Energy values marked with an asterisk are directly measured energies. Estimated uncertainties: σE – absolute uncertainty in calibrated energy (one standard error); [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] – percentage precision of repeated measurements (one standard error); σt – percentage accuracy in sample thickness determination; [\sigma_{\left[{{\mu} / {\rho}}\right]}]: total percentage accuracy in measured [μ/ρ]. f′′FFAST – after subtraction of scattering contribution following FFAST (Chantler, 1995[link]). f′′XCOM: after subtraction of scattering contribution following XCOM (Berger & Hubbell, 1987[link]; Hubbell et al., 1975[link]); [\sigma_{f^{\prime\prime}}] – absolute uncertainty in f′′.

E (keV)σE (eV)[μ/ρ] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)σt (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (%)f′′FFAST (e atom−1)f′′XCOM (e atom−1)[\sigma_{f^{\prime\prime}}] (e atom−1)
5.0146* 1.52 244.247 0.321 0.139 0.350 8.170E-01 8.170E-01 2.856E-03
5.1133 1.31 231.275 0.292 0.139 0.323 7.888E-01 7.888E-01 2.551E-03
5.2126 1.29 218.775 0.327 0.139 0.356 7.606E-01 7.606E-01 2.705E-03
5.3120 1.30 207.209 0.313 0.139 0.343 7.341E-01 7.341E-01 2.516E-03
5.4116 1.30 197.271 0.307 0.139 0.337 7.119E-01 7.119E-01 2.399E-03
5.5113 1.28 186.718 0.316 0.139 0.345 6.862E-01 6.862E-01 2.369E-03
5.6115 1.24 177.229 0.319 0.139 0.348 6.632E-01 6.631E-01 2.305E-03
5.7111 1.19 168.356 0.145 0.139 0.200 6.411E-01 6.411E-01 1.285E-03
5.8111 1.13 159.869 0.138 0.139 0.195 6.194E-01 6.194E-01 1.210E-03
6.0110* 1.02 145.860 0.164 0.139 0.215 5.845E-01 5.845E-01 1.255E-03
6.1110 0.98 139.672 0.084 0.139 0.162 5.690E-01 5.689E-01 9.236E-04
6.2110 0.94 133.244 0.044 0.139 0.145 5.516E-01 5.516E-01 8.023E-04
6.3110 0.90 127.224 0.036 0.139 0.143 5.351E-01 5.351E-01 7.664E-04
6.4110 0.88 121.450 0.030 0.139 0.142 5.189E-01 5.189E-01 7.366E-04
6.5110 0.87 116.141 0.043 0.139 0.145 5.039E-01 5.039E-01 7.312E-04
6.6110 0.86 111.117 0.012 0.139 0.139 4.895E-01 4.895E-01 6.812E-04
6.7110 0.88 106.360 0.030 0.139 0.142 4.756E-01 4.755E-01 6.748E-04
6.8110 0.90 101.882 0.017 0.139 0.140 4.623E-01 4.623E-01 6.457E-04
6.9110 0.93 97.644 0.029 0.139 0.142 4.495E-01 4.495E-01 6.372E-04
7.0110* 0.97 93.625 0.021 0.139 0.140 4.372E-01 4.372E-01 6.131E-04
7.0110 0.97 93.578 0.020 0.139 0.140 4.370E-01 4.370E-01 6.123E-04
7.1117 0.87 89.788 0.057 0.139 0.150 4.253E-01 4.253E-01 6.384E-04
7.2061 0.80 86.627 0.009 0.139 0.139 4.157E-01 4.157E-01 5.777E-04
7.3131 0.76 83.143 0.144 0.139 0.200 4.049E-01 4.049E-01 8.099E-04
7.4138* 0.78 79.884 0.022 0.139 0.140 3.943E-01 3.943E-01 5.536E-04
7.5134 0.74 76.856 0.121 0.139 0.184 3.844E-01 3.844E-01 7.071E-04
7.6130* 0.35 73.826 0.080 0.139 0.160 3.741E-01 3.741E-01 5.980E-04
7.6130 0.35 73.827 0.052 0.139 0.148 3.741E-01 3.741E-01 5.545E-04
7.7130 0.27 71.168 0.167 0.139 0.217 3.654E-01 3.653E-01 7.944E-04
7.8135 0.22 68.509 0.021 0.139 0.140 3.563E-01 3.562E-01 4.997E-04
8.0134* 0.26 63.894 0.037 0.139 0.143 3.407E-01 3.406E-01 4.885E-04
8.0135 0.26 63.856 0.090 0.115 0.146 3.405E-01 3.404E-01 4.969E-04
8.1133 0.25 61.572 0.049 0.115 0.125 3.323E-01 3.323E-01 4.150E-04
8.2136 0.26 59.296 0.039 0.115 0.121 3.240E-01 3.239E-01 3.929E-04
8.3138 0.29 57.227 0.014 0.115 0.116 3.164E-01 3.164E-01 3.664E-04
8.4144 0.33 55.237 0.041 0.115 0.122 3.091E-01 3.090E-01 3.770E-04
8.5143 0.39 53.349 0.033 0.115 0.120 3.020E-01 3.020E-01 3.610E-04
8.6143 0.45 51.545 0.057 0.115 0.128 2.952E-01 2.951E-01 3.789E-04
8.7143 0.52 49.836 0.016 0.115 0.116 2.887E-01 2.886E-01 3.349E-04
8.8149 0.59 48.176 0.055 0.115 0.127 2.822E-01 2.822E-01 3.593E-04
8.9150 0.66 46.607 0.014 0.115 0.116 2.761E-01 2.760E-01 3.197E-04
9.0155* 0.74 45.184 0.147 0.115 0.186 2.707E-01 2.706E-01 5.040E-04
9.1159 0.66 43.697 0.076 0.115 0.138 2.646E-01 2.646E-01 3.654E-04
9.2159 0.59 42.342 0.028 0.115 0.118 2.592E-01 2.591E-01 3.069E-04
9.3158 0.53 41.081 0.072 0.115 0.135 2.541E-01 2.541E-01 3.443E-04
9.4156 0.46 39.737 0.081 0.115 0.141 2.484E-01 2.484E-01 3.498E-04
9.5159 0.40 38.486 0.087 0.115 0.144 2.431E-01 2.431E-01 3.509E-04
9.6158 0.36 37.306 0.091 0.115 0.147 2.381E-01 2.380E-01 3.497E-04
9.7164 0.32 36.273 0.120 0.115 0.166 2.339E-01 2.338E-01 3.884E-04
9.8164 0.30 35.151 0.074 0.115 0.137 2.289E-01 2.289E-01 3.128E-04
9.9171 0.31 34.112 0.125 0.115 0.170 2.244E-01 2.243E-01 3.816E-04
10.0168 0.33 33.104 0.027 0.115 0.118 2.199E-01 2.199E-01 2.598E-04
10.0172* 0.33 33.074 0.184 0.115 0.217 2.197E-01 2.197E-01 4.767E-04
10.0172 0.33 33.082 0.184 0.115 0.217 2.198E-01 2.197E-01 4.773E-04
10.1168 0.31 32.129 0.033 0.115 0.120 2.155E-01 2.155E-01 2.577E-04
10.2176 0.29 31.185 0.122 0.115 0.168 2.112E-01 2.112E-01 3.549E-04
10.3176 0.30 30.300 0.067 0.115 0.133 2.072E-01 2.071E-01 2.755E-04
10.4179 0.32 29.437 0.148 0.115 0.187 2.032E-01 2.032E-01 3.804E-04
10.5181 0.35 28.615 0.045 0.115 0.123 1.994E-01 1.993E-01 2.462E-04
10.6185 0.39 27.910 0.012 0.115 0.116 1.963E-01 1.962E-01 2.269E-04
10.7191 0.44 27.164 0.025 0.115 0.118 1.928E-01 1.928E-01 2.271E-04
10.8203 0.49 26.325 0.179 0.115 0.213 1.886E-01 1.885E-01 4.014E-04
10.9203 0.55 25.690 0.033 0.115 0.120 1.857E-01 1.856E-01 2.220E-04
11.0202* 0.61 24.972 0.138 0.115 0.179 1.821E-01 1.821E-01 3.266E-04
11.1197 0.56 24.326 0.114 0.115 0.162 1.790E-01 1.789E-01 2.901E-04
11.2199 0.52 23.667 0.014 0.115 0.116 1.757E-01 1.756E-01 2.035E-04
11.3198 0.50 23.018 0.205 0.115 0.235 1.723E-01 1.723E-01 4.047E-04
11.4203 0.50 22.428 0.088 0.115 0.145 1.693E-01 1.693E-01 2.456E-04
11.5200 0.52 21.958 0.165 0.115 0.201 1.672E-01 1.671E-01 3.358E-04
11.6203 0.56 21.364 0.021 0.115 0.117 1.641E-01 1.640E-01 1.918E-04
11.7199 0.61 20.859 0.135 0.115 0.177 1.615E-01 1.614E-01 2.858E-04
11.8202 0.68 20.260 0.017 0.115 0.116 1.582E-01 1.581E-01 1.838E-04
11.9211 0.76 19.823 0.068 0.115 0.134 1.561E-01 1.560E-01 2.085E-04
12.0209* 0.84 19.337 0.021 0.115 0.117 1.535E-01 1.534E-01 1.793E-04
12.0209 0.84 19.336 0.019 0.115 0.117 1.535E-01 1.534E-01 1.789E-04
12.1711 0.76 18.617 0.006 0.115 0.115 1.495E-01 1.495E-01 1.721E-04
12.3210 0.68 17.924 0.055 0.115 0.127 1.457E-01 1.456E-01 1.854E-04
12.4703 0.60 17.290 0.071 0.115 0.135 1.422E-01 1.421E-01 1.919E-04
12.6208 0.53 16.669 0.116 0.115 0.164 1.386E-01 1.386E-01 2.269E-04
12.7706 0.48 16.092 0.043 0.115 0.123 1.354E-01 1.353E-01 1.663E-04
12.9206 0.43 15.521 0.100 0.115 0.152 1.320E-01 1.320E-01 2.009E-04
13.0706 0.40 15.018 0.079 0.115 0.139 1.292E-01 1.291E-01 1.801E-04
13.2208 0.40 14.533 0.078 0.115 0.139 1.264E-01 1.263E-01 1.756E-04
13.3715 0.42 14.056 0.152 0.115 0.191 1.236E-01 1.235E-01 2.357E-04
13.5215* 0.45 13.559 0.109 0.115 0.159 1.205E-01 1.204E-01 1.911E-04
13.6713 0.41 13.137 0.082 0.115 0.141 1.180E-01 1.179E-01 1.666E-04
13.8220 0.39 12.755 0.038 0.115 0.121 1.157E-01 1.157E-01 1.402E-04
13.9721 0.39 12.314 0.104 0.115 0.155 1.129E-01 1.128E-01 1.748E-04
14.1224 0.41 11.983 0.153 0.115 0.192 1.110E-01 1.109E-01 2.128E-04
14.2723 0.45 11.551 0.137 0.115 0.179 1.081E-01 1.080E-01 1.931E-04
14.4228 0.50 11.222 0.240 0.115 0.266 1.060E-01 1.059E-01 2.819E-04
14.5744 0.56 10.903 0.085 0.115 0.143 1.040E-01 1.040E-01 1.490E-04
14.7240 0.63 10.544 0.194 0.115 0.225 1.016E-01 1.015E-01 2.290E-04
14.8759 0.70 10.254 0.346 0.115 0.365 9.976E-02 9.967E-02 3.641E-04
14.8722 0.70 10.173 0.174 0.115 0.209 9.893E-02 9.884E-02 2.064E-04
15.0231* 0.78 9.969 0.038 0.115 0.121 9.789E-02 9.781E-02 1.186E-04
15.2264 0.65 9.553 0.215 0.115 0.243 9.499E-02 9.491E-02 2.312E-04
15.4259 0.55 9.195 0.141 0.115 0.182 9.255E-02 9.247E-02 1.683E-04
15.6253 0.48 8.857 0.112 0.115 0.161 9.023E-02 9.015E-02 1.449E-04
15.8256 0.46 8.522 0.099 0.115 0.152 8.785E-02 8.777E-02 1.332E-04
16.0255 0.49 8.214 0.121 0.115 0.167 8.567E-02 8.559E-02 1.433E-04
16.2252* 0.56 7.921 0.053 0.115 0.126 8.356E-02 8.348E-02 1.057E-04
16.2257 0.56 7.913 0.055 0.115 0.127 8.348E-02 8.341E-02 1.064E-04
16.4246 0.50 7.647 0.037 0.115 0.121 8.159E-02 8.152E-02 9.850E-05
16.6252 0.46 7.390 0.096 0.115 0.150 7.974E-02 7.966E-02 1.196E-04
16.8272 0.47 7.116 0.138 0.115 0.180 7.763E-02 7.755E-02 1.395E-04
17.0274 0.51 6.865 0.176 0.115 0.210 7.571E-02 7.563E-02 1.593E-04
17.2278 0.59 6.633 0.049 0.115 0.125 7.393E-02 7.385E-02 9.226E-05
17.4276 0.68 6.405 0.051 0.115 0.126 7.214E-02 7.206E-02 9.076E-05
17.6276 0.79 6.174 0.125 0.115 0.170 7.025E-02 7.017E-02 1.191E-04
17.6284* 0.79 6.165 0.067 0.060 0.090 7.015E-02 7.007E-02 6.336E-05
17.8270 0.65 5.974 0.132 0.060 0.145 6.867E-02 6.859E-02 9.975E-05
18.0274 0.54 5.764 0.046 0.060 0.076 6.692E-02 6.683E-02 5.074E-05
18.2259 0.50 5.583 0.438 0.060 0.442 6.546E-02 6.538E-02 2.893E-04
18.4269 0.55 5.427 0.146 0.060 0.158 6.427E-02 6.418E-02 1.014E-04
18.6266 0.65 5.249 0.094 0.060 0.112 6.275E-02 6.266E-02 7.029E-05
18.6272* 0.65 5.229 0.105 0.060 0.121 6.250E-02 6.241E-02 7.576E-05
18.8253 0.57 5.079 0.084 0.060 0.104 6.129E-02 6.120E-02 6.358E-05
19.0264 0.50 4.939 0.344 0.060 0.350 6.017E-02 6.008E-02 2.104E-04
19.2255 0.46 4.772 0.058 0.060 0.083 5.865E-02 5.856E-02 4.889E-05
19.4241 0.46 4.629 0.022 0.060 0.064 5.741E-02 5.732E-02 3.679E-05
19.6246 0.49 4.496 0.119 0.060 0.133 5.627E-02 5.618E-02 7.490E-05
19.8238 0.55 4.354 0.109 0.060 0.125 5.497E-02 5.488E-02 6.857E-05
20.0281* 0.63 4.228 0.084 0.060 0.103 5.385E-02 5.376E-02 5.573E-05

These samples are near-perfect crystals, so Bragg diffraction from the sample was a key problem to be corrected for. Because of the low atomic number and the relatively high energies, these standard reference samples, which were also used for the IUCr Attenuation Project, covered the thickness range from to 50 µm to 4 mm, with three foils investigated at each energy.

Table 5[link] lists the energies and the corresponding uncertainties in columns 1 and 2, respectively. Columns 3, 4, 5 and 6 give the corresponding measured mass attenuation coefficient [μ/ρ], the experimental precision, the accuracy in the thickness determination and the total uncertainty of [μ/ρ], respectively. The last three columns list the imaginary part of the form factor after correction for scattering. Uncertainties in the theoretically calculated components of the scattering factor are indicated by the difference between the two model-dependent estimates of f′′. This latter uncertainty is clearly insignificant in the lower-energy region, and contributes at most 0.05% as one approaches 20 keV. Above 5.6 keV, the experimental values of [μ/ρ] are the weighted mean of the measurements obtained with three thicknesses, excluding those points affected by Bragg diffraction. The final uncertainty in the mass attenuation coefficient σ[μ/ρ] in this range is the root mean square of the contributions from the uncertainty in the thickness calibration σt, and from the consistency of the measurements of using different samples, σse, defined as[\sigma_{\rm se} = \left({{{\sum_{\rm all}{{([\mu/\rho]_{t_{i}}-\overline{[\mu/ \rho]})^{2}} / {\sigma_{i}^{2}}}} \over {\sum_{\rm all}1/\sigma_{i}^{2}}}} \right)^{1/2},\eqno(1)]where [[\mu/\rho]_{t_{i}}] are the mass attenuation coefficients measured using wafers of different thicknesses ti, [\overline{[\mu/\rho]}] is the weighted average of [[\mu/\rho]_{t_{i}}] and σi are the corresponding statistical errors in the measurements of [[\mu/\rho]_{t_{i}}]. Between 5.0 keV and 5.6 keV the values of [μ/ρ] are corrected for (significant) harmonic contamination. In this energy range, the final uncertainty σ[μ/ρ] is the root mean square of the contributions of σt and of the final error in the procedure of the harmonic correction σhar, calculated from [\sigma_{\rm har} = \left({\sigma_{\rm fit}^{2}+\sigma_{\rm stat}^{2}} \right)^{1/2},\eqno(2)]where σfit is the fitting error and σstat is the minimum of the statistical errors σi. Mass attenuation coefficients and their uncertainties are not affected by the value of the density. It is for this reason that the mass attenuation coefficient [μ/ρ] rather than the linear attenuation coefficient μ should be used for comparisons of data from different sources.

Table 6[link] summarizes the major sources of uncertainty contributing to the final results. Major factors affecting the precision or the consistency of the measurements of [μ/ρ] using multiple foils are listed in the first part of Table 6[link]. Apart from the intrinsic statistics – the intrinsic sources of statistical uncertainty of the system at the level of 0.02%, the other main factors affecting the consistency of the measurements in this experiment are Bragg diffraction and the harmonic contamination in the low-energy range of the measurements.

Table 6
Silicon crystals, 5–20 keV: uncertainties of the mass attenuation coefficient [μ/ρ], the (photoelectric) mass absorption coefficient [\left[{{\mu} /{\rho}}\right]_{\rm pe}] and f′′ (Tran et al., 2003b[link],c[link])

 % Contribution (± 1 standard error) 
Source of uncertainty5–5.6 keV5.6–20 keVNotes
Major contributions to precision:      
 harmonic contamination ∼0.3%    
 Bragg diffraction   <0.44% Maximal at 18.226 keV
 monochromator hysteresis <0.07%   σE < 1.3 eV at 5–6 keV
 energy calibration elsewhere 0.01% 0.01% σE/E = ± 0.004%
 system statistics 0.02% 0.02% Reproducibility without sample
       
Major contributions to accuracy:      
 experimental precision 0.3% 0.02–0.44% Including all above contributions
 sample thickness 0.139% 0.06–0.139% Thickness calibration and transfer
       
Minor contributions:      
 energy drift   0.00–0.008% σE/E = ±0.0026% at 7.6 keV
      σE/E = ±0.00175% at 20 keV
       
Additional contributions:      
 Compton scattering, thermal diffuse scattering (for [\left[{{\mu} / {\rho}}\right]_{\rm pe}] and f′′) minor 0.05% Variation in theory
       
Total final accuracy 0.323–0.350% 0.064–0.266% Outliers 0.365% (at 14.879 keV) and 0.442% (at 18.226 keV) due to Bragg diffraction

Uncertainties from the fitting of the harmonic contamination of the incident beam below 5.6 keV are at the level of 0.3%. In the high-energy range, measurements that were significantly affected by Bragg diffraction (where the measured values of [ln(I/I0)] were more than 0.5% higher than those from the other two specimens) were excluded from the calculations of the final results. The remaining points were consistent to better than 0.44% (the maximum discrepancy was at 18.226 keV, as in Tables 5[link] and 6[link]).

Uncertainties in the correction of the (very significant) backlash hysteresis of the monochromator amounted to 1.3 eV or less between 5 keV and 6 keV. The effect of hysteresis is thus less than 0.07% in [μ/ρ] in this energy range. Errors in the energy determination of less than 1 eV elsewhere are equivalent to less than 0.01% in [μ/ρ]. These main components of the factors affecting the experimental precision resulted in the final experimental precision listed in the second part of Table 6[link]. This contributed to the total experimental accuracy at levels of 0.3% below 5.6 keV, and up to 0.44% in the higher-energy region.

Uncertainty from the determination of the thicknesses of the specimens increased from 0.06% (at 20 keV) to 0.139% (at 5 keV) due to the additional contribution from the thickness transfer procedure of Tran et al. (2004a)[link]. Mika et al. (1985)[link] and Gerward et al. (1981)[link] reported similar accuracies [3 µm (0.075%) and 2 µm (0.05%), respectively] for specimens of similar (4 mm) thickness. However, their results were for the local thickness measured with a micrometer and not for the absolute accuracy of the determination. Baltazar-Rodrigues & Cusatis (2001)[link] reported 0.3 µm accuracy in the thickness determination of their silicon specimens of between 100 µm and 800 µm, but they appear to have used the average thicknesses of the specimens. Both methods (micrometry and average thickness) differ from the local mass per unit area actually seen by the X-ray beam and determined by our technique. The error can be significant (Tran et al., 2004a[link]).

This work led to a critical evaluation of how to account for Bragg/Laue reflections from the sample (Chantler et al., 2010[link]), as well as the nature of the elastic scattering contribution and its impact upon XAS measurement and the determination of the form factor. In particular, the replacement of a Rayleigh scattering coefficient with a prediction of thermal diffuse scattering was investigated. Approaches to absolute coefficient measurement and the calibration of energy using powder diffraction were also investigated.

7. Silver foils, 15–50 keV. XAS, towards XAFS

Tran et al. (2005)[link] measured the X-ray mass attenuation coefficient of silver metal foils. In this case, the K edge was included. There were 146 data points in the data set, which was enough to see XAFS oscillations but only just enough to carry out standard XAFS analysis of the nanostructure. The energy range covered was 15.2–49.9 keV, so only about 60 data points covered a standard XAFS region, with a minimum energy step size of 5 eV. Whilst sufficient for a range of XAS applications, tests of theory and a simple analysis of the nanostructure, it is generally considered that analysis of sources of systematic errors and the many-body physics requires much closer point spacing near the edge.

Three foils were used at every energy, varying from 12 µm to 100 µm and 275 µm to cover an attenuation range of 0.1 < ln(I0/I) < 6.8, well beyond the Nordfors criterion, in order to interrogate sources of systematic errors. Table 7[link] shows the results. Columns E and σE show the energies (in keV) and the corresponding uncertainties (in eV) at which attenuation measurements were carried out. The columns [\left[{{\mu} / {\rho}}\right]_{\rm meas}], [\sigma_{[\mu/\rho]_{\rm rel}}] and σ[μ/ρ] show the measured mass attenuation coefficient [\left[{{\mu} /{\rho}}\right]_{\rm meas}] (in cm2 g−1), the weighted deviation and the uncertainties of [\left[{{\mu} / {\rho}}\right]_{\rm meas}]. The uncertainty in the measured mass attenuation coefficient σ[μ/ρ] is the root mean square of the contributions from the uncertainty in the thickness calibration σt and from the consistency of the measurements obtained with the different foils [\sigma_{[\mu/\rho]_{\rm rel}}].

Table 7
Silver, 15–50 keV, metal foil total mass attenuation coefficients [μ/ρ] and the imaginary part of the atomic form factor f′′ versus E (Tran et al., 2005[link]), with uncertainties

σE is the absolute uncertainty in calibrated energy (one standard error); [\sigma_{\left[{{\mu}/ {\rho}}\right]_{\rm rel}}] is the percentage precision of repeated measurements (one standard error); [\sigma_{\left[{{\mu} / {\rho}}\right]}] is the total percentage accuracy in the mass attenuation coefficient [μ/ρ]; f′′ is the imaginary part of the complex atomic form factor, obtained using equation (3)[link], where [\left[{{\mu} / {\rho}}\right]_{\rm pe} = \left[{{\mu} / {\rho}}\right]-\left(\left [{{\mu} / {\rho}}\right]_{\rm R}+\left[{{\mu} / {\rho}}\right]_{\rm C}\right)]; and [\sigma_{f^{\prime\prime}}] is the absolute uncertainty in f′′. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (keV)σE (eV)[\left[{{\mu} / {\rho}}\right]_{\rm meas}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (%)[μ/ρ] (cm2 g−1)f′′ (e atom−1)[\sigma_{f^{\prime\prime}}] (e atom−1)
15.291 2.3 38.006 0.08 0.28 38.008 1.423 0.007
15.791 2.1 34.778 0.07 0.27 34.779 1.342 0.007
16.289 2.0 31.915 0.03 0.27 31.916 1.267 0.007
16.688 2.0 29.871 0.05 0.27 29.873 1.212 0.007
17.087 1.9 27.994 0.06 0.27 27.995 1.161 0.007
17.485 1.8 26.283 0.05 0.27 26.284 1.113 0.007
17.883 1.7 24.716 0.04 0.27 24.717 1.068 0.007
18.280 1.7 23.265 0.07 0.27 23.266 1.026 0.007
18.678 1.6 21.944 0.08 0.28 21.945 0.987 0.007
19.076 1.6 20.675 0.03 0.27 20.676 0.947 0.006
19.473 1.6 19.542 0.07 0.27 19.544 0.912 0.006
19.870 1.6 18.489 0.07 0.27 18.490 0.879 0.006
20.267 1.7 17.539 0.14 0.30 17.540 0.848 0.006
20.267 1.7 17.524 0.02 0.27 17.526 0.848 0.006
20.663 1.7 16.592 0.15 0.31 16.594 0.816 0.006
21.060 1.8 15.742 0.12 0.29 15.743 0.788 0.006
21.457 2.0 14.946 0.12 0.29 14.948 0.760 0.006
21.853 2.1 14.210 0.15 0.31 14.211 0.734 0.006
22.250 2.3 13.515 0.15 0.30 13.516 0.709 0.006
22.646 2.5 12.864 0.20 0.34 12.865 0.686 0.006
23.438 3.0 11.717 0.05 0.28 11.718 0.643 0.006
23.834 3.2 11.175 0.02 0.28 11.176 0.622 0.006
24.230 3.5 10.664 0.04 0.28 10.665 0.602 0.006
24.626 3.7 10.190 0.04 0.28 10.191 0.583 0.006
25.022 4.0 9.749 0.02 0.28 9.750 0.566 0.006
25.219 4.2 9.571 0.02 0.28 9.572 0.559 0.006
25.317 4.2 9.523 0.05 0.28 9.524 0.558 0.006
25.378 14.8 9.547 0.17 0.40 9.548 0.562 0.006
25.383 4.3 9.543 0.03 0.28 9.544 0.561 0.006
25.383 4.3 9.552 0.06 0.28 9.553 0.562 0.006
25.407 14.8 9.626 0.15 0.39 9.627 0.567 0.006
25.427 14.8 9.720 0.18 0.40 9.722 0.574 0.006
25.437 14.8 9.788 0.20 0.41 9.789 0.579 0.006
25.447 14.8 9.905 0.15 0.39 9.907 0.587 0.006
25.456 14.8 10.054 0.29 0.46 10.055 0.597 0.006
25.466 14.8 10.295 0.17 0.40 10.296 0.613 0.006
25.476 14.8 10.714 0.19 0.40 10.715 0.640 0.006
25.486 14.8 11.596 0.20 0.41 11.597 0.698 0.006
25.496 14.8 14.277 0.25 0.44 14.279 0.874 0.007
25.506 14.8 32.122 1.08 1.14 32.128 2.041 0.024
25.516 14.8 56.986 0.31 0.48 56.997 3.669 0.018
25.526 14.8 55.765 0.32 0.48 55.778 3.590 0.018
25.535 14.8 58.655 0.40 0.53 58.670 3.781 0.021
25.545 14.8 60.144 0.25 0.44 60.160 3.880 0.018
25.555 14.7 55.361 0.32 0.48 55.377 3.568 0.018
25.565 14.7 59.342 0.17 0.40 59.361 3.831 0.016
25.575 14.7 62.748 0.60 0.70 62.769 4.056 0.029
25.585 14.7 57.981 0.17 0.40 58.003 3.745 0.016
25.595 14.7 57.038 0.38 0.52 57.060 3.684 0.020
25.605 14.7 59.332 0.29 0.46 59.357 3.836 0.019
25.615 14.7 60.431 0.22 0.42 60.458 3.910 0.017
25.624 14.7 59.705 0.19 0.40 59.733 3.864 0.017
25.634 14.7 58.327 0.25 0.44 58.355 3.775 0.017
25.644 14.7 58.481 0.34 0.49 58.511 3.787 0.020
25.654 14.7 59.420 0.52 0.63 59.450 3.850 0.025
25.664 14.7 59.529 0.19 0.40 59.559 3.859 0.017
25.674 14.7 58.717 0.35 0.50 58.747 3.807 0.020
25.684 14.7 58.474 0.19 0.40 58.503 3.792 0.016
25.693 14.7 57.909 0.22 0.42 57.938 3.757 0.017
25.703 14.7 57.930 0.19 0.40 57.959 3.759 0.016
25.713 14.7 58.591 0.25 0.44 58.620 3.804 0.018
25.723 14.7 58.631 0.41 0.54 58.660 3.809 0.022
25.733 14.7 58.448 0.41 0.54 58.477 3.798 0.021
25.743 14.7 57.720 0.42 0.55 57.749 3.751 0.021
25.753 14.7 57.105 0.26 0.44 57.133 3.712 0.017
25.763 14.7 57.037 0.23 0.42 57.065 3.709 0.017
25.773 14.7 56.895 0.35 0.50 56.922 3.701 0.019
25.782 14.6 57.296 0.23 0.42 57.323 3.729 0.017
25.792 14.6 57.695 0.20 0.41 57.723 3.757 0.016
25.802 14.6 57.654 0.24 0.43 57.682 3.756 0.017
25.812 14.6 57.153 0.43 0.56 57.180 3.724 0.022
25.822 14.6 56.776 0.21 0.41 56.803 3.701 0.016
25.832 14.6 56.120 0.58 0.68 56.147 3.659 0.025
25.842 14.6 56.385 0.19 0.40 56.412 3.678 0.016
25.852 14.6 56.205 0.29 0.46 56.231 3.667 0.018
25.862 14.6 56.183 0.23 0.43 56.209 3.667 0.017
25.872 14.6 56.257 0.29 0.46 56.283 3.673 0.018
25.882 14.6 56.347 0.35 0.50 56.374 3.681 0.019
25.891 14.6 56.507 0.13 0.38 56.534 3.693 0.015
25.901 14.6 56.237 0.33 0.49 56.263 3.676 0.019
25.911 14.6 56.008 0.17 0.39 56.034 3.663 0.016
25.921 14.6 55.707 0.16 0.39 55.733 3.644 0.015
25.941 14.6 55.506 0.21 0.41 55.531 3.633 0.016
25.961 14.6 55.442 0.28 0.45 55.467 3.632 0.017
25.981 14.6 55.516 0.22 0.42 55.541 3.640 0.016
26.001 14.6 55.394 0.16 0.39 55.418 3.634 0.015
26.040 14.5 54.968 0.16 0.39 54.992 3.612 0.015
26.078 14.5 54.607 0.38 0.52 54.630 3.593 0.020
26.119 14.5 54.527 0.24 0.43 54.550 3.593 0.017
26.179 14.5 53.930 0.32 0.48 53.952 3.561 0.018
26.199 14.5 54.056 0.18 0.40 54.078 3.573 0.015
26.391 14.4 52.754 0.14 0.38 52.775 3.511 0.015
26.791 14.2 50.400 0.10 0.37 50.418 3.404 0.014
26.989 14.1 49.224 0.15 0.39 49.240 3.348 0.014
27.187 14.0 48.141 0.24 0.43 48.156 3.297 0.015
27.187 14.0 47.699 1.08 1.14 47.715 3.267 0.038
27.385 13.9 47.208 0.16 0.39 47.222 3.256 0.014
27.780 13.8 45.346 0.09 0.37 45.358 3.172 0.013
28.175 13.6 43.600 0.03 0.36 43.610 3.092 0.012
28.571 13.4 42.007 0.10 0.37 42.016 3.019 0.013
28.966 13.3 40.453 0.05 0.36 40.462 2.947 0.012
29.362 13.1 39.043 0.05 0.36 39.051 2.882 0.012
29.757 13.0 37.682 0.15 0.39 37.688 2.818 0.012
30.152 12.9 36.353 0.04 0.36 36.359 2.753 0.011
30.547 12.8 35.107 0.03 0.36 35.113 2.693 0.011
30.942 12.7 33.931 0.07 0.36 33.936 2.635 0.011
31.337 12.6 32.809 0.06 0.36 32.814 2.580 0.011
31.733 12.6 31.754 0.09 0.37 31.758 2.527 0.011
32.128 12.6 30.698 0.03 0.36 30.702 2.472 0.010
32.523 12.6 29.719 0.06 0.36 29.723 2.422 0.010
32.919 12.6 28.812 0.13 0.38 28.815 2.376 0.011
33.313 12.7 27.887 0.10 0.37 27.890 2.326 0.010
33.709 12.8 27.013 0.08 0.37 27.016 2.279 0.010
33.709 12.8 26.986 0.06 0.36 26.989 2.277 0.010
34.104 13.0 26.165 0.04 0.36 26.168 2.232 0.010
34.500 13.2 25.432 0.07 0.36 25.435 2.194 0.010
34.896 13.4 24.656 0.13 0.38 24.658 2.151 0.010
35.290 13.7 23.921 0.09 0.37 23.924 2.110 0.009
35.884 14.2 22.869 0.11 0.37 22.871 2.049 0.009
36.477 14.8 21.891 0.14 0.38 21.894 1.993 0.009
37.070 15.4 20.967 0.14 0.38 20.969 1.939 0.009
37.663 16.2 20.054 0.10 0.37 20.056 1.882 0.009
38.256 17.0 19.240 0.09 0.37 19.242 1.833 0.009
38.849 17.9 18.469 0.06 0.36 18.471 1.786 0.008
39.443 18.9 17.724 0.03 0.36 17.727 1.739 0.008
40.036 19.9 17.050 0.08 0.37 17.052 1.697 0.008
40.036 19.9 17.030 0.02 0.36 17.033 1.695 0.008
40.828 21.5 16.168 0.09 0.37 16.171 1.639 0.008
41.619 23.1 15.361 0.07 0.36 15.363 1.586 0.008
42.411 24.8 14.603 0.06 0.36 14.606 1.535 0.008
43.203 26.7 13.881 0.07 0.36 13.883 1.485 0.007
43.995 28.6 13.176 0.06 0.36 13.178 1.434 0.007
44.787 30.6 12.604 0.02 0.36 12.606 1.395 0.007
             
49.146 43.3 9.759 0.06 0.36 9.760 1.178 0.006
49.531 44.5 9.578 0.08 0.37 9.579 1.165 0.006
49.918 45.7 9.381 0.10 0.37 9.382 1.150 0.006

The column [μ/ρ] shows the total mass attenuation coefficients obtained by applying appropriate corrections to the [\left[{{\mu} / {\rho}}\right]_{\rm meas}] values for the effects of fluorescence and scattering. Note that [\left[{{\mu} / {\rho}}\right]_{\rm meas}] is ill-defined since it corrects for some of the sources of systematic errors but not, for example, scattering and fluorescence. However, it is an improvement compared with some earlier work. Columns f′′ and [\sigma_{f^{\prime\prime}}] list the imaginary part of the complex atomic form factor, f, and the corresponding absolute uncertainties. f′′ was obtained from the optical theorem: [f^{\prime\prime} = {{E\sigma_{\rm pe}} \over {2hcr_{e}}} = {{E uA \left[{{\mu} /{\rho}}\right]_{\rm pe}} \over {2hcr_{e}}},\eqno(3)]where E is the energy in eV, σpe is the (photoelectric) mass absorption cross section, h and c are Planck's constant and the speed of light, respectively, re is the classical electron radius, u is the atomic mass unit, A is the relative atomic mass, ma = uA is the (atomic) mass, and [\left[{{\mu} /{\rho}}\right]_{\rm pe}] is the (photoelectric) mass absorption coefficient obtained by subtracting the total scattering coefficients [\left(\left[{{\mu} / {\rho}}\right]_{\rm R}\,+\,\left[{{\mu} / {\rho}}\right]_{\rm C}\right)] (following Chantler, 1995[link], 2000[link]; Chantler et al., 2000[link]) from the mass attenuation coefficient [μ/ρ]. The use of equation (3)[link] in the region of XAFS is clearly affected by non-atomic, i.e. solid-state, effects and hence includes processes other than just those due to the atomic form factor. This also represented one of the first clear observations of the `triangle effect' (Fig. 1[link]): a discrepancy of absorption versus energy around the edge compared with all theory to date, which has the appearance of a triangle as a function of energy above the edge, or sometimes the appearance of a dispersion shape, like a double triangle (de Jonge et al., 2005[link], 2007[link]; Sier et al., 2020[link]). The data are available in the supporting information to this chapter as file bz5029sup3.pdf.

[Figure 1]

Figure 1

Silver foil mass attenuation coefficients [μ/ρ], experiment (15–50 keV; Tran et al., 2005[link]) and theory (Chantler, 1995[link], 2000[link]; Chantler et al., 2000[link]), confirming the broad structure predicted by theory and detailed XAS. Copyright IOP Publishing. Reproduced with permission from Tran et al. (2005[link]). All rights reserved.

The tabulated values of the measured mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm meas}] were calculated from the weighted mean of all the measurements obtained with combinations of the three foils and the three apertures. The total mass attenuation coefficients [μ/ρ] were obtained by applying corrections to the measured attenuation coefficients for the effects of scattering and fluorescence. As this correction is small (less than 0.05%), the difference between applying this correction before or after taking the average of [\left[{{\mu} / {\rho}}\right]_{\rm meas}] is insignificant.

Table 8[link] summarizes the major sources of uncertainty contributing to the tabulated values of [\left[{{\mu} / {\rho}}\right]_{\rm meas}]. Major factors affecting the precision or the consistency of the measurements of [\left[{{\mu} / {\rho}}\right]_{\rm meas}] using multiple foils are listed in the first part of Table 8[link]. The main factors affecting the consistency of the measurements are the intrinsic sources of statistical errors of the system at the level of 0.02%, and the uncertainty in the energy.

Table 8
Silver, 15-50 keV, metal foils: uncertainties of the mass attenuation coefficient [μ/ρ], the (photoelectric) mass absorption coefficient [\left[{{\mu} / {\rho}}\right]_{\rm pe}] and f′′ (Tran et al., 2005[link])

 % Contribution (±1 standard error) 
Source of uncertaintyAway from edgeAt the K edgeNotes
Contributions to precision:      
 energy calibration 0.01–0.02% 0.01–0.02% σE = 0.007–0.08%
 system statistics 0.02% 0.02% Reproducibility without sample
       
Major contributions to accuracy:      
 experimental precision 0.05–0.15% 0.2–0.5% Including all above contributions
 sample thickness 0.17–0.36% 0.17–0.36% Thickness calibration and scaling
       
Minor contributions:      
 secondary photons 0.003% 0.01% 20% of the correction
 harmonic contamination minor minor  
 detector linearity minor minor  
       
Additional contributions:      
Rayleigh, Compton (for [\left[{{\mu} / {\rho}}\right]_{\rm pe}] and f′′) minor 0.05%  
       
Total final accuracy 0.27–0.4% 0.4–0.7%  

The final uncertainty in [μ/ρ] (0.27–0.4% away from the K edge, 0.4–0.7% at the K edge) is dominated by the experimental precision (0.15% away from the K edge and 0.2% to 0.5% at the edge) and by the uncertainty in the local thickness (0.17–0.36%). Although limited in XAFS, this work was fully adequate for detailed comparison of advanced theoretical methods for computation of XAS and XAFS, including using FDMNES (Cosgriff et al., 2005[link]) and variable-cluster-size computations. It also was able to calibrate the energy using powder sample standards (Rae et al., 2010c[link]).

8. Molybdenum foils, 13.5–41.5 keV. XAS, XAFS, bonding, nanostructure and theory

The article by de Jonge et al. (2005)[link] was the first to provide an accurate XAS spectrum together with a detailed XAFS spectrum, in this case for molybdenum at and above the K edge at 20 keV. The foil thicknesses used were nominally 25 µm, 50 µm, 100 µm, 150 µm, 200 µm and 250 µm. Between three and five samples were used at each energy. This article defined significance as a measure of anomalies and unknown systematic errors, searched for a systematic error due to roughness, and found a systematic error due to bandwidth, allowing the bandwidth to be measured from the XAS data directly. This was the first example of its type to provide the pre-processed data as supplementary material – that is, the first to deposit a transferable data set. The data tabulated in the publication presented 94 points; the full set included 526 independent energies with 0.5 eV spacing above the edge. Hence this data set was the first high-accuracy data set amenable to detailed structural XAFS analysis and exploration of a range of independent systematic errors and new areas of physics.

Table 9[link] presents mass attenuation coefficients measured at 526 energies between 13.5 keV and 41.5 keV. The first column is the calibrated photon energy (in keV) with the uncertainty in the last significant figure presented in parentheses. The second column is the mass attenuation coefficient [μ/ρ] (in cm2 g−1; see Fig. 2[link]) with uncertainty. The third column provides the percentage uncertainty in the mass attenuation coefficient. The values in the second and third columns were determined from the weighted mean of the measurements made with a variety of apertures and foil thicknesses, and using the values determined from the counts recorded in both of the downstream ion chambers. The weighted mean typically involved between 18 and 30 determinations. The uncertainty in the mass attenuation coefficient was evaluated from σse. The imaginary component of the atomic form factor f′′ was evaluated using equation (3)[link]. [\left[{{\mu} / {\rho}}\right]_{\rm pe}] was evaluated by subtracting the average of the Rayleigh plus Compton contributions, as tabulated in XCOM (Scofield, 1973[link]; Berger & Hubbell, 1987[link]; Gerward et al., 2004[link]) and FFAST (Chantler, 1995[link], 2000[link]; Chantler et al., 2000[link]).

Table 9
Molybdenum foils, 13.5–41.5 keV: mass attenuation coefficients [μ/ρ] and the imaginary component of the atomic form factor f′′ as a function of X-ray energy

One standard deviation uncertainties in the least significant digits are indicated in parentheses. The percentage uncertainty in the mass attenuation coefficients, [\sigma_{\left[{{\mu} / {\rho}}\right]}], follows. The uncertainty in f′′ includes the measurement uncertainty and the difference between major tabulations of the total Rayleigh plus Compton scattering cross sections. f′′ in the energy range 19.9–20.9 keV is affected by solid-state effects. A further uncertainty, of the same order as the XAFS amplitude, may apply to these values when alternative atomic environments are investigated. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (keV)[μ/ρ] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (%)f′′ (e atom−1)
13.50614 (31) 37.868 (25) 0.067 1.1125 (17)
13.80632 (31) 35.596 (35) 0.098 1.0671 (18)
14.10651 (30) 33.578 (24) 0.070 1.0267 (14)
     
19.98279 (38) 15.739 (26) 0.17 0.6674 (13)
19.98330 (38) 15.906 (14) 0.087 0.67502 (87)
19.98380 (38) 16.058 (11) 0.070 0.68194 (78)
19.98430 (38) 16.2012 (92) 0.057 0.68848 (72)
19.98480 (38) 16.3753 (71) 0.043 0.69643 (67)
19.98530 (38) 16.603 (19) 0.12 0.7068 (11)
19.98581 (38) 16.818 (20) 0.12 0.7166 (11)
19.98631 (38) 17.098 (12) 0.069 0.72941 (79)
19.98681 (38) 17.256 (27) 0.16 0.7366 (14)
19.98781 (38) 17.940 (12) 0.069 0.76783 (81)
19.98832 (38) 18.204 (42) 0.23 0.7799 (20)
19.99083 (38) 20.843 (29) 0.14 0.9003 (14)
19.99133 (38) 21.762 (30) 0.14 0.9422 (15)
19.99183 (38) 23.067 (39) 0.17 1.0017 (18)
19.99233 (38) 24.407 (32) 0.13 1.0628 (16)
19.99278 (38) 26.111 (40) 0.15 1.1405 (19)
19.99329 (38) 28.012 (54) 0.19 1.2272 (25)
19.99379 (38) 30.395 (59) 0.20 1.3358 (28)
19.99429 (38) 32.545 (93) 0.28 1.4339 (43)
19.99479 (38) 34.825 (68) 0.19 1.5378 (31)
19.99530 (38) 36.881 (59) 0.16 1.6316 (27)
19.99580 (38) 38.756 (49) 0.13 1.7171 (23)
19.99630 (38) 40.559 (43) 0.11 1.7994 (20)
19.99680 (38) 42.134 (67) 0.16 1.8712 (31)
19.99731 (38) 43.791 (40) 0.092 1.9469 (19)
19.99781 (38) 45.378 (56) 0.12 2.0193 (26)
19.99831 (38) 47.089 (60) 0.13 2.0973 (28)
19.99881 (38) 48.682 (41) 0.085 2.1700 (20)
19.99932 (38) 50.403 (32) 0.064 2.2485 (16)
19.99982 (38) 52.108 (23) 0.045 2.3263 (12)
20.00032 (38) 53.827 (44) 0.081 2.4048 (21)
20.00082 (38) 55.429 (29) 0.052 2.4779 (14)
20.00133 (38) 57.022 (26) 0.046 2.5506 (13)
20.00183 (38) 58.753 (55) 0.094 2.6296 (26)
20.00233 (38) 60.596 (35) 0.058 2.7137 (17)
20.00283 (38) 62.472 (51) 0.082 2.7993 (24)
20.00334 (38) 64.636 (27) 0.041 2.8981 (13)
20.00384 (38) 67.038 (90) 0.13 3.0077 (41)
20.00429 (38) 69.699 (88) 0.13 3.1292 (40)
20.00480 (38) 72.541 (58) 0.080 3.2588 (27)
20.00530 (38) 75.252 (47) 0.062 3.3826 (22)
20.00580 (38) 78.274 (44) 0.057 3.5205 (21)
20.00631 (38) 81.16 (15) 0.18 3.6521 (67)
20.00681 (38) 83.88 (10) 0.12 3.7762 (47)
20.00731 (38) 85.898 (70) 0.081 3.8686 (32)
20.00781 (38) 87.590 (61) 0.070 3.9458 (28)
20.00832 (38) 88.884 (52) 0.059 4.0050 (24)
20.00882 (38) 89.919 (44) 0.049 4.0523 (21)
20.00933 (38) 90.532 (40) 0.044 4.0803 (19)
20.00983 (38) 90.944 (34) 0.038 4.0993 (17)
20.01033 (38) 90.997 (28) 0.031 4.1017 (14)
20.01083 (38) 90.708 (25) 0.028 4.0887 (13)
20.01134 (38) 90.231 (42) 0.047 4.0670 (20)
20.01184 (38) 89.535 (39) 0.044 4.0354 (19)
20.01234 (38) 88.537 (40) 0.045 3.9899 (19)
20.01285 (38) 87.372 (33) 0.037 3.9369 (16)
20.01330 (38) 86.318 (24) 0.028 3.8888 (12)
20.01380 (38) 85.365 (16) 0.019 3.84548 (90)
20.01431 (38) 84.410 (51) 0.060 3.8020 (24)
20.01934 (38) 85.541 (46) 0.054 3.8546 (21)
20.01985 (38) 86.007 (36) 0.042 3.8759 (17)
20.02035 (38) 86.418 (33) 0.039 3.8948 (16)
20.02085 (38) 86.651 (32) 0.037 3.9055 (15)
20.02131 (38) 86.832 (30) 0.034 3.9139 (14)
20.02181 (38) 86.934 (28) 0.032 3.9186 (14)
20.02231 (38) 86.990 (27) 0.031 3.9213 (13)
20.02282 (38) 86.950 (25) 0.029 3.9196 (12)
20.02332 (38) 86.881 (23) 0.026 3.9165 (11)
20.02383 (38) 86.830 (20) 0.023 3.9143 (10)
20.02433 (38) 86.804 (45) 0.051 3.9132 (21)
20.02483 (38) 86.631 (64) 0.073 3.9054 (29)
20.02534 (38) 86.626 (60) 0.070 3.9053 (28)
20.02584 (38) 86.633 (56) 0.065 3.9057 (26)
20.02635 (38) 86.696 (53) 0.061 3.9087 (25)
20.02685 (38) 86.819 (49) 0.056 3.9144 (23)
20.02735 (38) 86.997 (44) 0.051 3.9226 (21)
20.02786 (38) 87.277 (41) 0.046 3.9355 (19)
20.02831 (38) 87.588 (35) 0.040 3.9498 (16)
20.02882 (38) 88.000 (27) 0.031 3.9687 (13)
20.02932 (38) 88.482 (29) 0.033 3.9908 (14)
20.02982 (38) 88.786 (37) 0.042 4.0048 (18)
20.03033 (38) 89.176 (36) 0.041 4.0227 (17)
20.03083 (38) 89.574 (35) 0.039 4.0410 (16)
20.03134 (38) 89.971 (34) 0.037 4.0592 (16)
20.03184 (38) 90.382 (32) 0.035 4.0781 (15)
20.03234 (38) 90.737 (29) 0.032 4.0944 (14)
20.03285 (38) 91.138 (29) 0.032 4.1128 (14)
20.03336 (38) 91.560 (28) 0.030 4.1322 (13)
20.03386 (38) 91.990 (24) 0.026 4.1520 (12)
20.03436 (38) 92.522 (33) 0.035 4.1764 (16)
20.03482 (38) 92.891 (41) 0.044 4.1933 (19)
20.03532 (38) 93.345 (40) 0.043 4.2142 (19)
20.03583 (38) 93.825 (38) 0.040 4.2362 (18)
20.03633 (38) 94.226 (37) 0.039 4.2546 (17)
20.03683 (38) 94.582 (33) 0.035 4.2710 (16)
20.03734 (38) 94.890 (32) 0.033 4.2852 (15)
20.03784 (38) 95.115 (29) 0.031 4.2956 (14)
20.03835 (38) 95.202 (27) 0.029 4.2996 (13)
20.03885 (38) 95.103 (31) 0.032 4.2952 (15)
20.03936 (38) 95.001 (28) 0.029 4.2907 (13)
20.03986 (38) 94.653 (93) 0.099 4.2749 (43)
20.04037 (38) 94.139 (90) 0.096 4.2515 (42)
20.04082 (38) 93.578 (87) 0.093 4.2260 (40)
20.04133 (38) 92.906 (82) 0.089 4.1954 (38)
20.04183 (38) 92.175 (82) 0.089 4.1621 (38)
20.04234 (38) 91.382 (76) 0.084 4.1260 (35)
20.04284 (38) 90.620 (74) 0.082 4.0913 (34)
20.04335 (38) 89.858 (69) 0.077 4.0565 (32)
20.04385 (38) 89.131 (69) 0.077 4.0234 (32)
20.04436 (38) 88.533 (42) 0.048 3.9962 (20)
20.04935 (38) 85.379 (38) 0.045 3.8530 (18)
20.04986 (38) 85.333 (60) 0.071 3.8510 (28)
20.05037 (38) 85.339 (59) 0.069 3.8514 (27)
20.05087 (38) 85.382 (59) 0.069 3.8535 (27)
20.05133 (38) 85.514 (59) 0.070 3.8596 (27)
20.05183 (38) 85.595 (60) 0.070 3.8634 (28)
20.05234 (38) 85.753 (60) 0.070 3.8707 (28)
20.05284 (38) 85.916 (61) 0.071 3.8782 (28)
20.05335 (38) 86.113 (61) 0.071 3.8874 (28)
20.05385 (38) 86.383 (63) 0.073 3.8998 (29)
20.05436 (38) 86.618 (52) 0.060 3.9106 (24)
20.05936 (38) 87.835 (29) 0.034 3.9673 (14)
20.05987 (38) 87.817 (70) 0.080 3.9666 (32)
20.06038 (38) 87.706 (77) 0.088 3.9616 (35)
20.06088 (38) 87.639 (98) 0.11 3.9586 (45)
20.06134 (38) 87.51 (12) 0.13 3.9528 (53)
20.06184 (38) 87.41 (10) 0.12 3.9485 (47)
20.06235 (38) 87.297 (68) 0.078 3.9433 (31)
20.06285 (38) 87.202 (66) 0.076 3.9390 (30)
20.06336 (38) 87.059 (68) 0.078 3.9326 (31)
20.06387 (38) 86.887 (65) 0.075 3.9248 (30)
20.06437 (38) 86.797 (28) 0.033 3.9208 (13)
20.06938 (38) 85.628 (40) 0.046 3.8683 (19)
20.06989 (38) 85.553 (72) 0.085 3.8650 (33)
20.07034 (38) 85.543 (69) 0.081 3.8646 (32)
20.07085 (38) 85.600 (69) 0.081 3.8673 (32)
20.07136 (38) 85.694 (67) 0.078 3.8717 (31)
20.07186 (38) 85.820 (66) 0.077 3.8776 (30)
20.07237 (38) 85.983 (64) 0.074 3.8851 (29)
20.07288 (38) 86.180 (62) 0.072 3.8942 (29)
20.07338 (38) 86.411 (61) 0.071 3.9049 (28)
20.07389 (38) 86.688 (60) 0.069 3.9176 (27)
20.07434 (38) 87.032 (46) 0.052 3.9335 (21)
20.07936 (39) 90.212 (69) 0.076 4.0801 (32)
20.07987 (39) 90.340 (81) 0.090 4.0860 (37)
20.08037 (39) 90.498 (81) 0.090 4.0934 (37)
20.08088 (39) 90.617 (81) 0.089 4.0989 (37)
20.08139 (39) 90.645 (79) 0.087 4.1003 (36)
20.08189 (39) 90.683 (76) 0.083 4.1021 (35)
20.08235 (39) 90.665 (76) 0.083 4.1014 (35)
20.08286 (39) 90.572 (73) 0.081 4.0973 (34)
20.08336 (39) 90.429 (75) 0.082 4.0908 (34)
20.08387 (39) 90.300 (74) 0.082 4.0850 (34)
20.08438 (39) 90.056 (47) 0.052 4.0739 (22)
20.08940 (39) 86.406 (45) 0.053 3.9078 (21)
20.08986 (39) 86.043 (65) 0.076 3.8912 (30)
20.09036 (39) 85.763 (65) 0.075 3.8785 (30)
20.09087 (39) 85.589 (64) 0.075 3.8707 (30)
20.09138 (39) 85.405 (63) 0.074 3.8623 (29)
20.09188 (39) 85.233 (63) 0.074 3.8546 (29)
20.09239 (39) 85.122 (65) 0.076 3.8496 (30)
20.09290 (39) 85.029 (64) 0.075 3.8454 (29)
20.09336 (39) 84.966 (62) 0.073 3.8426 (29)
20.09386 (39) 84.973 (62) 0.073 3.8430 (29)
     
40.5598 (26) 12.4559 (32) 0.026 1.10821 (30)
41.0614 (28) 12.0437 (22) 0.018 1.08396 (21)
41.5630 (29) 11.6535 (29) 0.025 1.06082 (28)
[Figure 2]

Figure 2

Molybdenum foil mass attenuation coefficients, 13.5–41.5 keV. Reprinted with permission from de Jonge et al. (2005[link]). Copyright (2005) by the American Physical Society.

In parentheses following the reported values are the uncertainties in f′′, evaluated from [\sigma_{f^{\prime\prime}} = {{EuA} \over {2hcr_{e}}}\bigl{(}\sigma_{\left [{{\mu} / {\rho}}\right]}^{2}+\Delta_{\rm RC}^{2}\bigr{)}^{{{1} \over {2}}},\eqno(4)]which includes an uncertainty contribution of half of the difference ΔRC between the tabulated values of the Rayleigh plus Compton contributions. The use of the photoelectric component of the attenuation determined in this manner is appropriate when Rayleigh and Compton scattering are the only significant other contributions to the total attenuation. This is the case apart from near the absorption edge and in the region of the XAFS. Near the edge, the influence of solid-state and bonding effects is difficult to evaluate or estimate. Values of f′′ in the energy range from 19.9–20.9 keV should be subject to a further uncertainty (hence correction) of the same order as the XAFS amplitude when alternative atomic environments are investigated. The mass attenuation coefficient can be written as a sum of the photoelectric absorption [\left[{{\mu} / {\rho}}\right]_{\rm pe}], Rayleigh scattering [\left[{{\mu} /{\rho}}\right]_{\rm R}] and Compton scattering [\left[{{\mu} / {\rho}}\right]_{\rm C}] according to [\left[{{\mu} \over {\rho}}\right]\simeq\left[{{\mu} \over {\rho}}\right]_{\rm pe}+\,\left [{{\mu} \over {\rho}}\right]_{\rm R}+\,\left[{{\mu} \over {\rho}}\right]_{\rm C}.\eqno(5)]Further attenuating processes are negligible in the energy region of this experiment. The results of atomic form factor calculations can be assessed by comparing the calculated photoelectric absorption coefficients with the measured values. The authors estimated the Rayleigh plus Compton cross section to be equal to the average of the values reported by the FFAST and XCOM tabulations, and estimated the uncertainty in the Rayleigh plus Compton cross section to be half of the difference between these tabulations. They subtracted these scattering components from the measured values to determine the photoelectric absorption coefficients.

The information deposited with the original publication consisted of two text files: a README file representing header information, as required for portability to iFEFFit, eFEFFit or CIF formats (available in the supporting information for this present chapter as file bz5029sup4.txt); and the actual tabulation of data (file bz5029sup5.txt). In the interests of a compact notation for ease of use by other researchers, there were only four columns of data, but with uncertainties in the last significant figures of three of these given in parentheses (as is conventional). It is clearly important to report the evaluated mass attenuation coefficient (column 2 in Table 9[link]), yet in much XAFS work the mass absorption coefficient is a more relevant quantity. This can be obtained from the fourth column, f′′, which represents the photoabsorption. Another potential deficiency of these data was the absence of the relative uncertainty versus the total absolute uncertainty of the mass attenuation coefficient. Often it is more useful to use the relative quantity in, for example, fitting of XAFS, as it separates independent point errors (uncertainties) from overall scaling or normalization uncertainties. This format is compact and in ASCII, but the use of parentheses for uncertainties does make the processing of the raw data for fitting by other researchers slightly more complicated. The separation of the header from the deposited spectrum also means that the two files could become separated or one could be lost, perhaps especially without direct connection to the details in the published manuscript.

Table 10[link] presents estimates of contributions of the individual errors to the reported values. One significant concern was the comparison of inflection points versus Bragg diffraction for the determination of energy. The accuracy of the energy determination can be assessed by comparing the absorption edge energy with the most accurate value in the literature. The first point of inflection of the mass attenuation coefficient on the absorption edge occurs at 19.9944 ± 0.0002 ± 0.0003 keV, where the first uncertainty reflects the ability to locate the position of the point of inflection and the second is the uncertainty in determining the energy. Comparison with the value reported by Kraft et al. (1996[link]), 20.00036 ± 0.00002 keV, indicates a discrepancy of 6 eV, or 0.03%. The most likely causes of this discrepancy are a difference in the interpretation of the absorption-edge location, chemical or thermal effects on the edge location, or further errors in the energy determination. de Jonge et al. (2005)[link] considered an upper limit on the accuracy of the determined energies to be half of the difference between these absorption-edge locations, at about 0.015%.

Table 10
Uncertainty contributions to the data in Table 9[link] for molybdenum foils, 13.5–41.5 keV (de Jonge et al., 2005[link])

QuantityEstimated magnitudeContributions and comments
[μ/ρ] away from the absorption edge 0.028% Accuracy limited by the full-foil mapping technique
  0.02–0.15% Precision, limited by counting statistics and foil replacement errors
  <0.03% Unidentified systematic component: one quarter of correction
 
[μ/ρ] near the absorption edge (19.99–21 keV) 0.01–0.06% X-ray bandwidth
  0.003–0.006% Sample roughness
  <0.01% Harmonic components
  0.005–0.01% Secondary photons
Total accuracy near edge 0.03–0.1%  
     
E 0.0015–0.007% Accuracy of monochromator dispersion function interpolation
     
f′′ 0.2–0.5% Inconsistency of subtracted scattering components

As it stands, this implies agreement with FFAST to within a quoted uncertainty of 1% well above the edge, and 3–5% near the edge, and a confirmation of the triangle effect of magnitude 3–5% around the edge. Conversely, it suggests FFAST (Chantler, 1995[link], 2000[link]) is significantly more accurate than XCOM (Berger & Hubbell, 1987[link]; Berger et al., 1999[link]) and Henke et al. (1993[link]). This work also led to further investigations and publications on bandwidth, the integrated column density, and especially investigation of standard theoretical approaches and anomalies in theoretical broadening (Smale et al., 2006[link]), advanced investigations of beamline-independent spectra and structure (Glover & Chantler, 2007[link]), advanced investigations of theory using FDMX, and the development of experimental investigations of inelastic mean free paths of the photoelectron and plasmons (Chantler & Bourke, 2010[link], 2014b[link],c[link]; Bourke & Chantler, 2015[link]; Chantler & Bourke, 2019[link]). It also led to detailed investigations of theory with the program FEFF (Kas et al., 2010[link]).

9. Tin foils, 29–60 keV. XAS, XAFS, bonding, nano­structure and theory

The work of de Jonge et al. (2007)[link] was unique in that for this single experiment the team implemented the energy calibration for the setup in situ and also installed a unique four-bounce monochromator particularly for the higher energies. This was a credit to these researchers and the beamline staff. The Sn foil thicknesses were nominally 25 µm, 50 µm, 100 µm, 150 µm, 200 µm, 250 µm and 500 µm. Sample thicknesses spanned the range of attenuation (0.1–0.9) ≤ [μ/ρ] ≤ (2–7.5) across the wide range of energies. Accuracies were 0.04–3%, and typically in the range 0.1–0.2%. This was used as a test case for new theory (Bourke et al., 2016a[link]).

The X-ray energy was selected by tuning the upstream monochromator crystal so that the X-rays reflected from the (444) planes of silicon were of the desired energy. When this is done, X-rays of all allowed harmonic energies are also transmitted into the beam. Unwanted harmonic energies are then removed by reflecting this partially monochromated beam from the (333) planes of a second, downstream silicon crystal. The downstream channel-cut monochromator crystal was tuned to optimize the reflected X-ray intensity by scanning it through a small range of angles about the Bragg angle corresponding to the (333) planes. The peak intensity was identified from the scan, and the crystal was then set at the angle corresponding to the peak intensity.

Table 11[link] presents some of the data that were collected at 293 energies across and above the K edge of Sn (Fig. 3[link]). The full data set is available as supporting information to this chapter as file bz5029sup6.pdf. The calibrated photon energy (in keV) is followed by the uncertainty in the last significant figures presented in parentheses. The mass attenuation coefficient [μ/ρ] (in cm2 g−1) is similarly given with its uncertainty. The third column is the percentage uncertainty in the mass attenuation coefficient. The second and third columns are determined from the weighted mean of the measurements made with a variety of apertures and foil thicknesses. The weighted mean typically involved about ten individual measurements, and hence if each had similar statistical quality and consistency, the precision of the pooled result could be reduced by just over a factor of three. At a number of energies in the XAFS region only one measurement is used for efficiency, and these naturally have larger uncertainties. The uncertainty in the mass attenuation coefficient was generally evaluated from σsd defined in equations A2 and A3 of the article by de Jonge et al. (2007[link]).

Table 11
Tin metal foils, 29–60 keV: mass attenuation coefficients [μ/ρ] and the imaginary component of the atomic form factor f′′, with one standard error uncertainties in the least significant digits indicated in parentheses

The percentage uncertainty in the mass attenuation coefficients, [\sigma_{\left[{{\mu} / {\rho}}\right]}], is also given. Uncertainty in f′′ includes the measurement uncertainty and the difference between major tabulations of the total Rayleigh plus Compton scattering cross sections. f′′ in the energy range 29.1–30 keV is affected by solid-state effects. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (keV)[μ/ρ] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (%)f′′ (e atom−1)
29.00351 (92) 7.8285 (97) 0.12 0.5740 (23)
29.02351 (92) 7.856 (68) 0.86 0.5767 (59)
29.04350 (92) 7.859 (56) 0.71 0.5774 (51)
29.06348 (92) 7.877 (19) 0.24 0.5794 (27)
29.08347 (92) 7.915 (59) 0.75 0.5829 (53)
29.10345 (92) 8.018 (46) 0.57 0.5918 (43)
29.12345 (92) 8.167 (28) 0.34 0.6045 (31)
29.13344 (92) 8.288 (22) 0.27 0.6147 (28)
29.14344 (92) 8.416 (89) 1.1 0.6254 (76)
29.15342 (92) 8.627 (83) 0.96 0.6431 (72)
29.16341 (92) 9.004 (78) 0.87 0.6743 (68)
29.16442 (92) 9.2723 (97) 0.10 0.6964 (23)
29.16542 (92) 9.395 (76) 0.81 0.7065 (66)
29.16642 (92) 9.422 (75) 0.80 0.7088 (65)
29.16742 (92) 9.526 (75) 0.78 0.7174 (65)
29.16841 (92) 9.586 (74) 0.77 0.7223 (65)
29.16942 (92) 9.704 (74) 0.76 0.7321 (64)
29.17041 (92) 9.758 (73) 0.75 0.7365 (64)
29.17142 (92) 9.868 (73) 0.74 0.7456 (64)
29.17241 (92) 9.991 (13) 0.13 0.7558 (24)
29.17342 (92) 10.109 (72) 0.71 0.7655 (63)
29.17541 (92) 10.395 (71) 0.68 0.7891 (62)
29.17641 (92) 10.568 (70) 0.66 0.8034 (62)
29.17741 (92) 10.776 (70) 0.65 0.8206 (61)
29.18041 (92) 11.481 (14) 0.12 0.8787 (24)
29.18241 (92) 12.079 (69) 0.57 0.9280 (61)
29.18340 (92) 12.476 (68) 0.54 0.9607 (60)
29.18441 (92) 12.887 (68) 0.53 0.9945 (60)
29.18540 (92) 13.413 (67) 0.50 1.0379 (59)
29.18640 (92) 14.041 (66) 0.47 1.0896 (59)
29.18741 (92) 14.762 (67) 0.45 1.1491 (59)
29.18840 (92) 15.803 (18) 0.12 1.2349 (26)
29.18941 (92) 16.711 (66) 0.39 1.3096 (58)
29.19040 (92) 18.226 (65) 0.36 1.4344 (58)
29.19140 (92) 20.067 (65) 0.32 1.5861 (58)
29.19241 (92) 22.202 (65) 0.29 1.7620 (58)
29.19340 (92) 24.943 (65) 0.26 1.9878 (58)
29.19440 (92) 28.765 (65) 0.23 2.3026 (58)
29.19540 (92) 33.208 (67) 0.20 2.6687 (59)
29.19640 (92) 38.36 (11) 0.28 3.0930 (92)
29.19740 (92) 43.214 (70) 0.16 3.4930 (61)
29.19839 (92) 47.893 (70) 0.15 3.8785 (62)
29.19940 (92) 51.164 (72) 0.14 4.1481 (63)
29.20040 (92) 53.026 (80) 0.15 4.3016 (69)
29.20139 (92) 53.771 (84) 0.16 4.3632 (73)
29.20240 (92) 53.433 (76) 0.14 4.3354 (66)
29.20340 (92) 52.616 (76) 0.14 4.2683 (66)
29.20439 (92) 51.020 (78) 0.15 4.1369 (67)
29.20839 (92) 47.343 (72) 0.15 3.8346 (63)
29.20939 (92) 46.753 (73) 0.16 3.7861 (64)
29.21039 (92) 46.190 (67) 0.15 3.7398 (59)
29.21139 (92) 45.895 (69) 0.15 3.7156 (61)
29.21239 (92) 45.567 (43) 0.095 3.6888 (41)
29.21339 (92) 45.626 (71) 0.16 3.6937 (62)
29.21439 (92) 45.678 (66) 0.14 3.6982 (58)
29.21539 (92) 45.829 (67) 0.15 3.7107 (59)
29.21739 (92) 46.352 (71) 0.15 3.7541 (62)
29.21839 (92) 46.528 (65) 0.14 3.7687 (58)
29.21939 (92) 46.725 (68) 0.14 3.7851 (60)
29.22038 (92) 46.754 (54) 0.12 3.7876 (49)
29.22238 (92) 46.994 (66) 0.14 3.8077 (58)
29.22338 (92) 46.987 (66) 0.14 3.8072 (59)
29.22438 (92) 46.748 (62) 0.13 3.7876 (56)
29.22639 (92) 46.641 (64) 0.14 3.7791 (57)
29.22738 (92) 46.402 (66) 0.14 3.7595 (58)
29.22838 (92) 45.891 (54) 0.12 3.7175 (49)
29.23038 (92) 45.443 (65) 0.14 3.6808 (58)
29.23138 (92) 45.199 (64) 0.14 3.6609 (57)
29.23238 (92) 45.095 (64) 0.14 3.6524 (57)
29.23338 (92) 45.026 (63) 0.14 3.6469 (56)
29.23438 (92) 45.092 (63) 0.14 3.6524 (56)
29.23538 (92) 45.311 (65) 0.14 3.6706 (58)
29.23638 (92) 45.439 (42) 0.092 3.6813 (41)
29.23738 (92) 45.708 (64) 0.14 3.7036 (57)
29.23837 (92) 45.938 (63) 0.14 3.7227 (56)
29.23938 (92) 46.161 (63) 0.14 3.7412 (56)
29.24037 (92) 46.349 (63) 0.14 3.7569 (56)
29.24137 (92) 46.617 (64) 0.14 3.7791 (57)
29.24237 (92) 46.839 (64) 0.14 3.7976 (57)
29.24337 (92) 47.037 (63) 0.13 3.8140 (56)
29.24437 (92) 47.267 (32) 0.067 3.8331 (34)
29.24537 (92) 47.532 (64) 0.13 3.8551 (57)
29.24636 (92) 47.741 (64) 0.13 3.8725 (57)
29.24736 (92) 47.879 (63) 0.13 3.8840 (56)
29.24837 (92) 48.022 (64) 0.13 3.8959 (57)
29.24936 (92) 48.097 (65) 0.13 3.9022 (58)
29.25037 (92) 48.133 (65) 0.13 3.9053 (57)
29.25137 (92) 47.982 (64) 0.13 3.8930 (57)
29.25237 (92) 47.749 (88) 0.18 3.8739 (76)
29.25337 (92) 47.721 (64) 0.13 3.8718 (57)
29.25436 (92) 47.512 (65) 0.14 3.8547 (58)
29.25536 (92) 47.169 (65) 0.14 3.8265 (58)
29.25636 (92) 46.988 (65) 0.14 3.8117 (58)
29.25736 (92) 46.739 (66) 0.14 3.7912 (58)
29.25836 (92) 46.464 (66) 0.14 3.7687 (59)
29.25936 (92) 46.223 (65) 0.14 3.7489 (58)
29.26035 (92) 45.859 (61) 0.13 3.7190 (55)
29.26136 (92) 45.773 (66) 0.14 3.7121 (58)
29.26236 (92) 45.616 (67) 0.15 3.6992 (60)
29.26336 (92) 45.399 (66) 0.15 3.6815 (58)
29.26436 (92) 45.365 (67) 0.15 3.6788 (59)
29.26535 (92) 45.262 (68) 0.15 3.6704 (60)
29.26636 (92) 45.262 (68) 0.15 3.6705 (60)
29.26736 (92) 45.303 (70) 0.15 3.6740 (61)
29.26836 (92) 45.254 (44) 0.098 3.6701 (42)
29.26935 (92) 45.364 (69) 0.15 3.6793 (61)
29.27035 (92) 45.516 (70) 0.15 3.6920 (61)
29.27135 (92) 45.646 (73) 0.16 3.7029 (64)
29.27236 (92) 45.790 (70) 0.15 3.7149 (62)
29.27335 (92) 45.994 (71) 0.15 3.7318 (62)
29.27435 (92) 46.218 (74) 0.16 3.7505 (65)
29.27535 (92) 46.485 (76) 0.16 3.7727 (66)
29.27635 (92) 46.643 (20) 0.043 3.7859 (27)
29.27735 (92) 46.874 (77) 0.16 3.8050 (67)
29.27934 (92) 47.113 (73) 0.15 3.8251 (64)
29.28335 (92) 47.631 (75) 0.16 3.8684 (66)
29.28435 (92) 47.53 (10) 0.21 3.8599 (85)
29.28534 (92) 47.498 (76) 0.16 3.8577 (67)
29.28734 (92) 47.425 (78) 0.16 3.8519 (68)
29.29134 (92) 47.012 (80) 0.17 3.8184 (70)
29.29234 (92) 46.776 (54) 0.11 3.7989 (49)
29.29334 (92) 46.715 (81) 0.17 3.7941 (70)
29.29434 (92) 46.681 (82) 0.18 3.7914 (71)
29.29534 (92) 46.595 (82) 0.18 3.7844 (71)
29.29634 (92) 46.604 (85) 0.18 3.7852 (74)
29.29734 (92) 46.434 (84) 0.18 3.7713 (73)
29.29833 (92) 46.417 (83) 0.18 3.7701 (72)
29.29934 (92) 46.379 (84) 0.18 3.7671 (73)
29.30033 (92) 46.236 (39) 0.085 3.7553 (39)
29.30134 (92) 46.257 (86) 0.19 3.7572 (74)
     
58.6641 (31) 7.01 (20) 2.9 1.102 (34)
59.3636 (33) 6.814 (66) 0.97 1.084 (12)
60.0632 (34) 6.558 (96) 1.5 1.054 (17)
[Figure 3]

Figure 3

Tin, 29–60 keV. XAFS measured with high absolute accuracy (de Jonge et al., 2007[link]) (green diamonds), where the energy is given as EE0 above the absorption edge with E0 = 29.195 keV (see the original paper for the full spectrum), compared with predicted values from the FDMX package with default physical parameters (solid blue line) and with an added exponential background function (dotted red line) (Bourke et al., 2016a[link]).

The imaginary component of the atomic form factor f′′ was evaluated from equation (3)[link] and [μ/ρ]pe has been evaluated by subtracting the average of the Rayleigh plus Compton contribution as tabulated in XCOM (Scofield, 1973[link]; Berger & Hubbell, 1987[link]; Gerward et al., 2004[link]) and FFAST (Chantler, 1995[link], 2000[link]; Chantler et al., 2000[link]). In parentheses following the reported values are uncertainties in f′′, evaluated from equation (4)[link], which include an uncertainty contribution of half of the difference ΔRC between the two tabulated values of the Rayleigh plus Compton contribution.

The use of the photoelectric component of the attenuation determined in this manner is appropriate when Rayleigh and Compton scattering are the only significant other contributions to the total attenuation. This is certainly the case in the energy range covered by this experiment apart from near the absorption edge and in the region of the XAFS. In these regions the influence of solid-state and bonding effects is naturally substantial. Table 12[link] presents estimates of the individual error contributions to the reported values.

Table 12
Tin metal foils, 29–60 keV: error contributions

QuantityEstimated magnitudeContributions and comments
[μ/ρ] away from the absorption edge 0.04% Accuracy limited by the full-foil mapping technique
  <3% Precision, limited by counting statistics
  <0.03% Incorrectly estimated dark current
 
[μ/ρ] near the absorption edge (29.15–30 keV) <0.01% X-ray bandwidth
 
E 0.003–0.007% Monochromator dispersion function interpolation
f′′ 0–0.2–0.4% Inconsistency of subtracted scattering components

10. Copper foils revisited, 5–20 keV. XAS, XAFS, bonding, portability and theory

Glover et al. (2008)[link] attempted to test the beamline independence of earlier copper metal foil measurements of XAS and also attempted to investigate the XAFS structure directly. A total of 108 data points were collected across, above and below the K edge compared with the previous best synchrotron data set, which had 84 points across the energy range 8.9–20 keV. Samples of nominal thicknesses of 5 µm, 10 µm, 15 µm, 30 µm and 100 µm were used with three samples for every measured energy, as given in Table 13[link]. The measurements are accurate to between 0.09% and 4.5%, with most measurements being accurate to better than 0.12%. A key systematic error due to monochromator drift during the measurements was characterized accurately. This enabled development of advanced theory of XAFS (Bourke & Chantler, 2010a[link]), the development of the field of extracting photoelectron inelastic mean free paths from XAFS data sets (Bourke & Chantler, 2010b[link]) and development of the theory of the inelastic mean free path of electrons (IMFP theory) (Bourke & Chantler, 2012[link]; Chantler & Bourke, 2014a[link]). It also allowed detailed exploration of developments of XAS theory (Kas et al., 2010[link]).

Table 13
Nominal thicknesses of copper metal foils for 5–20 keV study

The samples were changed at 16 keV, 8.5 keV, 8 keV and 6 keV. Samples where [ρt] was determined using the full-foil mapping technique are indicated in bold.

 Sample
Energy range (keV)Position 1Position 2Position 3
20–18 100 µm (sample a) 100 µm (sample b) 30 µm
18–16 100 µm (sample a) 10 µm 30 µm
16–8.5 15 µm 10 µm 5 µm
8.5–8 15 µm 100 µm (sample b) 5 µm
8–6 15 µm 10 µm 30 µm
6–5 15 µm 10 µm 5 µm

The imaginary component of the form factor quantifies the photoelectric absorption of a material. Photoelectric absorption is the dominant contributor to the X-ray mass attenuation coefficient for copper for the energies in Table 14[link], with scattering contributing less than 5%. The photoelectric mass absorption was calculated from the measured total mass attenuation coefficient by subtracting the contribution to the attenuation from Rayleigh and Compton scattering. The scattering contribution was calculated by taking the average of the FFAST (Chantler, 2000[link]) and XCOM (Berger & Hubbell, 1987[link]) tabulations of the Rayleigh plus Compton attenuation coefficient with the uncertainty assumed to be the difference between the two tabulations divided by [\sqrt 2]. The scattering uncertainty contributed between 0.05% and 0.13% to the photoelectric absorption and is only significant in the region just below the edge. The imaginary component of the atomic form factor f′′ was calculated using equation (3)[link].

Table 14
Copper metal foils, 5–20 keV: mass attenuation coefficients and form factors at 108 energies, with one standard deviation uncertainties in the least significant digit(s) given in parentheses

f′′ values between 8.95 keV and 9.5 keV are affected by solid-state effects.

E (keV)[μ/ρ] (cm2 g−1)σ[μ/ρ] (%)f′′ (e atom−1)
5.0053 (6) 193.5 (3) 0.136 1.440 (2)
5.1060 (6) 182.97 (19) 0.106 1.3883 (15)
5.2063 (6) 173.10 (18) 0.101 1.3383 (14)
5.3069 (6) 164.00 (16) 0.095 1.2916 (13)
5.4073 (6) 155.57 (15) 0.095 1.2475 (12)
5.5079 (6) 147.69 (14) 0.095 1.2055 (12)
5.6085 (6) 140.24 (14) 0.100 1.1648 (12)
5.7089 (6) 133.47 (13) 0.099 1.1276 (12)
5.8096 (6) 127.08 (14) 0.112 1.0917 (13)
5.9100 (6) 121.13 (14) 0.112 1.0578 (12)
6.0105 (6) 115.76 (11) 0.093 1.0274 (10)
6.1111 (6) 110.77 (11) 0.094 0.9989 (10)
6.2114 (6) 106.16 (11) 0.100 0.9724 (10)
6.3117 (5) 101.41 (10) 0.094 0.9432 (9)
6.4123 (5) 96.95 (9) 0.095 0.9153 (9)
6.5128 (5) 92.62 (9) 0.096 0.8874 (9)
6.6130 (5) 88.52 (8) 0.094 0.8605 (9)
6.7136 (5) 84.83 (9) 0.109 0.8365 (10)
6.8142 (5) 81.23 (9) 0.108 0.8122 (10)
6.9148 (5) 78.46 (8) 0.106 0.7957 (10)
7.0151 (5) 74.78 (7) 0.098 0.7685 (9)
7.1156 (5) 71.80 (7) 0.096 0.7478 (8)
7.2160 (5) 68.98 (7) 0.094 0.7280 (8)
7.3168 (5) 66.32 (7) 0.098 0.7090 (8)
7.4171 (5) 63.77 (7) 0.105 0.6906 (8)
7.5174 (5) 61.30 (6) 0.095 0.6721 (8)
7.6180 (5) 59.04 (7) 0.110 0.6555 (9)
7.7184 (5) 56.89 (6) 0.105 0.6394 (8)
7.8190 (5) 54.80 (5) 0.098 0.6233 (8)
7.9195 (5) 52.78 (5) 0.097 0.6075 (8)
8.0200 (4) 50.95 (5) 0.100 0.5933 (8)
8.1204 (4) 49.18 (5) 0.106 0.5794 (8)
8.2212 (4) 47.48 (5) 0.098 0.5658 (8)
8.3215 (4) 45.90 (4) 0.097 0.5531 (7)
8.4222 (4) 44.38 (4) 0.101 0.5407 (8)
8.5220 (4) 42.95 (4) 0.097 0.5289 (8)
8.6226 (4) 41.50 (4) 0.104 0.5166 (8)
8.7231 (4) 40.10 (5) 0.122 0.5045 (9)
8.8236 (4) 38.76 (4) 0.109 0.4928 (8)
8.9229 (4) 37.91 (4) 0.104 0.4870 (8)
8.9431 (4) 38.06 (10) 0.268 0.4902 (15)
8.9529 (4) 38.32 (11) 0.277 0.4944 (16)
8.9578 (4) 38.61 (10) 0.258 0.4985 (15)
8.9629 (4) 39.04 (13) 0.331 0.5046 (19)
8.9680 (4) 39.9 (2) 0.517 0.517 (3)
8.9732 (4) 41.5 (5) 1.297 0.539 (7)
8.9782 (4) 58.6 (7) 1.218 0.771 (10)
8.9830 (4) 157.2 (5) 0.340 2.108 (7)
8.9880 (4) 193.2 (7) 0.378 2.598 (10)
8.9930 (4) 282.3 (5) 0.165 3.810 (6)
8.9981 (4) 293.6 (7) 0.232 3.966 (9)
9.0032 (4) 311.0 (5) 0.171 4.204 (7)
9.0084 (4) 291.7 (6) 0.189 3.944 (8)
9.0134 (4) 276.6 (5) 0.187 3.741 (7)
9.0183 (4) 288.7 (5) 0.178 3.908 (7)
9.0232 (4) 309.3 (4) 0.116 4.190 (5)
9.0283 (4) 315.4 (5) 0.155 4.277 (7)
9.0332 (4) 295.2 (4) 0.139 4.003 (6)
9.0384 (4) 287.3 (3) 0.120 3.898 (5)
9.0436 (4) 291.0 (3) 0.102 3.951 (4)
9.0486 (4) 291.9 (3) 0.119 3.965 (5)
9.0537 (4) 296.0 (4) 0.129 4.024 (5)
9.0635 (5) 306.2 (5) 0.151 4.167 (6)
9.0735 (5) 318.0 (5) 0.161 4.334 (7)
9.0836 (5) 298.3 (4) 0.149 4.068 (6)
9.0935 (5) 285.3 (3) 0.114 3.894 (5)
9.1034 (5) 279.7 (4) 0.144 3.822 (6)
9.1138 (5) 294.4 (4) 0.132 4.028 (5)
9.1237 (5) 299.0 (4) 0.146 4.095 (6)
9.1334 (5) 317.7 (5) 0.150 4.359 (7)
9.1438 (5) 306.7 (5) 0.165 4.212 (7)
9.1539 (5) 279.8 (5) 0.181 3.844 (7)
9.1638 (5) 271.3 (5) 0.168 3.730 (6)
9.1738 (5) 289.9 (3) 0.110 3.992 (4)
9.1841 (5) 290.8 (3) 0.112 4.009 (5)
9.1941 (5) 288.2 (4) 0.125 3.978 (5)
9.2038 (5) 291.8 (4) 0.122 4.031 (5)
9.2140 (5) 298.8 (4) 0.146 4.134 (6)
9.2241 (5) 291.1 (5) 0.160 4.031 (7)
9.2340 (4) 278.3 (3) 0.094 3.858 (4)
9.2440 (5) 274.5 (3) 0.106 3.808 (4)
9.2541 (5) 275.6 (3) 0.113 3.828 (4)
9.2643 (5) 277.3 (3) 0.122 3.855 (5)
9.2742 (5) 280.1 (3) 0.117 3.899 (5)
9.2842 (5) 281.5 (3) 0.104 3.923 (4)
9.2945 (5) 282.5 (3) 0.110 3.941 (4)
9.3045 (5) 280.9 (4) 0.150 3.923 (6)
9.3144 (5) 276.1 (3) 0.120 3.860 (5)
9.3251 (5) 272.7 (3) 0.101 3.816 (4)
9.3758 (4) 269.1 (2) 0.091 3.786 (4)
9.4257 (4) 263.2 (2) 0.093 3.723 (4)
9.4758 (4) 257.8 (2) 0.092 3.665 (3)
9.5268 (4) 255.4 (3) 0.099 3.651 (4)
9.6267 (4) 246.6 (3) 0.126 3.561 (5)
9.7275 (4) 238.5 (2) 0.092 3.480 (3)
9.8279 (4) 231.8 (2) 0.093 3.417 (3)
9.9282 (4) 225.3 (2) 0.091 3.353 (3)
10.0284 (3) 219.0 (2) 0.094 3.294 (3)
11.0334 (3) 168 (6) 3.417 2.78 (10)
12.0385 (3) 131 (6) 4.384 2.36 (10)
13.0442 (3) 108.00 (10) 0.096 2.104 (2)
14.0496 (3) 88.42 (9) 0.100 1.853 (2)
15.0559 (3) 73.42 (7) 0.098 1.6466 (18)
16.0619 (4) 61.60 (6) 0.093 1.4715 (16)
17.0699 (4) 52.20 (5) 0.093 1.3233 (15)
18.0768 (5) 44.69 (4) 0.094 1.1977 (13)
19.0836 (5) 38.51 (4) 0.099 1.0878 (12)
20.0885 (6) 33.45 (3) 0.092 0.9927 (10)

This study used samples of metallic (solid-state) copper, but these gave an excellent approximation to the atomic values outside the edge regions. The equivalence of the solid-state and atomic mass attenuation coefficients outside the edge and XAFS regions has been suggested and illustrated for cadmium (Kodre et al., 2006[link]). Therefore, this measurement of the form factor approximates the atomic form factor of copper, except at the edge and in the XAFS region between 8.9 keV and 9.5 keV where solid-state effects are dominant.

Measurements of the mass attenuation coefficient prove useful for XAFS and as a standard XAFS spectrum. XAFS analysis does not require absolute measurements of the mass attenuation coefficient; for current modelling it conventionally requires high-accuracy relative measurements. Therefore the uncertainty due to the absolute thickness determination (0.092%) can be subtracted from the total uncertainty when the data from Table 14[link] are used in XAFS analyses. The uncertainty in the mass attenuation coefficient was dominated by the contribution due to the absolute calibration, so subtracting this reduces the uncertainty greatly. The data are available as supporting information to this chapter as file bz5029sup7.pdf.

A particular success of this work was the proof of consistency within uncertainty to the earlier extensive XAS measurement, proving that stability and accuracy can be correctly measured and consistently determined. This was not a full proof of beamline portability and transferability but was a very welcome demonstration. Another useful development was the identification of effective harmonic contributions versus relative harmonic probability, its measurement and the determination of its impact (Glover & Chantler, 2009[link]).

Table 14[link] gives the calibrated X-ray energy in keV with the uncertainty in the last significant digit(s) given in parentheses. The second column gives the value of the mass attenuation coefficient in cm2 g−1 with the uncertainty in parentheses. Column three gives the uncertainty in the mass attenuation coefficient as a percentage of its value. The fourth column lists the imaginary component of the form factor along with its uncertainty in parentheses. Table 15[link] gives a breakdown of the contributions to the uncertainty of the energy, mass attenuation coefficient and imaginary component of the form factor.

Table 15
Copper metal foils, 5–20 keV: uncertainty contributions to the mass attenuation coefficient, imaginary component of the form factor and energy

QuantityUncertaintyComment
[μ/ρ] 0.092% Accuracy of the full-foil mapping
  <0.11% 5.0–5.3 keV due to harmonics
  <1.4% Uncertainty due to energy drift in the edge and XAFS region
  4% At 11 and 12 keV due to detector saturation
     
f′′ 0.09–4.5% Contribution from [μ/ρ]
  <0.15% Scattering contribution uncertainty, largest just below edge
     
E 0.3–0.6 eV Accuracy limited by powder diffraction determination
  <0.15 eV Energy drift uncertainty between 8 keV and 10 keV

11. Zinc foils, 7.2–15.2 keV. XAS, accuracy and relative (XAFS) accuracy

Rae et al. (2010a)[link] reported a short XAS spectrum with a very large grid spacing and no XAFS. This had only 19 energy points across the energy range with an absolute accuracy of between 0.044% and 0.197%. This was the most accurate determination of any attenuation coefficient on a bending-magnet beamline at that time and reduced the absolute uncertainty by a factor of 3 compared with earlier work by using advances in integrated column density determination and the full-foil mapping technique.

Four zinc foils of nominal thicknesses of 10 µm, 25 µm, 50 µm and 100 µm provided a range of log attenuation values [0.5\leq\ln\left[{{I_{0}} / {I}}\right]\leq 6] across the experimental energy range. This work defined and presented a `relative accuracy' of 0.006%, which is not the same as either the precision or the absolute accuracy. Relative accuracy is the appropriate parameter for standard implementation of analysis of near-edge spectra, so can be called the `XAFS accuracy'. These additional data are therefore particularly relevant for XAFS analysis. This work also provided estimates of the assumed (Rayleigh and Compton) scattering so that any errors in that assumption could be clarified or corrected for in later work, and clarified methods for absolute determination of the integrated column density and thickness, and hence for the mass attenuation coefficient (Rae et al., 2010b[link]). The data are shown in Table 16[link] and are also available as supporting information to this chapter as file bz5029sup8.pdf.

Table 16
Zinc metal foils, 7.2–15.2 keV (Rae et al., 2010a[link]): mass attenuation coefficients [μ/ρ] and the imaginary component of the form factor, f′′, with one standard deviation uncertainties in parentheses

The relative absolute accuracy of the mass attenuation coefficient [\sigma_{\left[{{\mu} /{\rho}}\right]_{\rm rel}}] and the percentage (absolute) accuracy [\sigma_{\left[{{\mu} / {\rho}}\right]}] are given. The (photoelectric) mass absorption coefficient [\left[{{\mu} / {\rho}}\right]_{\rm pe}] is derived by subtracting the mass attenuation due to Raleigh and Compton scattering [\left[{{\mu} / {\rho}}\right]_{\rm R+C}] from the total mass attenuation coefficient, to derive the form factor f′′. The uncertainty in [\left[{{\mu} / {\rho}}\right]_{\rm R+C}] estimated by half the discrepancy between tabulations in XCOM and FFAST is included in the uncertainty of f′′.

E (keV)[μ/ρ] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (% relative)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (% absolute)[\left[{{\mu} / {\rho}}\right]_{\rm pe}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm R+C}] (cm2 g−1)f′′ (e atom−1)
15.2255 (12) 78.397 (41) 0.029 0.053 77.335 (97) 1.062 (71) 1.83 (12)
14.6257 (11) 87.284 (57) 0.049 0.066 86.172 (84) 1.111 (66) 1.95 (11)
14.0222 (11) 97.767 (67) 0.053 0.069 96.601 (67) 1.165 (56) 2.10 (10)
13.4208 (10) 109.924 (62) 0.035 0.056 108.6997 (41) 1.224 (49) 2.267 (92)
12.8180 (11) 124.249 (64) 0.026 0.051 122.9607 (90) 1.288 (45) 2.449 (86)
12.4176 (11) 135.243 (85) 0.045 0.063 133.9091 (33) 1.334 (43) 2.584 (84)
12.0148 (12) 147.907 (71) 0.019 0.048 146.5242 (73) 1.383 (43) 2.736 (86)
11.6143 (13) 161.699 (77) 0.017 0.047 160.2643 (92) 1.434 (45) 2.893 (91)
11.2139 (14) 177.92 (11) 0.050 0.067 176.4381 (81) 1.489 (48) 3.07 (10)
10.8124 (15) 195.946 (87) 0.006 0.044 194.3975 (63) 1.548 (53) 3.26 (11)
10.4116 (16) 218.12 (30) 0.130 0.138 216.5165 (83) 1.611 (60) 3.50 (13)
10.0108 (18) 247.32 (34) 0.133 0.141 245.6427 (16) 1.678 (70) 3.82 (15)
9.6098 (19) 34.826 (30) 0.075 0.087 33.075 (26) 1.750 (64) 0.494 (18)
9.2089 (20) 38.848 (31) 0.068 0.081 37.020 (48) 1.827 (57) 0.529 (16)
8.8081 (21) 44.102 (87) 0.192 0.197 42.192 (02) 1.910 (52) 0.577 (16)
8.4069 (23) 50.290 (31) 0.042 0.061 48.290 (90) 1.999 (51) 0.631 (16)
8.0065 (24) 57.711 (72) 0.117 0.126 55.615 (11) 2.095 (53) 0.692 (17)
7.6056 (26) 66.672 (43) 0.047 0.064 64.473 (72) 2.199 (41) 0.762 (14)
7.2048 (27) 77.376 (91) 0.110 0.118 75.059 (76) 2.317 (36) 0.840 (13)

12. Gold foils, 38–50 keV. XAS study

Islam et al. (2010b)[link] reported an XAS spectrum with 9 points between the K and L edges, hence with no points covering XAFS. This data set is not useful for edge determination, reference calibration or for studying bonding and dynamic structure, and many other good sets of relative data are available along with a high-accuracy set of absolute data (Glover et al., 2010[link]). However, the data set given by Islam et al. (2010b)[link] represented a detailed study of systematic errors and XAS at higher energies, and gold metal foils give a good approximation to atomic form factors for use as a reference standard and for calibration. Four gold foils with nominal thicknesses of 9.3 µm, 100.6 µm, 116.5 µm and 275 µm were used for the measurements. The study clarified methods for the absolute determination of the integrated column density and thickness, especially for foil samples (Islam et al., 2010a[link]). The method for energy analysis using powder diffraction standards was also detailed (Rae et al., 2010c[link]). The data are shown in Table 17[link] and are also available as supporting information to this chapter as the file bz5029sup9.pdf.

Table 17
Gold foils, 38–50 keV: [μ/ρ] in the energy range 37.95–49.86 keV with [ρt]c determined from a comparison with the reference foil

Numbers in parentheses are the standard deviations of the parameter in the least significant digits. [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] is the percentage uncertainty from the standard deviations of the measurements. [\sigma_{\left[{{\mu} / {\rho}}\right]}] is the total percentage uncertainty including the contribution from the uncertainty in the absolute value of [ρt]c, where [\%\sigma_{[\rho{t}]_{\rm c}} = 0.1\%]. The (photoelectric) mass absorption coefficient [\left[{{\mu} / {\rho}}\right]_{\rm pe}] and the imaginary part of the atomic scattering factor f′′ are also given.

E (keV)[μ/ρ] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (% relative)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (% absolute)[\left[{{\mu} / {\rho}}\right]_{\rm pe}] (cm2 g−1)f′′ (e atom−1)
37.95137 (29) 14.6962 (32) 0.022% 0.102% 13.6625 (158) 2.4275 (28)
38.94325 (30) 13.7352 (17) 0.012% 0.101% 12.7327 (165) 2.3214 (30)
39.95217 (31) 12.8518 (13) 0.010% 0.101% 11.8865 (140) 2.2223 (26)
40.92519 (32) 12.0540 (18) 0.015% 0.101% 11.1168 (145) 2.1299 (28)
41.92506 (35) 11.3171 (30) 0.027% 0.102% 10.4104 (133) 2.0430 (27)
43.90285 (51) 10.0214 (15) 0.015% 0.101% 9.1678 (126) 1.8843 (26)
45.88667 (62) 8.9164 (16) 0.018% 0.102% 8.1138 (104) 1.7430 (23)
47.87059 (94) 7.9821 (19) 0.024% 0.103% 7.2234 (99) 1.6188 (22)
49.8545 (11) 7.1685 (10) 0.014% 0.101% 6.4499 (89) 1.5054 (21)

13. Gold foils, 14.2–21.1 keV. LI edge XAS, XAFS and bonding

Glover et al. (2010)[link] provided a detailed XAS and XAFS data set for gold metal foils across the LI edge, accurate to between 0.08% and 0.10%, dominated by the absolute calibration uncertainty. Four gold foil thicknesses were used, nominally 5 µm, 9 µm, 15 µm and 25 µm. This helped to develop the absolute method for integrated column density determination for foils: the multiple independent foil technique (Chantler et al., 2012b[link]).

An analysis of the LI edge XAFS showed excellent agreement between the measured and simulated XAFS and yielded highly accurate values of the bond lengths of gold. This data set included 91 points across the LI edge, and the study included comparison with eFEFFit analysis following iFEFFit (i.e. providing and fitting input data uncertainties). This data set measured nanoroughness in 5 µm gold foils inside the spot size of the synchrotron beam (Glover et al., 2009[link]), which is very important for nanostructure quality control, and modelled the fluorescence signature (Fig. 4[link]).

[Figure 4]

Figure 4

Mass attenuation coefficients for gold metal, 14.2–21.1 keV, plotted with experimental error bars (Glover et al., 2010[link]). The gold LI absorption edge can be seen at 14.35 keV with the associated XAFS from 14.35 keV to 14.75 keV. Copyright IOP Publishing. Reproduced with permission. All rights reserved.

The photoelectric mass absorption coefficient was calculated by subtracting the contribution from Rayleigh and Compton scattering. The scattering attenuation coefficient was calculated from the average of the FFAST (Chantler, 2000[link]) and XCOM (Berger & Hubbell, 1987[link]) tabulations and the uncertainty was assumed to be the difference between the two tabulations divided by [\sqrt 2]. The uncertainty in the scattering attenuation contributed less than 0.03% to the photoelectric absorption and was not a major source of error. These measurements should provide a good approximation to the imaginary part of the atomic form factor of gold, except at the edge and in the XAFS region between about 14.3 keV and 15 keV, where solid-state effects are significant. The data are available as supporting information to this chapter as file bz5029sup10.pdf. The experimental and fitted structure of the XAFS above the edge are shown in Fig. 5[link].

[Figure 5]

Figure 5

Gold metal, 14.2–21.1 keV (Glover et al., 2010[link]), experiment and fitted structure of the XAFS above the LI edge. The standard XAFS signal χ(k) is plotted. Experimental measurements in are in black with error bars for experimental uncertainties. The FEFF fit is the dark green line. The agreement is excellent ([\chi^{2}_{\rm r} = 1.94]). Copyright IOP Publishing. Reproduced with permission. All rights reserved.

Table 18[link] gives the values and uncertainties of the calibrated X-ray energy, mass attenuation coefficient, photoelectric mass absorption coefficient and imaginary component of the form factor. Column four lists the accuracy of the mass attenuation coefficient measurement excluding the contribution from the absolute calibration. This quantity is useful for XAFS, since most researchers use and analyse attenuation data on a relative scale. This quantity is referred to as σrel. A breakdown of the various contributions to the uncertainty in the energy, mass attenuation coefficient and imaginary part of the form factor is given in Table 19[link].

Table 18
Gold foils, 14.2–21.1 keV: mass attenuation coefficients tabulated at 91 energies with one standard deviation uncertainties in the least significant digit(s) given in parentheses

[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] is the precision of the mass attenuation coefficient measurements (the uncertainty excluding the contribution from full-foil mapping), which is useful for XAFS research. f′′ is the imaginary component of the form factor of gold with uncertainties in parentheses. f′′ values between 14.35 keV and 14.8 keV (at and above the edge) include solid-state effects.

E (keV)[μ/ρ] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm pe}] (cm2 g−1)f′′ (e atom−1)
14.2496 (6) 163.45 (15) 0.09 0.06 160.01 (15) 10.672 (10)
14.3087 (6) 162.62 (14) 0.08 0.03 159.20 (14) 10.662 (9)
14.3289 (4) 162.55 (14) 0.08 0.03 159.13 (14) 10.673 (9)
14.3389 (4) 162.85 (14) 0.08 0.02 159.44 (14) 10.701 (9)
14.3436 (3) 163.29 (14) 0.08 0.03 159.87 (14) 10.734 (9)
14.3484 (3) 164.15 (14) 0.08 0.03 160.74 (14) 10.795 (10)
14.3533 (3) 166.27 (14) 0.08 0.04 162.85 (14) 10.941 (10)
14.3581 (3) 170.32 (15) 0.08 0.04 166.91 (15) 11.217 (10)
14.3628 (3) 176.21 (16) 0.08 0.06 172.80 (16) 11.617 (11)
14.3679 (3) 181.76 (16) 0.08 0.05 178.35 (16) 11.994 (11)
14.3731 (3) 184.35 (16) 0.08 0.04 180.94 (16) 12.173 (11)
14.3781 (3) 183.62 (16) 0.08 0.04 180.21 (16) 12.128 (11)
14.3832 (3) 182.65 (16) 0.08 0.04 179.24 (16) 12.067 (11)
14.3881 (3) 183.18 (16) 0.08 0.04 179.77 (16) 12.107 (11)
14.3935 (3) 184.50 (16) 0.08 0.04 181.09 (16) 12.201 (11)
14.3987 (3) 184.55 (16) 0.08 0.04 181.15 (16) 12.209 (11)
14.4040 (3) 183.55 (16) 0.08 0.04 180.15 (16) 12.146 (11)
14.4091 (3) 182.79 (16) 0.08 0.04 179.39 (16) 12.099 (11)
14.4141 (3) 182.71 (16) 0.08 0.04 179.32 (16) 12.098 (11)
14.4190 (3) 182.84 (16) 0.08 0.04 179.44 (16) 12.111 (11)
14.4241 (3) 183.09 (16) 0.08 0.04 179.69 (16) 12.132 (11)
14.4292 (3) 183.28 (16) 0.08 0.04 179.89 (16) 12.150 (11)
14.4339 (3) 183.39 (16) 0.08 0.04 180.00 (16) 12.161 (11)
14.4390 (3) 183.04 (16) 0.08 0.04 179.64 (16) 12.141 (11)
14.4437 (3) 182.53 (16) 0.08 0.04 179.14 (16) 12.111 (11)
14.4487 (3) 182.01 (16) 0.08 0.04 178.62 (16) 12.080 (11)
14.4534 (3) 181.80 (16) 0.08 0.04 178.41 (16) 12.070 (11)
14.4583 (3) 181.63 (16) 0.08 0.04 178.24 (16) 12.063 (11)
14.4636 (3) 181.55 (16) 0.08 0.04 178.16 (16) 12.062 (11)
14.4687 (3) 181.25 (16) 0.08 0.04 177.87 (16) 12.046 (11)
14.4788 (4) 181.01 (16) 0.08 0.04 177.63 (16) 12.038 (11)
14.4892 (4) 181.00 (16) 0.08 0.04 177.62 (16) 12.046 (11)
14.4997 (4) 180.74 (16) 0.08 0.04 177.36 (16) 12.037 (11)
14.5098 (4) 180.22 (16) 0.08 0.04 176.84 (16) 12.011 (11)
14.5201 (4) 179.80 (16) 0.08 0.04 176.43 (16) 11.991 (11)
14.5300 (4) 179.35 (16) 0.08 0.04 175.99 (16) 11.969 (11)
14.5398 (4) 179.04 (15) 0.08 0.04 175.68 (16) 11.956 (11)
14.5496 (4) 179.02 (15) 0.08 0.04 175.65 (15) 11.962 (11)
14.5596 (4) 179.03 (15) 0.08 0.04 175.67 (15) 11.972 (11)
14.5696 (4) 178.73 (15) 0.08 0.04 175.37 (15) 11.960 (11)
14.5799 (4) 178.27 (15) 0.08 0.04 174.91 (15) 11.937 (11)
14.5903 (4) 177.57 (15) 0.08 0.04 174.22 (15) 11.898 (11)
14.6006 (4) 177.13 (15) 0.08 0.04 173.78 (15) 11.876 (10)
14.6106 (4) 176.87 (15) 0.08 0.04 173.52 (15) 11.867 (10)
14.6203 (4) 176.82 (15) 0.08 0.04 173.47 (15) 11.871 (10)
14.6304 (4) 176.56 (15) 0.08 0.04 173.22 (15) 11.862 (10)
14.6401 (4) 176.35 (15) 0.08 0.04 173.01 (15) 11.856 (10)
14.6504 (4) 176.01 (15) 0.08 0.04 172.67 (15) 11.841 (10)
14.6606 (4) 175.58 (15) 0.08 0.04 172.25 (15) 11.820 (10)
14.6709 (4) 175.02 (15) 0.08 0.04 171.69 (15) 11.790 (10)
14.6812 (4) 174.74 (15) 0.08 0.04 171.42 (15) 11.779 (10)
14.6916 (4) 174.54 (15) 0.08 0.04 171.22 (15) 11.774 (10)
14.7016 (4) 174.36 (15) 0.08 0.04 171.04 (15) 11.770 (10)
14.7116 (4) 174.02 (15) 0.08 0.04 170.70 (15) 11.755 (10)
14.7212 (4) 173.79 (15) 0.08 0.04 170.47 (15) 11.746 (10)
14.7311 (4) 173.46 (15) 0.08 0.04 170.14 (15) 11.732 (10)
14.7411 (4) 173.13 (15) 0.08 0.04 169.81 (15) 11.717 (10)
14.7521 (4) 172.56 (15) 0.08 0.02 169.25 (15) 11.687 (10)
14.8034 (6) 171.29 (15) 0.08 0.02 167.99 (15) 11.640 (10)
14.8531 (6) 169.64 (14) 0.08 0.02 166.35 (14) 11.565 (10)
14.9040 (6) 168.35 (14) 0.08 0.02 165.08 (14) 11.516 (10)
14.9538 (6) 166.77 (14) 0.08 0.02 163.51 (14) 11.445 (10)
15.0046 (6) 165.42 (14) 0.08 0.02 162.18 (14) 11.390 (10)
15.0559 (6) 163.89 (14) 0.08 0.02 160.65 (14) 11.321 (10)
15.2573 (12) 158.54 (13) 0.08 0.02 155.35 (13) 11.094 (10)
15.4578 (12) 153.30 (13) 0.08 0.02 150.16 (13) 10.864 (9)
15.6583 (12) 148.38 (13) 0.08 0.02 145.27 (13) 10.647 (9)
15.8599 (12) 143.58 (12) 0.08 0.02 140.52 (12) 10.431 (9)
16.0616 (12) 139.04 (12) 0.08 0.01 136.02 (12) 10.226 (9)
16.2631 (12) 134.71 (12) 0.08 0.03 131.73 (12) 10.028 (9)
16.4639 (12) 130.53 (11) 0.08 0.03 127.60 (11) 9.833 (9)
16.6652 (12) 126.59 (11) 0.08 0.03 123.70 (11) 9.649 (9)
16.8676 (12) 122.72 (11) 0.08 0.03 119.87 (11) 9.464 (8)
17.0688 (12) 119.10 (10) 0.08 0.03 116.28 (10) 9.290 (8)
17.2708 (12) 115.53 (10) 0.08 0.03 112.75 (10) 9.115 (8)
17.4720 (12) 112.19 (10) 0.08 0.03 109.45 (10) 8.951 (8)
17.6730 (12) 108.92 (10) 0.08 0.02 106.21 (10) 8.786 (8)
17.8735 (13) 105.83 (9) 0.08 0.02 103.16 (9) 8.631 (8)
18.0754 (13) 102.83 (9) 0.08 0.01 100.19 (9) 8.477 (7)
18.2752 (13) 99.95 (9) 0.08 0.02 97.35 (9) 8.328 (7)
18.4766 (13) 97.18 (8) 0.08 0.02 94.61 (8) 8.182 (7)
18.6781 (13) 94.51 (8) 0.08 0.02 91.97 (8) 8.041 (7)
18.8782 (13) 91.94 (8) 0.08 0.02 89.44 (8) 7.903 (7)
19.0795 (13) 89.45 (8) 0.08 0.01 86.98 (8) 7.768 (7)
19.2818 (13) 87.05 (7) 0.08 0.01 84.61 (8) 7.636 (7)
19.4833 (13) 84.76 (7) 0.08 0.01 82.35 (7) 7.510 (7)
19.6832 (13) 82.55 (7) 0.08 0.01 80.18 (7) 7.387 (7)
19.8848 (15) 80.37 (7) 0.08 0.01 78.03 (7) 7.263 (7)
20.0881 (13) 78.34 (7) 0.08 0.02 76.03 (7) 7.149 (7)
20.5894 (6) 73.47 (6) 0.08 0.01 71.21 (6) 6.863 (6)
21.0919 (6) 69.02 (6) 0.08 0.02 66.79 (6) 6.594 (6)

Table 19
Gold foils, 14.2–21.1 keV: contributions to the uncertainty in the mass attenuation coefficient, imaginary component of the form factor and the X-ray energy

Uncertainties due to impurities, roughness and energy drift were appreciable only for selected measurements. The final results used a weighted mean.

QuantityUncertaintyComment
[μ/ρ] 0.083% Accuracy of the full-foil mapping
  <0.06% Impurities in the 99.9% foils
  <0.06% Roughness of the 5 µm foil
  <0.03% Uncertainty due to energy drift
     
f′′ 0.08–0.1% Contribution from [μ/ρ] uncertainty
  <0.03% Scattering contribution uncertainty, largest just below LI edge
     
E 0.3–1.3 eV Accuracy limited by powder-diffraction results
  <0.1 eV Uncertainty due to energy drift

14. Silver foils, 5.0–20.1 keV. XAS study

Islam et al. (2014)[link] measured the XAS spectra from silver foils for 84 discrete energies between the LI and the K edges, hence their data showed no XAFS. Silver foils were used with nominal thicknesses of 5 µm (2 foils), 10 µm (2 foils), 12 µm, 50 µm (2 foils), 100 µm (2 foils) and 275 µm. The data had an accuracy of 0.01–0.2% on a relative scale down to 5.3 keV, and of 0.09–1.22% on an absolute scale down to 5.0 keV. This was the first high-accuracy measurement of X-ray mass attenuation coefficients of silver in the low-energy range, indicating the possibility of obtaining high-accuracy X-ray absorption fine structure down to the LI edge (3.8 keV) of silver. Comparison of these results with an earlier data set optimized for higher energies (Tran et al., 2005[link]) confirmed the accuracy to within one standard error of each data set collected and analysed using the principles of the X-ray extended-range technique (XERT). Comparison with theory showed a slow divergence towards lower energies in this region away from absorption edges.

This analysis indicated that high accuracy is obtainable at lower energies by using comparatively thin (e.g. 5 µm) foils and by using dilute solutions of silver compounds if accurate transfer of thickness or concentration is obtained. This work thus indicated that measurements of L-edge XAFS of silver (theoretically at and above 3.8 keV) are possible using XERT by making use of thinner silver foils at lower energies (3–6 keV). Perhaps just as significant is the independent verification of the accuracy of the earlier work (Tran et al., 2005[link]) to within one standard error, which confirms the potential accuracy of this technique and the portability and reproducibility across different diffracting monochromator crystals, energy ranges and foils. The data are shown in Table 20[link] and are available as supporting information to this chapter in the file bz5029sup11.pdf.

Table 20
Silver, 5.0–20.1 keV: X-ray mass attenuation coefficients [[{{\mu} / {\rho}}]], the photoelectric mass absorption coefficients [[{{\mu} / {\rho}}]_{\rm pe}], the imaginary components of the form factor f′′ and the mass attenuation coefficients for Raleigh and Compton scattering [[{{\mu} / {\rho}}]_{\rm R+C}], with uncertainties

The mass attenuation coefficients for Rayleigh and Compton scattering were taken as the average of the tabulated FFAST and XCOM values and determined by interpolation at the measured energies. The uncertainty of [[{{\mu} / {\rho}}]_{\rm R+C}] was determined from half of the variation between the tabulated FFAST and XCOM values. The uncertainty of [[{{\mu} / {\rho}}]_{\rm pe}] was determined from the uncertainty contributions of [[{{\mu} / {\rho}}]_{\rm R+C}] and [[{{\mu} / {\rho}}]_{t}].

E (keV)[[{{\mu} / {\rho}}]] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (% relative)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (% absolute)[[{{\mu} / {\rho}}]_{\rm pe}] (cm2 g−1)f′′ (e atom−1)[[{{\mu} / {\rho}}]_{\rm R+C}] (cm2 g−1)
20.06525 (58) 17.9785 (20) 0.011 0.088 16.740 (11) 0.86101 (56) 1.239 (13)
19.06124 (52) 20.6921 (36) 0.017 0.089 19.373 (11) 0.94660 (55) 1.319 (14)
18.05718 (46) 24.0298 (14) 0.006 0.087 22.622 (11) 1.04711 (49) 1.408 (15)
17.05313 (41) 28.1240 (28) 0.010 0.088 26.617 (10) 1.16355 (44) 1.507 (15)
16.55110 (39) 30.499 (22) 0.071 0.113 28.939 (24) 1.2278 (10) 1.561 (15)
16.04910 (36) 33.1993 (81) 0.024 0.090 31.582 (12) 1.29929 (49) 1.618 (14)
15.54701 (34) 36.2281 (66) 0.018 0.089 34.551 (10) 1.37697 (41) 1.677 (13)
15.04497 (33) 39.659 (12) 0.030 0.092 37.918 (14) 1.46237 (53) 1.741 (12)
14.84420 (32) 41.164 (19) 0.046 0.098 39.396 (20) 1.49911 (76) 1.767 (12)
14.64342 (31) 42.755 (11) 0.025 0.090 40.960 (12) 1.53753 (46) 1.794 (11)
14.44257 (31) 44.3646 (80) 0.018 0.089 42.5425 (98) 1.57503 (36) 1.822 (10)
14.24172 (30) 46.135 (16) 0.035 0.094 44.284 (17) 1.61670 (62) 1.8516 (95)
14.04092 (30) 47.954 (12) 0.026 0.091 46.074 (13) 1.65834 (47) 1.8797 (86)
13.84015 (30) 49.9145 (96) 0.019 0.089 48.005 (10) 1.70313 (37) 1.9096 (77)
13.63934 (29) 51.919 (17) 0.032 0.093 49.979 (17) 1.74743 (59) 1.9401 (67)
13.43850 (29) 54.074 (10) 0.019 0.089 52.102 (11) 1.79485 (37) 1.9715 (55)
13.23773 (29) 56.285 (84) 0.149 0.172 54.281 (84) 1.8420 (28) 2.0036 (42)
13.03687 (29) 58.743 (16) 0.027 0.091 56.707 (16) 1.89509 (54) 2.0365 (28)
12.83611 (29) 61.291 (28) 0.045 0.098 59.221 (28) 1.94864 (91) 2.0701 (11)
12.63525 (29) 64.020 (24) 0.037 0.094 61.916 (24) 2.00543 (76) 2.10460 (63)
12.43446 (29) 66.873 (20) 0.030 0.092 64.733 (20) 2.06338 (65) 2.1400 (25)
12.23364 (29) 69.933 (20) 0.029 0.092 67.756 (21) 2.12485 (64) 2.1766 (44)
12.03285 (29) 73.152 (20) 0.027 0.091 70.938 (20) 2.18812 (61) 2.2141 (64)
11.88227 (29) 75.687 (23) 0.030 0.092 73.444 (23) 2.23709 (70) 2.2430 (79)
11.73163 (30) 78.409 (24) 0.031 0.092 76.136 (25) 2.28969 (74) 2.2725 (95)
11.58104 (30) 81.158 (25) 0.031 0.092 78.856 (26) 2.34102 (76) 2.303 (11)
11.43044 (30) 84.149 (36) 0.042 0.097 81.815 (36) 2.3973 (11) 2.333 (13)
11.27979 (31) 87.181 (24) 0.027 0.091 84.817 (25) 2.45250 (71) 2.365 (15)
11.12919 (31) 90.540 (46) 0.051 0.101 88.143 (46) 2.5147 (13) 2.397 (17)
10.97859 (31) 93.897 (22) 0.023 0.090 91.467 (23) 2.57418 (65) 2.429 (19)
10.82801 (32) 97.485 (41) 0.042 0.097 95.022 (42) 2.6375 (12) 2.463 (21)
10.67736 (32) 101.250 (25) 0.025 0.091 98.753 (27) 2.70296 (74) 2.497 (24)
10.52679 (33) 105.358 (21) 0.020 0.089 102.827 (23) 2.77478 (63) 2.532 (26)
10.37618 (33) 109.663 (39) 0.036 0.094 107.096 (41) 2.8486 (11) 2.568 (28)
10.22556 (34) 114.133 (15) 0.013 0.088 111.529 (19) 2.92348 (50) 2.604 (31)
10.07496 (35) 118.853 (37) 0.031 0.092 116.211 (39) 3.0014 (10) 2.642 (33)
9.92435 (35) 123.792 (21) 0.017 0.089 121.112 (25) 3.08118 (63) 2.681 (36)
9.77371 (36) 129.140 (42) 0.032 0.093 126.420 (44) 3.1674 (11) 2.720 (38)
9.62312 (36) 134.677 (08) 0.006 0.087 131.916 (17) 3.25420 (41) 2.761 (41)
9.47253 (37) 140.651 (58) 0.041 0.096 137.850 (60) 3.3474 (15) 2.802 (43)
9.32192 (38) 146.798 (32) 0.021 0.090 143.954 (36) 3.44001 (85) 2.844 (46)
9.17131 (38) 153.554 (64) 0.041 0.096 150.667 (66) 3.5423 (15) 2.888 (49)
9.02069 (39) 160.660 (32) 0.020 0.089 157.727 (37) 3.64736 (85) 2.932 (52)
8.92029 (40) 165.237 (96) 0.058 0.105 162.275 (98) 3.7107 (22) 2.963 (54)
8.81988 (40) 170.545 (23) 0.013 0.088 167.552 (30) 3.78828 (67) 2.994 (56)
8.71947 (41) 175.848 (58) 0.033 0.093 172.822 (61) 3.8630 (14) 3.025 (58)
8.61909 (41) 181.513 (18) 0.010 0.088 178.455 (27) 3.94296 (60) 3.057 (60)
8.51867 (42) 187.243 (68) 0.037 0.094 184.153 (71) 4.0215 (16) 3.090 (62)
8.41826 (42) 193.382 (24) 0.012 0.088 190.259 (31) 4.10582 (67) 3.123 (64)
8.31785 (43) 199.733 (76) 0.038 0.095 196.576 (79) 4.1916 (17) 3.157 (66)
8.21747 (43) 206.406 (13) 0.006 0.087 203.214 (25) 4.28080 (52) 3.192 (68)
8.11704 (44) 213.266 (69) 0.032 0.093 210.039 (73) 4.3705 (15) 3.227 (70)
8.01663 (44) 220.693 (33) 0.015 0.088 217.430 (40) 4.46835 (82) 3.263 (72)
8.00711 (44) 221.235 (56) 0.025 0.091 217.969 (60) 4.4741 (12) 3.266 (72)
7.91623 (45) 228.262 (21) 0.009 0.088 224.963 (31) 4.56525 (63) 3.299 (74)
7.81584 (45) 236.089 (35) 0.015 0.088 232.752 (42) 4.66342 (84) 3.336 (76)
7.71542 (46) 244.576 (56) 0.023 0.090 241.202 (61) 4.7706 (12) 3.374 (78)
7.61504 (46) 253.292 (29) 0.012 0.088 249.879 (38) 4.87796 (73) 3.413 (80)
7.51462 (47) 262.520 (80) 0.031 0.092 259.068 (84) 4.9907 (16) 3.452 (82)
7.41422 (47) 271.873 (18) 0.006 0.087 268.381 (30) 5.10099 (57) 3.492 (84)
7.31381 (48) 282.11 (11) 0.040 0.096 278.57 (12) 5.2230 (22) 3.533 (86)
7.21342 (48) 292.731 (69) 0.024 0.090 289.156 (74) 5.3470 (14) 3.575 (88)
7.11301 (49) 304.17 (19) 0.065 0.108 300.55 (20) 5.4804 (36) 3.617 (90)
7.01258 (50) 316.101 (95) 0.030 0.092 312.440 (98) 5.6167 (18) 3.661 (92)
6.91218 (50) 328.37 (12) 0.036 0.094 324.67 (12) 5.7530 (22) 3.705 (94)
6.81178 (51) 341.17 (29) 0.084 0.121 337.42 (29) 5.8921 (50) 3.750 (96)
6.71138 (51) 354.71 (26) 0.072 0.113 350.91 (26) 6.0374 (44) 3.796 (98)
6.61096 (52) 368.63 (37) 0.101 0.134 364.79 (38) 6.1823 (64) 3.84 (10)
6.51058 (52) 383.96 (36) 0.095 0.129 380.07 (37) 6.3434 (61) 3.89 (10)
6.41016 (53) 400.29 (46) 0.114 0.143 396.34 (46) 6.5130 (75) 3.94 (10)
6.30977 (54) 416.86 (47) 0.112 0.142 412.87 (47) 6.6784 (76) 3.99 (11)
6.20935 (54) 434.79 (58) 0.133 0.159 430.75 (58) 6.8568 (92) 4.04 (11)
6.10894 (55) 454.13 (69) 0.151 0.174 450.04 (69) 7.047 (11) 4.09 (11)
6.00853 (55) 474.92 (59) 0.124 0.151 470.78 (59) 7.2515 (91) 4.14 (11)
5.90815 (56) 496.93 (97) 0.195 0.214 492.73 (97) 7.463 (15) 4.20 (11)
5.80774 (57) 518.90 (95) 0.183 0.203 514.64 (95) 7.662 (14) 4.25 (11)
5.70733 (57) 545 (1) 0.199 0.217 540 (1) 7.904 (16) 4.31 (11)
5.60692 (58) 569 (1) 0.194 0.212 565 (1) 8.120 (16) 4.37 (11)
5.50652 (58) 595 (1) 0.215 0.232 591 (1) 8.339 (18) 4.43 (11)
5.40611 (59) 623 (1) 0.175 0.196 618 (1) 8.566 (15) 4.49 (11)
5.30571 (60) 654 (1) 0.207 0.225 649 (1) 8.831 (18) 4.55 (12)
5.20530 (60) 687 (2) 0.273 0.286 682 (2) 9.107 (25) 4.61 (12)
5.10490 (61) 722 (3) 0.420 0.428 717 (3) 9.387 (40) 4.67 (12)
5.00449 (61) 746 (9) 1.217 1.220 741 (9) 9.50 (12) 4.73 (12)

15. Silver foils, 11.0–28.1 keV. XAS, XAFS, bonding, nanostructure, theory and thermal behaviour

Tantau et al. (2015)[link] investigated the XAFS region over 80 discrete energies including the K edge (Figs. 6[link] and 7[link]), using six high-purity silver foils of nominal thicknesses 1 µm, 10 µm, 12.5 µm, 50 µm (2 foils) and 100 µm, chosen to ensure that for each energy at least one absorber would satisfy Nordfors' criterion (i.e. [2\,\lt\,\ln\left({{I} / {I_{0}}}\right)\,\lt\, 4]) for counting statistics. All thicknesses were used at most energies. This study showed extremely good consistency between different data sets with different systematic errors collected in different years and with different experimental geometries, so presented a very strong argument for the possibility of beamline-independent, portable and reproducible measurements – that is, the potential to ask questions on an absolute and on a relative basis of theory.

[Figure 6]

Figure 6

Silver, 11.0–28.1 keV. Comparison of [μ/ρ] with values from FFAST (Chantler, 1995[link], 2000[link]; Chantler et al., 2000[link]) as the zero line; Tantau et al. (2015[link]), black error bars; Tran et al. (2005[link]), blue triangles; Islam et al. (2014[link]), green boxes; Sandiago et al. (1997[link]), purple stars; Tajuddin et al. (1995[link]), red crosses; and the XCOM database (Berger et al., 1999[link]) as the dashed line. Copyright IOP Publishing. Reproduced with permission from Tantau et al. (2015[link]). All rights reserved.

[Figure 7]

Figure 7

Silver, 11.0–28.1 keV. eFEFFit plots refined over different k windows, with uncertainties propagated. The structures are robust and appear well fitted, although the restricted k range leads to a respectable value of [\chi^{2}_{\rm r}] for the reduced region of interest. Copyright IOP Publishing. Reproduced with permission from Tantau et al. (2015[link]). All rights reserved.

The results are accurate to better than 0.1%, permitting critical tests of atomic and solid-state theory. This is one of the most accurate demonstrations of cross-platform accuracy in synchrotron studies up to now. The data set can be fully analysed by conventional XAFS analysis techniques, but the analysis can also be extended to include error propagation and uncertainty, yielding bond lengths accurate to approximately 0.24% and Debye–Waller parameters accurate to 30%. It also enabled the investigation of advanced theory (using FDMX) for accurate analysis of such data across the full XAFS spectrum, built on full-potential theory, yielding a bond-length accuracy of the order of 0.1% and demonstrating that a single Debye–Waller parameter is inadequate and inconsistent across the XAFS range. The first ten oscillations of XAFS are very clear. Two effective Debye–Waller parameters are determined: a high-energy value based on the highly correlated motion of bonded atoms [σDW = 0.1413 (21) Å] and an uncorrelated bulk value [σDW = 0.1766 (9) Å], in good agreement with that derived from room-temperature crystallography. The data are shown in Table 21[link] and are also available in the supporting information to this chapter as file bz5029sup12.pdf.

Table 21
Silver, 11–28 keV: mass attenuation coefficients [μ/ρ] and the imaginary component of the atomic form factor f′′, with one standard deviation uncertainties in the least significant digits indicated in parentheses

Relative and absolute percentage uncertainty in the mass attenuation coefficients [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] and [\sigma_{\left[{{\mu} / {\rho}}\right]}] are given. Uncertainties in [\left[{{\mu} / {\rho}}\right]_{\rm pe}] and f′′ include the measurement uncertainty and the difference between major tabulations of the total Rayleigh plus Compton scattering cross sections. f′′ in the XAFS region is affected by solid-state effects.

E (keV)[μ/ρ] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (%)[\left[{{\mu} / {\rho}}\right]_{\rm {R+C}}] (cm2 g−1)[\left[{{\mu} /{\rho}}\right]_{\rm pe}] (cm2 g−1)f′′ (e atom−1)
11.03599 (46) 92.743 (32) 0.01 0.03 2.417 (18) 90.33 (68) 2.555 (19)
12.04001 (47) 73.124 (54) 0.06 0.07 2.2126 (61) 70.91 (20) 2.1886 (63)
13.04339 (51) 58.876 (31) 0.04 0.05 2.0352 (30) 56.841 (89) 1.9005 (30)
14.04618 (56) 47.995 (29) 0.05 0.06 1.8788 (88) 46.12 (22) 1.6604 (78)
15.04851 (63) 39.761 (33) 0.07 0.08 1.740 (12) 38.02 (27) 1.467 (11)
16.05173 (70) 33.312 (13) 0.02 0.03 1.617 (14) 31.70 (28) 1.304 (12)
17.05414 (79) 28.163 (14) 0.03 0.04 1.507 (15) 26.66 (26) 1.165 (11)
18.05675 (87) 24.0872 (81) 0.01 0.03 1.408 (15) 22.68 (24) 1.050 (11)
19.06100 (96) 20.7471 (69) 0.01 0.03 1.319 (14) 19.43 (21) 0.949 (10)
20.0634 (11) 18.0557 (67) 0.02 0.03 1.239 (13) 16.82 (18) 0.8649 (92)
21.0676 (12) 15.6542 (62) 0.02 0.03 1.166 (12) 14.49 (15) 0.7824 (81)
22.0699 (13) 13.8502 (92) 0.05 0.06 1.101 (11) 12.75 (13) 0.7213 (74)
23.0731 (13) 12.2237 (48) 0.02 0.03 1.042 (10) 11.18 (11) 0.6614 (66)
24.0772 (14) 10.8552 (55) 0.04 0.05 0.9874 (97) 9.868 (97) 0.6090 (60)
25.0775 (15) 9.6768 (50) 0.04 0.05 0.9384 (93) 8.738 (86) 0.5617 (56)
25.2267 (16) 9.5448 (46) 0.03 0.04 0.9315 (92) 8.613 (86) 0.5570 (55)
25.3269 (16) 9.4963 (44) 0.03 0.04 0.9269 (92) 8.569 (85) 0.5564 (55)
25.3757 (16) 9.5290 (47) 0.03 0.04 0.9246 (92) 8.604 (86) 0.5597 (56)
25.4262 (16) 9.6595 (48) 0.03 0.04 0.9223 (92) 8.737 (87) 0.5695 (57)
25.4468 (16) 9.7641 (44) 0.03 0.04 0.9214 (92) 8.843 (88) 0.5768 (58)
25.4659 (16) 10.0110 (66) 0.05 0.06 0.9206 (92) 9.090 (91) 0.5934 (59)
25.4760 (16) 10.2158 (44) 0.03 0.04 0.9201 (92) 9.296 (93) 0.6071 (61)
25.4854 (16) 10.5658 (54) 0.04 0.05 0.9197 (92) 9.646 (96) 0.6302 (63)
25.4948 (16) 11.1115 (62) 0.04 0.05 0.9192 (92) 10.19 (10) 0.6661 (67)
25.5002 (16) 11.7262 (76) 0.05 0.06 0.9190 (92) 10.81 (11) 0.7064 (71)
25.5052 (16) 12.6870 (92) 0.06 0.07 0.9187 (91) 11.77 (12) 0.7694 (77)
25.5102 (16) 15.392 (36) 0.23 0.23 0.9184 (91) 14.47 (15) 0.9464 (96)
25.5150 (16) 21.829 (68) 0.30 0.31 0.9182 (91) 20.91 (22) 1.368 (14)
25.5197 (16) 34.01 (12) 0.36 0.36 0.9180 (91) 33.10 (35) 2.165 (23)
25.5244 (16) 46.38 (16) 0.34 0.34 0.9178 (91) 45.47 (48) 2.975 (31)
25.5298 (16) 55.213 (62) 0.10 0.11 0.9176 (91) 54.30 (54) 3.553 (35)
25.5351 (16) 57.552 (37) 0.05 0.06 0.9173 (91) 56.63 (56) 3.707 (37)
25.5399 (16) 55.817 (47) 0.07 0.08 0.9171 (91) 54.90 (54) 3.594 (36)
25.5449 (16) 56.432 (52) 0.08 0.09 0.9169 (91) 55.51 (55) 3.635 (36)
25.5508 (16) 60.625 (54) 0.08 0.08 0.9166 (91) 59.71 (59) 3.911 (39)
25.5559 (16) 61.568 (61) 0.09 0.09 0.9164 (91) 60.65 (60) 3.973 (39)
25.5615 (16) 57.879 (46) 0.07 0.07 0.9161 (91) 56.96 (56) 3.732 (37)
25.5666 (16) 55.877 (36) 0.05 0.06 0.9159 (91) 54.96 (54) 3.602 (36)
25.5767 (16) 59.030 (67) 0.11 0.11 0.9155 (91) 58.11 (58) 3.810 (38)
25.5868 (16) 62.475 (44) 0.06 0.06 0.9150 (91) 61.56 (61) 4.038 (40)
25.5969 (16) 58.847 (61) 0.10 0.10 0.9146 (91) 57.93 (58) 3.801 (38)
25.6068 (16) 57.402 (37) 0.05 0.06 0.9141 (91) 56.49 (56) 3.708 (37)
25.6163 (16) 59.234 (33) 0.04 0.05 0.9137 (91) 58.32 (58) 3.830 (38)
25.6262 (16) 60.492 (43) 0.06 0.07 0.9133 (91) 59.58 (59) 3.914 (39)
25.6357 (16) 60.048 (41) 0.06 0.06 0.9128 (91) 59.14 (59) 3.886 (39)
25.6456 (16) 58.714 (39) 0.05 0.06 0.9124 (91) 57.80 (57) 3.800 (38)
25.6557 (16) 58.626 (45) 0.07 0.07 0.9120 (91) 57.71 (57) 3.796 (38)
25.6653 (16) 59.650 (38) 0.05 0.06 0.9115 (91) 58.74 (58) 3.864 (38)
25.6752 (16) 59.631 (43) 0.06 0.07 0.9111 (91) 58.72 (59) 3.865 (39)
25.6860 (16) 59.027 (38) 0.05 0.06 0.9106 (91) 58.12 (58) 3.827 (38)
25.6959 (16) 58.484 (33) 0.04 0.05 0.9102 (91) 57.57 (57) 3.792 (38)
25.7064 (16) 58.133 (38) 0.05 0.06 0.9097 (91) 57.22 (57) 3.771 (38)
25.7173 (16) 58.175 (51) 0.08 0.08 0.9092 (91) 57.27 (57) 3.775 (38)
25.7272 (16) 58.819 (48) 0.07 0.08 0.9088 (91) 57.91 (58) 3.819 (38)
25.7425 (16) 58.872 (33) 0.04 0.05 0.9081 (91) 57.96 (58) 3.825 (38)
25.7570 (16) 57.794 (48) 0.07 0.08 0.9075 (91) 56.89 (57) 3.756 (38)
25.7718 (16) 57.114 (26) 0.03 0.04 0.9068 (91) 56.21 (56) 3.713 (37)
25.7860 (16) 57.248 (47) 0.07 0.08 0.9062 (91) 56.34 (56) 3.724 (37)
25.8008 (16) 57.765 (39) 0.05 0.06 0.9056 (91) 56.86 (57) 3.761 (38)
25.8157 (16) 57.61 (13) 0.22 0.22 0.9049 (91) 56.70 (58) 3.752 (38)
25.8312 (16) 57.02 (19) 0.33 0.33 0.9043 (91) 56.11 (59) 3.715 (39)
25.8463 (16) 56.44 (23) 0.40 0.40 0.9036 (91) 55.54 (60) 3.680 (40)
25.8624 (16) 56.846 (86) 0.14 0.15 0.9029 (91) 55.94 (57) 3.709 (38)
25.8780 (16) 56.460 (39) 0.06 0.06 0.9022 (91) 55.56 (56) 3.685 (37)
25.8984 (16) 56.681 (67) 0.11 0.11 0.9013 (91) 55.78 (56) 3.703 (37)
25.9179 (16) 56.59 (21) 0.36 0.36 0.9005 (91) 55.69 (60) 3.700 (40)
26.0812 (16) 54.967 (52) 0.08 0.09 0.8935 (90) 54.07 (55) 3.615 (37)
26.1819 (17) 54.253 (48) 0.08 0.08 0.8892 (90) 53.36 (54) 3.582 (36)
26.2811 (17) 53.737 (48) 0.08 0.08 0.8850 (90) 52.85 (54) 3.561 (36)
26.3830 (17) 53.098 (35) 0.05 0.06 0.8807 (90) 52.22 (53) 3.531 (36)
26.4831 (17) 52.421 (44) 0.07 0.08 0.8765 (90) 51.54 (53) 3.499 (36)
26.5831 (17) 51.852 (39) 0.06 0.07 0.8724 (90) 50.98 (52) 3.474 (36)
26.6877 (17) 51.33 (10) 0.19 0.19 0.8682 (89) 50.46 (53) 3.452 (36)
26.8872 (17) 50.100 (49) 0.09 0.09 0.8601 (89) 49.24 (51) 3.394 (35)
27.0872 (17) 49.024 (52) 0.10 0.10 0.8522 (89) 48.17 (51) 3.345 (35)
27.2884 (18) 47.887 (64) 0.12 0.13 0.8444 (89) 47.04 (50) 3.291 (35)
27.4910 (18) 46.88 (11) 0.23 0.24 0.8367 (89) 46.04 (50) 3.244 (36)
27.6921 (18) 45.94 (18) 0.39 0.39 0.8291 (89) 45.11 (52) 3.202 (37)
27.8919 (18) 44.93 (24) 0.53 0.53 0.8217 (89) 44.11 (53) 3.154 (38)
28.0903 (19) 44.04 (47) 1.07 1.07 0.8145 (89) 43.22 (66) 3.112 (48)

16. Dilute solutions of nickel(II) complexes with no long-range order. Hybrid technique, XAS, XAFS and nanostructure

The article by Chantler et al. (2015)[link] presents a completely different type of study: the samples are dilute solutions of bis(N-isopropylsalicylaldiminato)nickel(II) (i-pr Ni for short) and bis(N-n-propylsalicylaldiminato)nickel(II) (n-pr Ni for short). Conventional wisdom would suggest measuring the XAS in fluorescence mode, but these data sets were measured in transmission mode, so in principle can yield an absolute measurement of XAS and XAFS without direct normalization to an additional reference standard.

However, the techniques of XERT are not appropriate for a solution or a dilute system. We cannot have several carefully calibrated thicknesses to check for systematic errors or the linearity of the detection chain. In principle, this can be addressed by using an ideal reference standard measured under identical conditions. Hence these were the first sets of data following the hybrid technique. This used different concentrations of a solution on the assumption that the local molecular structure would be unchanged (or at least similar), and, in principle, it can use a measurement of the solvent instead of (or as well as) an air path or blank measurement. The most important characteristic behind the accuracy, utility and success of these data sets is the concept of the signal-to-noise ratio versus the signal-to-background ratio. The signal-to-background ratio is very small in this case and in transmission mode in general, yet with good experimental design the signal-to-noise ratio can be very strong and such a study can provide useful insights. The hybrid technique can be used to collect data in either transmission or fluorescence mode. The data for this paper related to measurements collected in transmission mode. The measurements were made using a cryostat at ca 80 K. The solvent measurement was able to determine the solvent attenuation and that for the airpath, window adhesive (silicone), window (Kapton) and detector gas.

In this experiment, three samples provided three independent data sets: data for 226 discrete energies for 15.26 mM i-pr Ni, 199 independent energies for 1.515 mM i-pr Ni and 194 energies for 15.33 mM n-pr Ni were collected. A mixed solvent of 60% butyronitrile (BCN) + 40% acetonitrile (ACN) was used to prepare the solutions to avoid microcrystallization at low temperatures in the cryostat. Both complexes have the same composition, NiN2O2C20H24, so the ability to distinguish between the two isomers is ideally a matter for spectroscopy, isomer isolation and even machine learning. These complexes are already used as standards and reference materials by XAS researchers, because it is well believed that the i-pr Ni complex is tetrahedral and the n-pr Ni complex is square planar with identical coordination number at the Ni atom and identical atoms at very similar distances. However, it is perceived as potentially very hard or even impossible to establish the Ni conformation from XAFS.

The data that were deposited as supporting information to the original publication are also available here in Tables 22[link][link] to 24[link] and also as supporting information to this chapter as file bz5029sup13.pdf. These tables of data have detailed column headings and header information, so can be used for diverse applications.

Table 22
15mM i-pr Ni: measured X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] from intensity measurements (I0 and I) for a 15 mM solution of the complex and for its corresponding solvent

Several possible sources of experimental errors, including energy calibration, dark current, solvent attenuation, harmonic contamination and thickness ratio [from the actual solvent attenuation and fitted background of the sample (solution)] were corrected to obtain the final results. The energies E are in eV with uncertainties in parentheses. Corrected X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] of the solute S are given with the associated relative and percentage uncertainties and the absolute uncertainties including the uncertainty contributions from the thickness ratio, tratio, and column density, [ρt]c, measurements. The (effective) photoelectric absorption coefficient [\left[{{\mu} /{\rho}}\right]_{\rm pe}] is determined by subtracting the tabulated X-ray mass attenuation values of the complex for Rayleigh and Compton scattering from the total experimental X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] at the measured energies, with uncertainties. The X-ray mass attenuation values for Rayleigh and Compton scattering are estimated, with the uncertainty of [\left[{{\mu} / {\rho}}\right]_{\rm R+C}] determined from half of the variation between the FFAST and XCOM tabulated values. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (eV)[\left[{{\mu} / {\rho}}\right]_{\rm S}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm pe}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm pe}}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm R+C}] (cm2 g−1)
7016.75 (10) 21.5226 0.6013 2.79 0.6562 20.8524 0.6014 0.670 (11)
7618.05 (08) 14.8641 0.2674 1.80 0.3056 14.2368 0.2678 0.627 (14)
8019.31 (09) 12.4312 0.2454 1.97 0.2774 11.8503 0.2455 0.581 (08)
8019.36 (12) 13.4087 0.3431 2.56 0.3777 12.8278 0.3432 0.581 (08)
8059.16 (07) 13.4538 0.1749 1.30 0.2096 12.8818 0.1756 0.572 (15)
8099.42 (07) 12.7546 0.2021 1.58 0.2350 12.1916 0.2033 0.563 (22)
8139.14 (07) 12.9023 0.1640 1.27 0.1972 12.3479 0.1665 0.554 (29)
8179.60 (07) 10.7739 0.1630 1.51 0.1909 10.2290 0.1670 0.545 (36)
8219.50 (07) 11.6627 0.1525 1.31 0.1826 11.1280 0.1591 0.535 (45)
8259.75 (08) 11.6365 0.2348 2.02 0.2649 11.1113 0.2412 0.525 (55)
8259.80 (12) 11.0898 0.2378 2.14 0.2665 10.5647 0.2441 0.525 (55)
8299.69 (07) 12.1917 0.1382 1.13 0.1697 11.6760 0.1525 0.516 (64)
8328.92 (07) 13.0854 0.1353 1.03 0.1690 12.5592 0.1456 0.526 (54)
8329.93 (07) 13.1148 0.1287 0.98 0.1625 12.5849 0.1381 0.530 (50)
8330.88 (07) 13.6350 0.1367 1.00 0.1718 13.1015 0.1444 0.534 (47)
8331.95 (07) 13.4321 0.1420 1.06 0.1765 12.8946 0.1482 0.538 (43)
8332.78 (12) 13.5470 0.2232 1.65 0.2580 13.0065 0.2267 0.541 (40)
8332.84 (08) 13.6453 0.1582 1.16 0.1933 13.1045 0.1630 0.541 (39)
8333.73 (07) 14.1161 0.1316 0.93 0.1679 13.5771 0.1352 0.539 (31)
8334.75 (07) 14.5188 0.1273 0.88 0.1646 13.9762 0.1302 0.543 (27)
8335.70 (07) 14.7894 0.1555 1.05 0.1935 14.2434 0.1574 0.546 (24)
8336.65 (07) 14.7551 0.1332 0.90 0.1711 14.2058 0.1348 0.549 (21)
8337.71 (07) 14.6010 0.1266 0.87 0.1641 14.0481 0.1277 0.553 (17)
8338.72 (07) 15.3682 0.1310 0.85 0.1704 14.8119 0.1317 0.556 (14)
8339.21 (07) 15.4175 0.1297 0.84 0.1692 14.8596 0.1303 0.558 (12)
8339.63 (07) 15.7792 0.1323 0.84 0.1727 15.2200 0.1327 0.559 (11)
8340.10 (07) 16.2828 0.1353 0.83 0.1770 15.7220 0.1356 0.561 (09)
8340.64 (07) 17.2415 0.1331 0.77 0.1773 16.6791 0.1333 0.563 (08)
8341.11 (07) 17.9227 0.1334 0.74 0.1792 17.3588 0.1335 0.564 (06)
8341.65 (07) 19.4273 0.1291 0.66 0.1787 18.8618 0.1292 0.566 (05)
8342.12 (07) 20.5521 0.1233 0.60 0.1758 19.9852 0.1234 0.567 (03)
8342.60 (07) 21.9244 0.1209 0.55 0.1768 21.3561 0.1209 0.568 (02)
8343.13 (07) 23.8207 0.1322 0.55 0.1928 23.2509 0.1322 0.570 (00)
8343.73 (07) 26.0666 0.1338 0.51 0.2001 25.4951 0.1338 0.572 (02)
8344.20 (07) 28.8136 0.1365 0.47 0.2098 28.2408 0.1366 0.573 (03)
8344.69 (08) 32.4253 0.1787 0.55 0.2610 31.8512 0.1787 0.574 (04)
8344.75 (12) 32.4296 0.2346 0.72 0.3169 31.8554 0.2346 0.574 (04)
8345.23 (07) 35.3511 0.1262 0.36 0.2158 34.7757 0.1263 0.575 (05)
8345.64 (12) 39.1722 0.2157 0.55 0.3149 38.5958 0.2158 0.576 (06)
8345.70 (08) 39.1773 0.1620 0.41 0.2612 38.6007 0.1621 0.577 (07)
8346.18 (07) 42.7013 0.1275 0.30 0.2356 42.1235 0.1277 0.578 (08)
8346.71 (07) 46.9622 0.1311 0.28 0.2499 46.3833 0.1314 0.579 (09)
8347.25 (07) 51.2888 0.1239 0.24 0.2536 50.7087 0.1244 0.580 (10)
8347.72 (07) 56.6255 0.1597 0.28 0.3029 56.0444 0.1601 0.581 (11)
8348.26 (07) 61.1106 0.1254 0.21 0.2798 60.5284 0.1260 0.582 (12)
8348.80 (07) 65.9400 0.1305 0.20 0.2970 65.3568 0.1311 0.583 (13)
8349.39 (07) 70.2153 0.1241 0.18 0.3013 69.6311 0.1249 0.584 (14)
8349.88 (07) 73.7979 0.1271 0.17 0.3134 73.2128 0.1280 0.585 (15)
8350.36 (07) 76.1117 0.1342 0.18 0.3263 75.5259 0.1352 0.586 (16)
8350.83 (07) 77.8896 0.1229 0.16 0.3195 77.3032 0.1240 0.586 (16)
8351.31 (07) 78.5225 0.1256 0.16 0.3238 77.9354 0.1268 0.587 (17)
8351.85 (07) 78.9331 0.1277 0.16 0.3269 78.3455 0.1290 0.588 (18)
8352.32 (07) 78.7748 0.1275 0.16 0.3263 78.1867 0.1288 0.588 (18)
8352.92 (07) 79.0798 0.1280 0.16 0.3276 78.4911 0.1294 0.589 (19)
8353.40 (07) 78.4030 0.1299 0.17 0.3278 77.8140 0.1313 0.589 (19)
8353.81 (08) 77.4465 0.1663 0.21 0.3618 76.8572 0.1675 0.589 (19)
8353.87 (12) 77.4726 0.2153 0.28 0.4108 76.8834 0.2162 0.589 (19)
8354.35 (11) 76.8114 0.1996 0.26 0.3935 76.2219 0.2006 0.590 (20)
8354.41 (08) 76.7963 0.1536 0.20 0.3474 76.2068 0.1549 0.590 (20)
8354.96 (07) 75.8004 0.2431 0.32 0.4344 75.2107 0.2439 0.590 (20)
8355.43 (07) 75.6457 0.1676 0.22 0.3585 75.0561 0.1687 0.590 (20)
8355.91 (11) 73.8969 0.2174 0.29 0.4039 73.3073 0.2182 0.590 (20)
8355.97 (08) 74.1280 0.1601 0.22 0.3472 73.5384 0.1613 0.590 (20)
8356.45 (07) 73.0458 0.1318 0.18 0.3162 72.4564 0.1332 0.589 (19)
8356.92 (07) 71.7103 0.1272 0.18 0.3082 71.1211 0.1286 0.589 (19)
8357.40 (07) 70.4098 0.1397 0.20 0.3175 69.8210 0.1410 0.589 (19)
8357.82 (11) 69.6499 0.2141 0.31 0.3899 69.0614 0.2149 0.589 (19)
8357.88 (08) 69.6967 0.1501 0.22 0.3261 69.1083 0.1513 0.589 (18)
8358.36 (07) 68.4578 0.1323 0.19 0.3052 67.8698 0.1336 0.588 (18)
8358.83 (07) 66.8694 0.1308 0.20 0.2997 66.2821 0.1320 0.587 (17)
8359.37 (07) 66.4245 0.1245 0.19 0.2922 65.8379 0.1256 0.587 (17)
8359.79 (07) 65.0605 0.1301 0.20 0.2944 64.4747 0.1311 0.586 (16)
8360.27 (07) 64.0950 0.1381 0.22 0.3000 63.5101 0.1389 0.585 (15)
8360.82 (07) 62.9721 0.2144 0.34 0.3735 62.3883 0.2149 0.584 (14)
8361.35 (07) 62.9690 0.1239 0.20 0.2830 62.3865 0.1246 0.583 (13)
8361.77 (07) 61.5139 0.1411 0.23 0.2965 60.9325 0.1415 0.581 (11)
8362.25 (07) 60.7361 0.1252 0.21 0.2786 60.1561 0.1256 0.580 (10)
8362.73 (07) 60.4462 0.1273 0.21 0.2800 59.8678 0.1276 0.579 (08)
8363.21 (07) 59.8269 0.1398 0.23 0.2909 59.2501 0.1399 0.577 (07)
8363.68 (07) 58.6372 0.1299 0.22 0.2781 58.0621 0.1300 0.575 (05)
8364.10 (07) 57.9894 0.1467 0.25 0.2932 57.4160 0.1467 0.573 (03)
8364.58 (07) 58.0144 0.1262 0.22 0.2728 57.4430 0.1262 0.571 (01)
8365.18 (07) 56.9563 0.1258 0.22 0.2697 56.3877 0.1258 0.569 (01)
8365.60 (07) 56.2500 0.1321 0.23 0.2742 55.6834 0.1321 0.567 (03)
8366.09 (07) 55.2568 0.1351 0.24 0.2747 54.6927 0.1352 0.564 (06)
8366.56 (07) 54.5053 0.1260 0.23 0.2638 53.9438 0.1263 0.562 (09)
             
9471.79 (14) 42.8257 0.2412 0.56 0.3496 42.2957 0.2415 0.530 (12)
9471.87 (10) 42.8325 0.1709 0.40 0.2794 42.3026 0.1713 0.530 (12)
9522.39 (08) 42.8316 0.1457 0.34 0.2542 42.3041 0.1463 0.528 (12)

Table 23
1.5mM i-pr Ni: measured X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] from intensity measurements (I0 and I) for a 1.5 mM solution of the complex and for its corresponding solvent

Several possible sources of experimental errors, including energy calibration, dark current, solvent attenuation, harmonic contamination and thickness ratio [from the actual solvent attenuation and fitted background of the sample (solution)] were corrected to obtain the final result. The energies E are in eV with uncertainties in parentheses. Corrected X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] of the solute S are given with the associated relative and percentage uncertainties and the absolute uncertainties including the uncertainty contributions from the thickness ratio, tratio, and column density, [ρt]c, measurements. The (effective) photoelectric absorption coefficient [\left[{{\mu} /{\rho}}\right]_{\rm pe}] is determined by subtracting the tabulated X-ray mass attenuation values of the complex for Rayleigh and Compton scattering from the total experimental X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] at the measured energies, with uncertainties. The X-ray mass attenuation values for Rayleigh and Compton scattering are estimated, with the uncertainty of [\left[{{\mu} / {\rho}}\right]_{\rm R+C}] determined from half of the variation between the FFAST and XCOM tabulated values. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (eV)[\left[{{\mu} / {\rho}}\right]_{\rm S}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm pe}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm pe}}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm R+C}] (cm2 g−1)
8099.36 (07) 36.8201 1.6698 4.53 1.7699 36.2571 1.6699 0.563 (22)
8139.20 (07) 24.6351 2.8668 11.6 2.9351 24.0807 2.8669 0.554 (29)
8179.54 (07) 26.3899 1.4862 5.63 1.5592 25.8450 1.4867 0.545 (36)
8219.56 (07) 14.2868 2.0371 14.2 2.0786 13.7521 2.0376 0.535 (45)
8259.68 (07) 23.1324 1.3674 5.91 1.4319 22.6072 1.3685 0.525 (55)
8299.75 (07) 13.4084 1.6295 12.2 1.6687 12.8928 1.6308 0.516 (64)
8328.92 (07) 18.7673 1.2302 6.56 1.2833 18.2411 1.2314 0.526 (54)
8329.93 (07) 20.3898 1.2591 6.18 1.3165 19.8599 1.2601 0.530 (50)
8330.88 (07) 19.2183 1.2664 6.59 1.3207 18.6848 1.2672 0.533 (47)
8331.95 (07) 21.2500 1.1905 5.60 1.2501 20.7125 1.1913 0.537 (43)
8332.84 (07) 18.2139 1.2140 6.67 1.2657 17.6732 1.2146 0.541 (39)
8333.73 (07) 21.3961 1.3173 6.16 1.3772 20.8571 1.3176 0.539 (31)
8334.75 (07) 21.0412 1.2631 6.00 1.3222 20.4986 1.2634 0.543 (27)
8335.70 (07) 22.5559 1.2547 5.56 1.3177 22.0099 1.2550 0.546 (24)
8336.70 (07) 23.2202 1.2484 5.38 1.3131 22.6707 1.2486 0.549 (21)
8337.71 (07) 22.0860 1.2646 5.73 1.3264 21.5331 1.2647 0.553 (17)
8338.72 (07) 21.0854 1.2806 6.07 1.3397 20.5291 1.2806 0.556 (14)
8339.21 (07) 22.1303 1.2761 5.77 1.3380 21.5725 1.2762 0.558 (12)
8339.63 (07) 21.7090 1.3003 5.99 1.3610 21.1497 1.3003 0.559 (11)
8340.10 (07) 23.6257 1.2924 5.47 1.3582 23.0649 1.2924 0.561 (09)
8340.64 (07) 25.2605 1.2718 5.03 1.3418 24.6980 1.2718 0.562 (08)
8341.11 (07) 26.6212 1.3845 5.20 1.4580 26.0573 1.3845 0.564 (06)
8341.65 (07) 26.5812 1.2639 4.75 1.3373 26.0157 1.2639 0.566 (04)
8342.12 (07) 29.5081 1.2332 4.18 1.3143 28.9412 1.2332 0.567 (03)
8342.60 (07) 29.6686 1.2208 4.11 1.3022 29.1002 1.2208 0.568 (02)
8343.13 (07) 32.5808 1.2454 3.82 1.3344 32.0109 1.2454 0.570 (00)
8343.73 (07) 33.9700 1.3099 3.86 1.4026 33.3985 1.3099 0.572 (02)
8344.20 (07) 37.5385 1.2379 3.30 1.3399 36.9657 1.2379 0.573 (03)
8344.75 (07) 40.3905 1.2714 3.15 1.3807 39.8163 1.2714 0.574 (04)
8345.23 (07) 46.1060 1.2319 2.67 1.3562 45.5306 1.2320 0.575 (05)
8345.70 (07) 48.6691 1.1919 2.45 1.3228 48.0925 1.1919 0.577 (07)
8346.12 (07) 53.8558 1.1712 2.17 1.3156 53.2782 1.1712 0.578 (08)
8346.71 (07) 56.6905 1.1872 2.09 1.3390 56.1115 1.1873 0.579 (09)
8347.25 (07) 62.3970 1.3015 2.09 1.4681 61.8169 1.3015 0.580 (10)
8347.72 (07) 65.3705 1.1849 1.81 1.3592 64.7894 1.1849 0.581 (11)
8348.26 (07) 73.6468 1.1839 1.61 1.3798 73.0646 1.1840 0.582 (12)
8348.80 (07) 77.6169 1.2166 1.57 1.4228 77.0337 1.2167 0.583 (13)
8349.39 (07) 83.2275 1.2775 1.53 1.4983 82.6433 1.2776 0.584 (14)
8349.88 (07) 84.6464 1.1817 1.40 1.4062 84.0614 1.1818 0.585 (15)
8350.36 (07) 89.4259 1.2367 1.38 1.4736 88.8401 1.2368 0.586 (16)
8350.83 (07) 88.7259 1.2723 1.43 1.5074 88.1395 1.2724 0.586 (16)
8351.31 (07) 92.1816 1.2068 1.31 1.4509 91.5946 1.2069 0.587 (17)
8351.85 (07) 91.0746 1.3127 1.44 1.5539 90.4869 1.3129 0.588 (18)
8352.32 (07) 91.7652 1.2537 1.37 1.4967 91.1771 1.2538 0.588 (18)
8352.92 (07) 90.7730 1.2374 1.36 1.4778 90.1843 1.2375 0.589 (19)
8353.40 (07) 88.6976 1.2258 1.38 1.4608 88.1086 1.2259 0.589 (19)
8353.87 (07) 90.9187 1.2680 1.39 1.5088 90.3294 1.2682 0.589 (19)
8354.35 (07) 88.4200 1.2682 1.43 1.5025 87.8305 1.2683 0.589 (19)
8354.96 (07) 87.1118 1.2182 1.40 1.4491 86.5222 1.2184 0.590 (20)
8355.43 (07) 86.1762 1.2732 1.48 1.5017 85.5866 1.2734 0.590 (20)
8355.97 (07) 84.6883 1.2437 1.47 1.4683 84.0987 1.2438 0.590 (20)
8356.45 (07) 85.1552 1.2510 1.47 1.4768 84.5658 1.2512 0.589 (19)
8356.92 (07) 84.7208 1.5755 1.86 1.8001 84.1316 1.5756 0.589 (19)
8357.40 (07) 81.5294 1.2262 1.50 1.4426 80.9405 1.2263 0.589 (19)
8357.88 (07) 80.1758 1.2960 1.62 1.5089 79.5873 1.2962 0.588 (18)
8358.36 (07) 80.0005 1.2598 1.57 1.4722 79.4125 1.2599 0.588 (18)
8358.83 (07) 77.9530 1.1855 1.52 1.3925 77.3657 1.1856 0.587 (17)
8359.37 (07) 77.2138 1.2133 1.57 1.4184 76.6273 1.2134 0.587 (17)
8359.79 (07) 76.1148 1.2178 1.60 1.4201 75.5289 1.2179 0.586 (16)
8360.27 (07) 74.8982 1.2296 1.64 1.4287 74.3133 1.2297 0.585 (15)
8360.82 (07) 74.0557 1.2609 1.70 1.4578 73.4719 1.2609 0.584 (14)
8361.35 (07) 73.2283 1.2497 1.71 1.4445 72.6458 1.2498 0.583 (12)
8361.77 (07) 72.6399 1.2015 1.65 1.3948 72.0585 1.2016 0.581 (11)
8362.25 (07) 70.9479 1.1698 1.65 1.3587 70.3679 1.1699 0.580 (10)
8362.79 (07) 69.6480 1.2151 1.74 1.4006 69.0697 1.2152 0.578 (08)
8363.21 (07) 69.2431 1.2000 1.73 1.3844 68.6662 1.2000 0.577 (07)
8363.68 (07) 69.4906 1.2508 1.80 1.4359 68.9156 1.2508 0.575 (05)
8364.10 (07) 67.3170 1.2547 1.86 1.4341 66.7436 1.2547 0.573 (03)
8364.58 (07) 65.9459 1.2072 1.83 1.3831 65.3745 1.2072 0.571 (01)
8365.18 (07) 65.3861 1.2928 1.98 1.4672 64.8175 1.2928 0.569 (01)
8365.60 (07) 65.6587 1.1522 1.75 1.3273 65.0921 1.1522 0.567 (03)
8366.09 (07) 63.8118 1.3465 2.11 1.5168 63.2477 1.3465 0.564 (06)
             
8990.29 (12) 55.1360 1.9125 3.47 2.0602 54.5844 1.9125 0.552 (11)
8990.36 (08) 49.9196 1.4712 2.95 1.6053 49.3680 1.4712 0.552 (11)
9020.47 (07) 63.1531 1.2094 1.91 1.3779 62.6029 1.2094 0.550 (11)

Table 24
15mM n-pr Ni: measured X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] determined from the intensity measurements (I0 and I) for a 15 mM solution of the complex and for its corresponding solvent

Several possible sources of experimental errors, including energy calibration, dark current, solvent attenuation, harmonic contamination and thickness ratio [from the actual solvent attenuation and fitted background of the sample (solution)] were corrected to obtain the final result. The energies E are in eV with uncertainties in parentheses. Corrected X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] of the solute S are given with the associated relative and percentage uncertainties and the absolute uncertainties including the uncertainty contributions from the thickness ratio, tratio, and column density, [ρt]c, measurements. The (effective) photoelectric absorption coefficient [\left[{{\mu} /{\rho}}\right]_{\rm pe}] is determined by subtracting the tabulated X-ray mass attenuation values of the complex for Rayleigh and Compton scattering from the total experimental X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] at the measured energies, with uncertainties. The X-ray mass attenuation values for Rayleigh and Compton scattering are estimated, with the uncertainty of [\left[{{\mu} / {\rho}}\right]_{\rm R+C}] determined from half of the variation between the FFAST and XCOM tabulated values. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (eV)[\left[{{\mu} / {\rho}}\right]_{\rm S}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm pe}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm pe}}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm R+C}] (cm2 g−1)
7918.60 (11) 15.0026 0.3439 2.29 0.3566 14.3975 0.3440 0.605 (10)
7958.94 (10) 14.4521 0.1280 0.89 0.1404 13.8570 0.1280 0.595 (02)
7998.73 (10) 12.9877 0.2331 1.79 0.2446 12.4021 0.2331 0.586 (05)
8039.15 (10) 13.4378 0.1575 1.17 0.1693 12.8614 0.1579 0.576 (12)
8078.88 (12) 12.1499 0.2654 2.18 0.2765 11.5823 0.2661 0.568 (19)
8078.93 (17) 11.3425 0.2010 1.77 0.2117 10.7749 0.2019 0.568 (19)
8119.13 (10) 11.8420 0.1011 0.85 0.1120 11.2833 0.1043 0.559 (26)
8159.17 (09) 11.3740 0.1753 1.54 0.1859 10.8239 0.1782 0.550 (32)
8199.09 (09) 11.9725 0.1063 0.89 0.1173 11.4329 0.1137 0.540 (40)
8239.54 (09) 9.8658 0.2582 2.62 0.2680 9.3359 0.2631 0.530 (50)
8278.65 (09) 11.1380 0.0897 0.81 0.1002 10.6173 0.1075 0.521 (59)
8283.63 (09) 10.9600 0.1474 1.34 0.1578 10.4404 0.1593 0.520 (60)
8288.75 (09) 11.4219 0.0855 0.75 0.0962 10.9036 0.1055 0.518 (62)
8293.87 (09) 10.9533 0.1427 1.30 0.1532 10.4362 0.1560 0.517 (63)
8298.76 (09) 11.3262 0.0912 0.81 0.1018 10.8103 0.1115 0.516 (64)
8303.65 (05) 11.9663 0.0625 0.52 0.0735 11.4517 0.0905 0.515 (65)
8308.43 (09) 12.0490 0.0994 0.82 0.1104 11.5356 0.1197 0.513 (67)
8309.38 (09) 12.2179 0.0853 0.70 0.0965 11.7047 0.1084 0.513 (67)
8310.32 (09) 11.9839 0.0917 0.77 0.1027 11.4710 0.1136 0.513 (67)
8311.34 (09) 12.2849 0.0927 0.75 0.1039 11.7723 0.1146 0.513 (67)
8312.34 (09) 12.2484 0.1002 0.82 0.1113 11.7360 0.1208 0.512 (68)
8313.46 (09) 12.6040 0.0935 0.74 0.1049 12.0918 0.1156 0.512 (68)
8314.46 (09) 12.5348 0.0891 0.71 0.1004 12.0229 0.1122 0.512 (68)
8315.41 (09) 12.5665 0.0851 0.68 0.0965 12.0549 0.1092 0.512 (68)
8316.42 (09) 12.6117 0.0943 0.75 0.1057 12.1003 0.1166 0.511 (69)
8317.49 (09) 12.7160 0.0884 0.70 0.0998 12.2049 0.1121 0.511 (69)
8318.49 (09) 12.8593 0.0867 0.67 0.0982 12.3484 0.1109 0.511 (69)
8319.02 (09) 13.2490 0.0919 0.69 0.1036 12.7383 0.1151 0.511 (69)
8319.62 (09) 13.3094 0.0805 0.60 0.0922 12.7988 0.1063 0.511 (69)
8320.09 (09) 13.1921 0.0964 0.73 0.1081 12.6816 0.1189 0.510 (70)
8320.62 (09) 13.0655 0.1029 0.79 0.1145 12.5552 0.1243 0.510 (70)
8321.10 (09) 12.9936 0.1003 0.77 0.1119 12.4834 0.1222 0.510 (70)
8321.58 (09) 13.2144 0.1411 1.07 0.1528 12.7043 0.1575 0.510 (70)
8322.05 (09) 13.5160 0.0928 0.69 0.1047 13.0060 0.1163 0.510 (70)
8322.58 (09) 13.2740 0.1103 0.83 0.1220 12.7641 0.1307 0.510 (70)
8323.12 (09) 13.2916 0.0993 0.75 0.1110 12.7819 0.1217 0.510 (70)
8323.59 (09) 13.1612 0.0988 0.75 0.1104 12.6516 0.1213 0.510 (70)
8324.12 (09) 13.1028 0.0902 0.69 0.1019 12.5933 0.1145 0.509 (71)
8324.65 (09) 13.0729 0.0946 0.72 0.1062 12.5628 0.1177 0.510 (70)
8325.13 (09) 12.7662 0.0912 0.71 0.1026 12.2543 0.1138 0.512 (68)
8325.66 (09) 12.6681 0.1017 0.80 0.1131 12.1542 0.1214 0.514 (66)
8326.15 (09) 12.9941 0.0868 0.67 0.0983 12.4784 0.1080 0.516 (64)
8326.62 (09) 13.3032 0.0842 0.63 0.0960 12.7858 0.1049 0.517 (63)
8327.15 (09) 12.9793 0.0863 0.66 0.0979 12.4599 0.1054 0.519 (61)
8327.57 (09) 12.7948 0.0924 0.72 0.1039 12.2737 0.1096 0.521 (59)
8328.04 (09) 12.7191 0.0907 0.71 0.1021 12.1963 0.1072 0.523 (57)
8328.57 (09) 12.5894 0.0968 0.77 0.1082 12.0645 0.1114 0.525 (55)
8329.05 (09) 12.9246 0.0853 0.66 0.0968 12.3979 0.1006 0.527 (53)
8329.52 (09) 12.7369 0.0904 0.71 0.1018 12.2085 0.1041 0.528 (52)
8330.00 (09) 12.7613 0.1239 0.97 0.1353 12.2310 0.1335 0.530 (50)
8330.47 (09) 12.9064 0.1028 0.80 0.1143 12.3744 0.1135 0.532 (48)
8331.07 (09) 12.9967 0.0939 0.72 0.1055 12.4626 0.1045 0.534 (46)
8331.55 (09) 13.1421 0.0943 0.72 0.1060 12.6062 0.1041 0.536 (44)
8331.96 (09) 12.9859 0.0871 0.67 0.0987 12.4484 0.0969 0.537 (43)
8332.50 (09) 13.2308 0.0871 0.66 0.0988 12.6913 0.0960 0.539 (41)
8332.91 (09) 13.2972 0.0848 0.64 0.0965 12.7562 0.0933 0.541 (39)
8333.45 (09) 13.4960 0.0815 0.60 0.0933 12.9581 0.0875 0.538 (32)
8333.86 (09) 13.7092 0.0983 0.72 0.1102 13.1698 0.1029 0.539 (31)
8334.34 (09) 13.8201 0.0883 0.64 0.1003 13.2789 0.0929 0.541 (29)
8334.87 (09) 13.8094 0.1021 0.74 0.1141 13.2664 0.1056 0.543 (27)
8335.29 (09) 13.9741 0.0879 0.63 0.1000 13.4296 0.0915 0.545 (25)
8335.82 (09) 14.1363 0.0855 0.60 0.0977 13.5899 0.0887 0.546 (24)
8336.31 (09) 14.0868 0.0850 0.60 0.0972 13.5387 0.0878 0.548 (22)
8336.84 (09) 14.2042 0.1017 0.72 0.1140 13.6542 0.1037 0.550 (20)
8337.38 (09) 14.4006 0.0889 0.62 0.1012 13.8488 0.0907 0.552 (18)
8337.85 (09) 14.8022 0.0926 0.63 0.1052 14.2488 0.0941 0.553 (17)
8338.33 (09) 15.4063 0.0885 0.57 0.1015 14.8512 0.0898 0.555 (15)
8338.80 (09) 15.8844 0.0924 0.58 0.1057 15.3278 0.0934 0.557 (13)
8339.28 (09) 16.5746 0.0839 0.51 0.0975 16.0164 0.0847 0.558 (12)
8339.75 (09) 17.1886 0.0850 0.49 0.0990 16.6289 0.0857 0.560 (10)
8340.23 (09) 17.9072 0.0882 0.49 0.1025 17.3460 0.0886 0.561 (09)
8340.76 (09) 18.8303 0.0964 0.51 0.1113 18.2675 0.0966 0.563 (07)
8341.30 (09) 20.0802 0.0859 0.43 0.1015 19.5157 0.0861 0.565 (06)
8341.72 (09) 20.9746 0.0879 0.42 0.1041 20.4088 0.0880 0.566 (04)
8342.26 (09) 22.3591 0.0869 0.39 0.1038 21.7918 0.0870 0.567 (03)
8342.85 (09) 24.1739 0.0978 0.40 0.1158 23.6048 0.0978 0.569 (01)
8343.39 (09) 26.6625 0.0865 0.32 0.1059 26.0919 0.0865 0.571 (01)
8343.86 (09) 28.6822 0.0880 0.31 0.1085 28.1103 0.0880 0.572 (02)
8344.40 (09) 31.8424 0.0945 0.30 0.1168 31.2691 0.0946 0.573 (03)
8344.88 (09) 34.6921 0.0834 0.24 0.1074 34.1175 0.0836 0.575 (05)
8345.35 (09) 38.6115 0.0930 0.24 0.1192 38.0358 0.0932 0.576 (06)
8345.83 (09) 42.3968 0.0798 0.19 0.1081 41.8199 0.0801 0.577 (07)
8346.42 (09) 47.0804 0.0929 0.20 0.1239 46.5021 0.0933 0.578 (08)
8346.91 (09) 51.3041 0.0932 0.18 0.1266 50.7247 0.0936 0.579 (09)
8347.44 (09) 56.3805 0.0962 0.17 0.1325 55.7999 0.0968 0.581 (11)
8348.52 (09) 70.4395 0.0918 0.13 0.1361 69.8568 0.0927 0.583 (13)
8350.60 (09) 76.0340 0.0945 0.12 0.1420 75.4479 0.0958 0.586 (16)
8352.64 (09) 75.0248 0.0917 0.12 0.1386 74.4364 0.0935 0.588 (18)
8354.67 (09) 72.4205 0.0935 0.13 0.1389 71.8309 0.0955 0.590 (20)
8356.70 (09) 68.0119 0.0848 0.12 0.1278 67.4226 0.0870 0.589 (19)
8358.61 (09) 64.6053 0.1025 0.16 0.1434 64.0177 0.1040 0.588 (18)
8360.59 (08) 61.3634 0.0921 0.15 0.1313 60.7791 0.0932 0.584 (14)
8362.57 (08) 58.7797 0.0828 0.14 0.1204 58.2007 0.0833 0.579 (09)
8364.36 (08) 55.9661 0.0913 0.16 0.1274 55.3938 0.0914 0.572 (02)
8366.39 (08) 54.2395 0.0904 0.17 0.1254 53.6771 0.0907 0.562 (08)
8368.38 (08) 52.1884 0.0836 0.16 0.1175 51.6385 0.0860 0.550 (20)
8370.29 (08) 50.6032 0.0935 0.18 0.1265 50.0682 0.0998 0.535 (35)
8372.34 (08) 48.6696 0.0872 0.18 0.1191 48.1540 0.1028 0.516 (54)
8374.38 (08) 47.8563 0.1010 0.21 0.1325 47.3642 0.1276 0.492 (78)
8376.42 (08) 47.2438 0.0976 0.21 0.1287 46.7503 0.1240 0.494 (77)
8378.53 (08) 47.8057 0.1334 0.28 0.1648 47.3096 0.1525 0.496 (74)
8380.57 (08) 49.1540 0.0861 0.18 0.1183 48.6553 0.1118 0.499 (71)
8382.62 (08) 51.1068 0.0931 0.18 0.1264 50.6055 0.1157 0.501 (69)
8384.66 (08) 52.9162 0.0932 0.18 0.1275 52.4124 0.1143 0.504 (66)
8386.64 (08) 54.2970 0.1060 0.20 0.1411 53.7908 0.1237 0.506 (64)
             
9380.95 (08) 40.7612 0.0887 0.22 0.1161 40.2269 0.0896 0.534 (12)
9471.67 (09) 40.6914 0.0795 0.20 0.1068 40.1615 0.0804 0.530 (12)
9521.81 (09) 40.2717 0.1644 0.41 0.1915 39.7442 0.1648 0.528 (12)

Fig. 8[link] shows a schematic of the experimental setup at the ANBF, Tsukuba, Japan, using the hybrid technique that was used to collect transmission and fluorescence XAS from these multiple dilute solutions of nickel(II) complexes and absorption spectra from a 5 µm Ni foil. Fig. 9[link] illustrates the multi-chambered solution cell suitable for cryostat use, and the filling of the chambers. This was the first implementation of the hybrid technique and led to further developments of the technique in later publications.

[Figure 8]

Figure 8

A schematic diagram of the experimental setup using the hybrid technique at the ANBF, Tsukuba, Japan. A multi-chambered solution cell was used in the cryostat containing two dilute solutions and the pure solvent in three chambers. The cryostat was translated vertically to record intensities attenuated by each of the solutions at each energy. Two daisy wheels containing 14 aluminium filters (of different thicknesses) were employed upstream and downstream to monitor harmonic contamination from higher-order reflections. Different aperture sizes on the daisy wheel allowed aperture-dependent measurements to be collected in order to characterize scattering effects for correction. Three ion chambers were employed to record unattenuated intensities, I0, intensities attenuated by the dilute solutions, I1, and intensities further attenuated by the corresponding metallic sample mounted with a cantilever as shown, I2.

[Figure 9]

Figure 9

A three-chambered cryostat cell is filled with three solutions (15 mM and 1.5 mM nickel(II) complex, and pure solvent). A precise flow of solution into the chambers was achieved using three 10 ml syringe pumps, with fittings, and 1/16 inch Teflon tubes. The cell, mounted on a cryostat stick, was clamped in the horizontal plane. Each syringe pump was controlled by a stepper-motor controller programmed by software to pulse the syringe pumps.

Fig. 10[link] presents full plots of measured [\left[{{\mu} / {\rho}}\right]\left[\rho t\right]] values for the two i-pr Ni solutions and the pure solvent (top pane) and the statistical accuracy of these three data sets in the bottom panes. Despite the dilution and the very low signal-to-background ratio, the accuracy of each data set is at or below 0.01%, so the solvent can be subtracted to find the attenuation by the active species and the absorption edge. Similarly, Fig. 11[link] presents full plots of measured [\left[{{\mu} / {\rho}}\right]\left[\rho t\right]] values for the two n-pr Ni solutions and the pure solvent (top pane) with the statistical accuracy of these three in the bottom panes.

[Figure 10]

Figure 10

X-ray absorption spectra (top plot) and corresponding uncertainties (lower plots) using two solutions (15 mM and 1.5 mM) of the i-pr Ni complex, and the pure solvent. The black diamond markers represent the measurements with the 15 mM solution, and the measurements with the 1.5 mM solution and the pure solvent are represented by the blue square markers and the red triangles, respectively. Subplots indicate the percentage uncertainties underneath using the same coloured markers as for the solution spectra. A 0.005–0.06% variation in the uncertainties over the energy range represents the quality of data from the solutions. The variation in the background between the spectra was mainly due to the variation in the effective integrated column density [m/A]eff of the solutions in different chambers.The well defined peaks confirm that there was negligible leaking between the solutions through the chambers. The pure solvent was not sucked uniformly during the filling, causing a linear offset from the background of the solutions. Modelling of the solvent (using the known experimental geometry) quantified and corrected for this background effect (Chantler et al., 2015[link]).

[Figure 11]

Figure 11

X-ray absorption spectra using two solutions (15 mM, 1.5 mM) of the n-pr Ni complex and the pure solvent used to prepare the solutions. As in Fig. 10[link], the corresponding uncertainties are presented in the plots underneath using the same coloured markers as for the solutions. Compared with the spectra obtained for the tetrahedral i-pr Ni complex, the variation between the backgrounds of the spectra for the square planar n-pr Ni complex are quite minor. The solvent absorption represented by the black diamonds was subtracted from the solution absorption.

Because of the high signal-to-noise ratio and the characterization of the solvent and windows, highly accurate values for the attenuation due to the active species can be obtained (Figs. 12[link], 13[link]). In these figures, the attenuation by the active species, i.e. the 15 mM solute, [\left\{\left[{{\mu} /{\rho}}\right]\left[\rho t\right]\right\rbrace_{\rm S}], is plotted in the top panel, with four subpanels showing contributions to the total absolute uncertainty (second panel, δtotal) from the fitting/filling fraction (third panel, δfrac), the statistical uncertainty from the sample and solvent measurements (fourth panel, [{\delta_{\left[{{\mu} / {\rho}}\right]\left[\rho t\right]}}_{\rm S,stat} = {\sigma_{ \left\lbrace\left[{{\mu} / {\rho}}\right]\left[\rho t\right]\right\rbrace}}_{\rm S,stat}]) and the contribution to the uncertainty from the background and dark current (bottom panel, δbkg+dc). Although the signals only correspond to a peak magnitude of 0.15 attenuation, or 0.12 above the below-edge value, the uncertainty is less than 0.0003 from statistical sources of error and about 0.0003 from statistical and system-related sources of error, so in fact the attenuation has an uncertainty of only about 0.2% across the edge, XANES and XAFS region.

[Figure 12]

Figure 12

Corrected and normalized XAS (attenuation) of the i-pr Ni isomer (solute) [\left\{\left[{{\mu} / {\rho}}\right]\left[\rho t\right]\right\rbrace_{\rm S}] determined from the attenuations of 15 mM solutions following the solvent subtraction, as represented in the tabulated data sets. The corresponding total uncertainty (second panel, δtotal) was propagated from the uncertainty contributions of the fitting/filling solvent coefficient (third panel, δfrac), the variance of repeated measurements with both the solution and the solvent (fourth panel, [{\delta_{\left[{{\mu} / {\rho}}\right]\left[\rho t\right]}}_{\rm S,stat} = {\sigma_{ \left\lbrace\left[{{\mu} / {\rho}}\right]\left[\rho t\right]\right\rbrace}}_{\rm S,stat}]), and the background and dark-current corrections (bottom panel, δbkg+dc). The accuracy allowed reliable structural analysis of i-pr Ni using XAFS. At each of the energies, three aperture-dependent measurements are in excellent agreement.

[Figure 13]

Figure 13

Corrected and normalized XAS (attenuation) of 15 mM n-pr Ni (solute) [\left\{\left[{{\mu} / {\rho}}\right]\left[\rho t\right]\right\rbrace_{\rm S}]. The corresponding total uncertainty (second panel, δtotal) was propagated from the uncertainty contributions of the fitting/filling solvent coefficient (third panel, δfrac), the variance of repeated measurements with both the solution and the solvent (fourth panel, [{\delta_{\left[{{\mu} /{\rho}}\right]\left[\rho t\right]}}_{\rm S,stat} = {\sigma_{ \left\lbrace\left[{{\mu} / {\rho}}\right]\left[\rho t\right]\right\rbrace}}_{\rm S,stat}]), and the background and dark-current corrections (bottom panel, δbkg+dc). Three to six aperture-dependent measurements were made at each energy and are in excellent agreement. High accuracy XAS for n-pr Ni was obtained for the path-length fraction (tfrac = 0.9804 ± 0.0006).

The eFEFFit package was used with weighting of the data derived from the experimental uncertainty, and in each case converged to a well defined XAFS model (Islam et al., 2015[link]). Structural refinement of the i-pr Ni complex gave an excellent fit to a tetrahedral geometry. n-pr Ni showed a distorted square planar geometry. This demonstrates the insight that can be obtained from the propagation of uncertainties in XAFS analysis and the consequent confidence in hypothesis testing and in the ab initio analysis of alternative structures (Fig. 14[link]).

[Figure 14]

Figure 14

Room-temperature crystal structures (Fox et al., 1964[link]; Britton & Pignolet, 1989[link]) for n-pr Ni with distorted square planar geometry and i-pr Ni with tetrahedral geometry, excluding hydrogen atoms.

17. Dilute solutions with no long-range order: mM solutions of ferrocene and decamethylferrocene. Hybrid technique, XAS, XAFS and nanostructure

Islam et al. (2016)[link] reported another example of the hybrid technique applied to the relatively small molecules ferrocene [Fc, Fe(C5H5)2] and decamethylferrocene [DmFc or Fc*, Fe(C5(CH3)5)2], also as dilute solutions, at two concentrations and with a solvent measurement. Ferrocene has long been the archetypal metallocene and was the first known example of organometallic bonding. As well as having many applications and derivatives, it is also used as a key reference material for chemistry and XAS but, interestingly, one for which the structure is ill-determined. The experimental setup used by Islam et al. was equivalent to that described in Section 16[link] for hybrid measurement in transmission (and fluorescence) modes.

An earlier experiment looked at 10 mM Fc in fluorescence mode at 10–20 K (Chantler et al., 2012b[link]). This primarily led to development of the understanding of modelling absorption and self-absorption in multipixel fluorescence detectors.

Four data sets are presented in Tables 25[link][link][link]–28[link], and also in the supporting information to this chapter as the file bz5029sup14.pdf. These are for nominal concentrations of 15 mM Fc, 3 mM Fc, 15 mM DmFc and 3 mM DmFc. The actual concentations were 15.26 mM and 3.07 mM (Fc) and 15.29 mM and 3.06 mM (DmFc), respectively. The columns of data and the header information for these tables were detailed, allowing use of the data for diverse applications. There are 297, 249, 234 and 236 independent energies across the Fe K edge, respectively, for these transmission XAS measurements of frozen solutions at 10–20 K, with accuracies (for the solute) from 0.2% to 2%, observing statistically significant fine structure to k > 12 Å−1.

Table 25
15mM Fc: X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] from the absolute intensities (I0 and I) for a 15 mM Fc solution

The energies E are in eV with uncertainties in parentheses. Corrected X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] of the solute S are given with associated relative and percentage uncertainties, and the absolute uncertainties including the uncertainty contributions from the thickness ratio tratio and column density [ρt]c measurements. The (effective) photoelectric absorption coefficient [\left[{{\mu} / {\rho}}\right]_{\rm pe}] is determined by subtracting the tabulated X-ray mass attenuations of the complex for the Rayleigh and Compton scattering from the total experimental X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] at the measured energies, with uncertainties. The X-ray mass attenuation due to Rayleigh and Compton scattering is estimated, with the uncertainty of [\left[{{\mu} / {\rho}}\right]_{\rm R+C}] determined from half of the variation between the FFAST and XCOM values. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (eV)[\left[{{\mu} / {\rho}}\right]_{\rm S}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (cm2 g−1)[\left[{{\mu} /{\rho}}\right]_{\rm pe}] (cm2 g−1)[\sigma_{\left[{{\mu} /{\rho}}\right]_{\rm pe}}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm R+C}] (cm2 g−1)
6912.18 (13) 16.9302 0.2137 1.26 0.2416 16.0942 0.2144 0.836 (17)
7098.44 (17) 17.7364 0.3378 1.90 0.3668 16.9618 0.3388 0.775 (26)
7099.17 (17) 17.4919 0.2799 1.60 0.3086 16.7176 0.2811 0.774 (26)
7099.98 (17) 16.8730 0.2364 1.40 0.2642 16.0989 0.2378 0.774 (26)
7100.74 (17) 17.6435 0.2849 1.61 0.3138 16.8700 0.2861 0.774 (26)
7101.55 (17) 17.6649 0.3007 1.70 0.3296 16.8920 0.3018 0.773 (26)
7102.32 (17) 17.2871 0.5204 3.01 0.5488 16.5147 0.5210 0.772 (26)
7103.10 (17) 17.0115 0.2742 1.61 0.3022 16.2397 0.2754 0.772 (26)
7103.87 (17) 19.0457 0.2846 1.49 0.3155 18.2744 0.2857 0.771 (25)
7104.68 (17) 18.0019 0.2488 1.38 0.2782 17.2312 0.2501 0.771 (25)
7105.53 (17) 18.7994 0.3130 1.66 0.3435 18.0232 0.3136 0.776 (19)
7106.30 (17) 18.0965 0.2217 1.23 0.2512 17.3134 0.2220 0.783 (12)
7107.11 (17) 17.9869 0.2473 1.37 0.2767 17.1965 0.2473 0.790 (04)
7107.88 (17) 18.2976 0.3044 1.66 0.3342 17.5003 0.3044 0.797 (04)
7108.73 (17) 18.4132 0.2774 1.51 0.3074 17.6082 0.2777 0.805 (12)
7109.55 (17) 18.5824 0.5303 2.85 0.5605 17.7700 0.5307 0.812 (20)
7110.40 (17) 21.5751 0.2843 1.32 0.3188 20.7550 0.2858 0.820 (29)
7111.22 (17) 19.8999 0.2909 1.46 0.3230 19.0723 0.2932 0.828 (37)
7111.95 (21) 22.8657 0.2882 1.26 0.3245 22.0315 0.2916 0.834 (44)
7112.81 (17) 22.1592 0.2397 1.08 0.2750 21.3120 0.2443 0.847 (47)
7113.62 (17) 23.0609 0.3348 1.45 0.3714 22.2061 0.3393 0.855 (55)
7114.48 (17) 23.6683 0.3847 1.63 0.4222 22.8054 0.3898 0.863 (63)
7115.29 (17) 26.4959 0.2667 1.01 0.3082 25.6255 0.2758 0.870 (70)
7116.02 (17) 31.5720 0.2525 0.80 0.3012 30.6949 0.2640 0.877 (77)
7116.83 (17) 35.7122 0.2740 0.77 0.3286 34.8279 0.2867 0.884 (84)
7117.60 (21) 41.7340 0.9645 2.31 1.0277 40.8428 0.9688 0.891 (91)
7118.43 (17) 48.9884 0.3908 0.80 0.4643 48.0900 0.4030 0.898 (98)
7119.24 (17) 59.1354 0.2932 0.50 0.3812 58.2300 0.3115 0.91 (11)
7120.70 (17) 80.2569 0.4001 0.50 0.5181 79.3395 0.4169 0.92 (12)
7121.51 (17) 86.5154 0.5263 0.61 0.6532 85.5917 0.5406 0.92 (12)
7122.29 (17) 86.8350 0.2925 0.34 0.4199 85.9054 0.3199 0.93 (13)
7123.10 (17) 88.2233 0.2534 0.29 0.3828 87.2878 0.2873 0.94 (14)
7123.87 (17) 92.8486 0.2216 0.24 0.3575 91.9077 0.2625 0.94 (14)
7124.60 (17) 98.8125 0.2493 0.25 0.3937 97.8669 0.2887 0.95 (15)
7125.38 (17) 107.3455 0.3041 0.28 0.4607 106.3950 0.3392 0.95 (15)
7126.20 (17) 116.2921 0.3016 0.26 0.4709 115.3370 0.3391 0.96 (16)
7127.02 (17) 125.8179 0.2999 0.24 0.4828 124.8586 0.3395 0.96 (16)
7127.83 (17) 133.3888 0.2630 0.20 0.4567 132.4257 0.3094 0.96 (16)
7128.65 (17) 141.8578 0.3448 0.24 0.5505 140.8915 0.3828 0.97 (17)
7129.38 (17) 149.0124 0.3231 0.22 0.5390 148.0436 0.3644 0.97 (17)
7130.24 (17) 158.0056 0.2163 0.14 0.4450 157.0346 0.2756 0.97 (17)
7131.06 (17) 164.4201 0.2678 0.16 0.5056 163.4476 0.3185 0.97 (17)
7131.92 (17) 174.1914 0.3530 0.20 0.6047 173.2181 0.3932 0.97 (17)
7132.74 (17) 179.2747 0.2863 0.16 0.5453 178.3013 0.3346 0.97 (17)
7133.51 (17) 181.5503 0.2502 0.14 0.5124 180.5776 0.3039 0.97 (17)
7134.34 (17) 179.6495 0.3547 0.20 0.6142 178.6784 0.3937 0.97 (17)
7135.16 (17) 176.4352 0.2847 0.16 0.5396 175.4667 0.3308 0.97 (17)
7136.02 (17) 169.6654 0.2643 0.16 0.5096 168.7005 0.3114 0.97 (17)
7136.79 (17) 161.2584 0.2727 0.17 0.5060 160.2979 0.3163 0.96 (16)
7137.57 (17) 153.5846 0.2551 0.17 0.4775 152.6295 0.2985 0.96 (16)
7138.39 (17) 144.5699 0.3027 0.21 0.5123 143.6217 0.3370 0.95 (15)
7139.16 (17) 140.6419 0.2918 0.21 0.4958 139.7013 0.3238 0.94 (14)
7139.98 (21) 136.8569 0.2409 0.18 0.4395 135.9257 0.2742 0.93 (13)
7140.80 (17) 133.8604 0.3588 0.27 0.5531 132.9402 0.3783 0.92 (12)
7141.50 (17) 130.4616 0.2780 0.21 0.4675 129.5520 0.2987 0.91 (11)
7142.24 (17) 129.0538 0.2218 0.17 0.4093 128.1567 0.2420 0.897 (97)
7143.06 (17) 127.9076 0.2248 0.18 0.4107 127.0260 0.2391 0.882 (81)
             
8013.25 (23) 92.0455 0.4397 0.48 0.5745 91.3074 0.4401 0.738 (19)
8513.46 (35) 77.2693 0.6532 0.85 0.7670 76.5672 0.6534 0.702 (17)
9013.43 (37) 60.0279 0.3438 0.57 0.4330 59.3555 0.3441 0.672 (13)

Table 26
3mM Fc: measured X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] obtained from the absolute intensities for a 3 mM Fc solution and its corresponding solvent

Several experimental sources of error including energy calibration, dark current, solvent attenuation, harmonic contamination and thickness ratio [from the actual solvent attenuation and fitted background of the sample (solution)] were corrected for to obtain the final result. The columns are as in Table 25[link]. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (eV)[\left[{{\mu} / {\rho}}\right]_{\rm S}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm pe}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm pe}}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm R+C}] (cm2 g−1)
6912.18 (16) 16.2859 1.4756 9.06 1.5072 15.4499 1.4757 0.836 (17)
7098.44 (17) 21.5930 0.7112 3.29 0.7518 20.8183 0.7117 0.775 (26)
7099.17 (17) 20.4647 0.9276 4.53 0.9663 19.6903 0.9280 0.774 (26)
7100.74 (17) 19.8954 0.6268 3.15 0.6645 19.1218 0.6273 0.774 (26)
7101.55 (17) 20.9026 0.8263 3.95 0.8657 20.1297 0.8267 0.773 (26)
7102.32 (17) 19.9726 1.2683 6.35 1.3062 19.2002 1.2686 0.772 (26)
7103.10 (17) 22.2456 1.2100 5.44 1.2517 21.4738 1.2103 0.772 (26)
7103.87 (17) 20.2890 0.8569 4.22 0.8953 19.5177 0.8573 0.771 (25)
7104.68 (17) 18.3027 0.7293 3.98 0.7643 17.5320 0.7297 0.771 (25)
7105.53 (17) 20.2956 0.7486 3.69 0.7869 19.5194 0.7488 0.776 (19)
7106.34 (17) 21.8373 0.9134 4.18 0.9544 21.0538 0.9135 0.783 (11)
7107.11 (17) 18.6017 0.8735 4.70 0.9090 17.8113 0.8736 0.790 (04)
7107.88 (17) 20.5142 0.7131 3.48 0.7519 19.7169 0.7132 0.797 (04)
7108.73 (17) 19.2439 0.6022 3.13 0.6388 18.4389 0.6024 0.805 (12)
7109.55 (17) 22.6475 1.8813 8.31 1.9237 21.8351 1.8814 0.812 (20)
7110.40 (17) 20.9884 0.8097 3.86 0.8492 20.1682 0.8102 0.820 (29)
7111.22 (17) 23.1301 1.0821 4.68 1.1252 22.3026 1.0827 0.828 (37)
7111.95 (17) 22.6661 0.8341 3.68 0.8765 21.8319 0.8353 0.834 (44)
7112.81 (17) 20.9731 0.8075 3.85 0.8470 20.1259 0.8088 0.847 (47)
7113.62 (17) 24.1558 1.1368 4.71 1.1818 23.3010 1.1382 0.855 (55)
7114.48 (17) 22.4814 0.9759 4.34 1.0180 21.6185 0.9779 0.863 (63)
7115.25 (17) 25.7762 1.3678 5.31 1.4155 24.9062 1.3696 0.870 (70)
7116.02 (17) 26.2477 0.8704 3.32 0.9189 25.3706 0.8738 0.877 (77)
7116.83 (17) 29.5644 1.1207 3.79 1.1749 28.6801 1.1239 0.884 (84)
7117.64 (17) 31.4720 1.0444 3.32 1.1018 30.5804 1.0484 0.892 (92)
7118.43 (21) 35.8397 0.8274 2.31 0.8922 34.9413 0.8333 0.898 (98)
7119.24 (17) 37.4569 1.0165 2.71 1.0840 36.5516 1.0219 0.91 (11)
7119.97 (17) 45.0492 1.1954 2.65 1.2759 44.1378 1.2006 0.91 (11)
7120.70 (17) 90.3340 0.8949 0.99 1.0522 89.4167 0.9025 0.92 (12)
7121.51 (17) 86.3696 0.9201 1.07 1.0707 85.4459 0.9283 0.92 (12)
7122.29 (17) 92.8384 0.8135 0.88 0.9751 91.9087 0.8238 0.93 (13)
7123.10 (17) 93.1584 1.3417 1.44 1.5038 92.2229 1.3485 0.94 (14)
7123.87 (17) 93.9028 1.2588 1.34 1.4222 92.9619 1.2666 0.94 (14)
7124.60 (17) 103.1289 0.7698 0.75 0.9489 102.1832 0.7835 0.95 (15)
7125.38 (17) 107.0117 1.0742 1.00 1.2599 106.0612 1.0847 0.95 (15)
7126.20 (17) 112.7076 0.7729 0.69 0.9683 111.7526 0.7883 0.96 (16)
7127.02 (17) 123.6424 0.6636 0.54 0.8776 122.6831 0.6824 0.96 (16)
7127.83 (17) 131.0334 0.8384 0.64 1.0650 130.0704 0.8541 0.96 (16)
7128.65 (17) 135.3651 0.8149 0.60 1.0488 134.3988 0.8317 0.97 (17)
7129.38 (17) 141.9209 1.1841 0.83 1.4291 140.9521 1.1960 0.97 (17)
7130.24 (17) 151.6987 1.3200 0.87 1.5816 150.7277 1.3310 0.97 (17)
7131.06 (17) 162.5304 0.7351 0.45 1.0151 161.5579 0.7550 0.97 (17)
7131.92 (17) 166.1009 0.7056 0.42 0.9917 165.1276 0.7266 0.97 (17)
7132.74 (17) 167.0337 0.6675 0.40 0.9552 166.0603 0.6896 0.97 (17)
7133.51 (17) 173.4009 0.8363 0.48 1.1348 172.4283 0.8540 0.97 (17)
7134.34 (17) 167.3626 0.7087 0.42 0.9969 166.3915 0.7290 0.97 (17)
7135.16 (17) 165.6996 0.7794 0.47 1.0648 164.7310 0.7974 0.97 (17)
7136.02 (17) 161.3311 1.3828 0.86 1.6608 160.3663 1.3926 0.97 (17)
7136.79 (17) 153.6411 0.8926 0.58 1.1575 152.6806 0.9068 0.96 (16)
7137.57 (17) 151.5031 1.9592 1.29 2.2205 150.5480 1.9654 0.96 (16)
7138.39 (17) 147.7561 0.8667 0.59 1.1216 146.8079 0.8792 0.95 (15)
7139.16 (17) 140.7466 1.0964 0.78 1.3395 139.8060 1.1054 0.94 (14)
7139.98 (17) 140.3181 1.5028 1.07 1.7451 139.3870 1.5084 0.93 (13)
7140.76 (17) 132.6806 0.9931 0.75 1.2224 131.7599 1.0003 0.92 (12)
7141.50 (17) 132.5578 0.8295 0.63 1.0586 131.6481 0.8367 0.91 (10)
7142.24 (17) 128.8725 0.7678 0.60 0.9906 127.9753 0.7739 0.897 (97)
7143.06 (17) 131.0553 1.4215 1.08 1.6481 130.1737 1.4239 0.882 (81)
7143.83 (17) 130.7432 1.0405 0.80 1.2666 129.8779 1.0426 0.865 (65)
             
7792.25 (19) 111.8551 0.6581 0.59 0.8520 111.0951 0.6583 0.760 (15)
7796.34 (19) 111.5849 0.6816 0.61 0.8751 110.8253 0.6818 0.760 (15)
7800.44 (14) 112.6637 0.5423 0.48 0.7377 111.9046 0.5426 0.759 (15)

Table 27
15mM DmFc: X-ray mass attenuation coefficients [\left[{{\mu} / {\rho}}\right]_{\rm S}] using absolute intensities (I0 and I) for a 15 mM DmFc solution and its corresponding solvent

A number of key experimental sources of systematic errors including energy calibration, dark current, solvent attenuation, harmonic contamination and thickness ratio [from the actual solvent attenuation and fitted background of the sample (solution)] were corrected for to obtain the final results with the accuracy stated. The columns are as in Table 25[link]. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (eV)[\left[{{\mu} / {\rho}}\right]_{\rm S}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm pe}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm pe}}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm R+C}] (cm2 g−1)
7013.61 (14) 16.9045 0.1955 1.16 0.2370 16.1010 0.1956 0.803 (05)
7053.86 (18) 13.8405 0.3126 2.26 0.3494 13.0506 0.3130 0.790 (15)
7092.89 (14) 14.1715 0.1911 1.35 0.2283 13.3949 0.1926 0.777 (24)
7094.46 (18) 14.5341 0.4748 3.27 0.5126 13.7581 0.4754 0.776 (25)
7096.39 (18) 14.4981 0.3797 2.62 0.4175 13.7228 0.3805 0.775 (25)
7098.43 (18) 14.4291 0.4121 2.86 0.4497 13.6545 0.4129 0.775 (26)
7100.26 (18) 14.0643 0.3419 2.43 0.3790 13.2904 0.3429 0.774 (26)
7102.22 (18) 13.5240 0.2080 1.54 0.2442 12.7515 0.2096 0.772 (26)
7103.26 (18) 13.6449 0.4021 2.95 0.4385 12.8732 0.4029 0.772 (26)
7104.20 (18) 13.2912 0.3248 2.44 0.3607 12.5201 0.3258 0.771 (25)
7105.18 (18) 12.9506 0.2215 1.71 0.2568 12.1775 0.2226 0.773 (23)
7106.16 (18) 13.5975 0.2296 1.69 0.2660 12.8157 0.2300 0.782 (13)
7107.23 (18) 13.6265 0.2631 1.93 0.2995 12.8350 0.2631 0.791 (03)
7108.21 (18) 13.6584 0.2283 1.67 0.2647 12.8581 0.2284 0.800 (07)
7109.19 (18) 14.0397 0.9040 6.44 0.9411 13.2305 0.9042 0.809 (17)
7110.22 (18) 13.2739 0.2552 1.92 0.2910 12.4554 0.2566 0.819 (27)
7111.34 (18) 14.1007 0.3509 2.49 0.3880 13.2721 0.3529 0.829 (38)
7112.32 (18) 14.5485 0.4599 3.16 0.4977 13.7059 0.4619 0.843 (43)
7113.26 (18) 15.6962 0.2874 1.83 0.3271 14.8447 0.2920 0.851 (51)
7114.33 (18) 15.8825 0.3102 1.95 0.3501 15.0210 0.3162 0.861 (61)
7115.36 (18) 17.7570 0.4227 2.38 0.4655 16.8860 0.4286 0.871 (71)
7116.39 (18) 19.4299 0.1955 1.01 0.2410 18.5495 0.2114 0.880 (80)
7117.33 (18) 22.0806 0.7924 3.59 0.8419 21.1918 0.7973 0.889 (89)
7118.37 (18) 26.0627 0.2253 0.86 0.2810 25.1648 0.2456 0.898 (98)
7119.35 (18) 28.5142 0.2196 0.77 0.2791 27.6079 0.2439 0.91 (11)
7120.34 (18) 36.2972 0.8419 2.32 0.9135 35.3827 0.8497 0.91 (11)
7121.28 (18) 43.4113 0.2390 0.55 0.3217 42.4893 0.2683 0.92 (12)
7122.22 (18) 54.2665 0.2999 0.55 0.3993 53.3373 0.3265 0.93 (13)
7123.17 (18) 61.4214 0.6576 1.07 0.7682 60.4853 0.6715 0.94 (14)
7124.24 (18) 62.3121 0.6929 1.11 0.8049 61.3688 0.7075 0.94 (14)
7125.18 (18) 58.3692 0.3262 0.56 0.4321 57.4199 0.3587 0.95 (15)
7126.14 (18) 58.5089 0.2557 0.44 0.3617 57.5542 0.2988 0.96 (16)
7127.13 (18) 62.3881 0.2617 0.42 0.3738 61.4283 0.3066 0.96 (16)
7128.16 (18) 72.8083 0.2143 0.29 0.3426 71.8439 0.2701 0.96 (16)
7129.15 (18) 83.9086 0.2522 0.30 0.3977 82.9406 0.3030 0.97 (17)
7130.13 (18) 96.5867 0.2385 0.25 0.4037 95.6159 0.2932 0.97 (17)
7131.17 (18) 105.4872 0.6453 0.61 0.8243 104.5145 0.6679 0.97 (17)
7132.20 (18) 109.0172 0.2557 0.23 0.4402 108.0437 0.3089 0.97 (17)
7133.27 (18) 110.6909 0.4805 0.43 0.6676 109.7179 0.5107 0.97 (17)
7134.27 (18) 110.8168 0.2686 0.24 0.4559 109.8455 0.3185 0.97 (17)
7135.26 (18) 110.0281 0.2408 0.22 0.4268 109.0599 0.2936 0.97 (17)
7136.30 (18) 105.9835 0.2660 0.25 0.4457 105.0201 0.3121 0.96 (16)
7137.37 (18) 100.2688 0.3226 0.32 0.4935 99.3122 0.3585 0.96 (16)
7138.37 (18) 93.9911 0.2168 0.23 0.3779 93.0427 0.2626 0.95 (15)
7139.31 (18) 89.5080 0.2311 0.26 0.3852 88.5690 0.2695 0.94 (14)
7140.30 (18) 82.2477 0.5869 0.71 0.7298 81.3207 0.6005 0.93 (13)
7141.35 (18) 79.7142 0.3336 0.42 0.4726 78.8022 0.3519 0.91 (11)
7142.30 (18) 77.4903 0.2701 0.35 0.4056 76.5942 0.2866 0.896 (96)
7143.20 (18) 76.0592 0.8918 1.17 1.0251 75.1804 0.8953 0.879 (79)
7144.24 (18) 74.7426 0.8337 1.12 0.9650 73.8867 0.8356 0.856 (56)
7145.19 (18) 73.7873 0.2543 0.34 0.3841 72.9551 0.2563 0.832 (32)
7146.18 (18) 73.0971 0.4945 0.68 0.6232 72.2928 0.4945 0.804 (04)
             
8006.89 (15) 55.7671 0.2257 0.40 0.3276 55.0285 0.2266 0.739 (19)
8014.40 (12) 53.7160 0.1507 0.28 0.2493 52.9780 0.1519 0.738 (19)
8514.68 (14) 50.6538 0.3389 0.67 0.4328 49.9517 0.3393 0.702 (17)

Table 28
3mM DmFc: measured X-ray mass attenuation coefficients [[{{\mu} / {\rho}}]_{\rm S}] from the intensity measurements (I0 and I) for a 3 mM DmFc solution and its corresponding solvent

A number of key experimental sources of systematic errors including energy calibration, dark current, solvent attenuation, harmonic contamination and thickness ratio [from the actual solvent attenuation and fitted background of the sample (solution)] were corrected for to obtain the final results. The columns are as in Table 25[link]. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (eV)[\left[{{\mu} / {\rho}}\right]_{\rm S}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm pe}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm pe}}] (cm2 g−1)[\left[{{\mu}/ {\rho}}\right]_{\rm R+C}] (cm2 g−1)
7013.74 (14) 19.2877 1.8703 9.70 1.9109 18.4843 1.8703 0.803 (05)
7013.82 (15) 18.2279 2.0515 11.25 2.0903 17.4245 2.0515 0.803 (05)
7013.86 (14) 14.6015 2.6684 18.27 2.7013 13.7982 2.6684 0.803 (05)
7053.73 (14) 12.0236 0.9659 8.03 0.9946 11.2336 0.9660 0.790 (15)
7092.89 (14) 12.0234 0.7216 6.00 0.7503 11.2468 0.7220 0.777 (24)
7094.46 (14) 11.8443 1.3380 11.30 1.3665 11.0683 1.3383 0.776 (25)
7096.39 (14) 9.4830 1.0604 11.18 1.0850 8.7076 1.0607 0.775 (25)
7098.43 (14) 10.2858 0.8354 8.12 0.8613 9.5112 0.8358 0.775 (26)
7100.26 (14) 12.4821 1.2650 10.13 1.2945 11.7082 1.2653 0.774 (26)
7102.22 (14) 8.6023 2.2564 26.23 2.2795 7.8298 2.2565 0.772 (26)
7103.26 (14) 10.3269 1.1878 11.50 1.2137 9.5551 1.1880 0.772 (26)
7104.20 (14) 8.6976 2.0845 23.97 2.1078 7.9266 2.0846 0.771 (25)
7105.18 (14) 9.0951 1.6256 17.87 1.6496 8.3220 1.6258 0.773 (23)
7106.16 (14) 10.7653 1.2149 11.28 1.2415 9.9834 1.2149 0.782 (13)
7107.23 (14) 12.0416 1.0559 8.77 1.0846 11.2502 1.0559 0.791 (03)
7108.21 (14) 8.4281 2.2616 26.83 2.2845 7.6278 2.2616 0.800 (07)
7109.19 (14) 7.8604 0.8995 11.44 0.9214 7.0512 0.8996 0.809 (17)
7110.22 (14) 9.8792 0.9563 9.68 0.9815 9.0607 0.9567 0.819 (27)
7111.34 (14) 13.4796 2.0357 15.10 2.0668 12.6510 2.0361 0.829 (38)
7112.32 (14) 9.8255 1.0104 10.28 1.0355 8.9829 1.0113 0.843 (43)
7113.26 (14) 11.0846 1.5017 13.55 1.5289 10.2332 1.5026 0.851 (51)
7114.33 (14) 12.2146 3.7302 30.54 3.7592 11.3531 3.7307 0.861 (61)
7115.36 (14) 13.0540 1.0726 8.22 1.1030 12.1830 1.0750 0.871 (71)
7116.39 (14) 13.8393 1.8121 13.09 1.8438 12.9588 1.8139 0.880 (80)
7117.33 (14) 17.6490 3.7778 21.41 3.8157 16.7601 3.7788 0.889 (89)
7118.37 (14) 21.6753 0.9104 4.20 0.9548 20.7774 0.9156 0.898 (98)
7119.35 (14) 26.5652 0.8487 3.19 0.9011 25.6589 0.8553 0.91 (11)
7120.34 (14) 33.4404 2.2750 6.80 2.3386 32.5260 2.2778 0.91 (11)
7121.28 (14) 43.3449 0.9385 2.17 1.0183 42.4230 0.9464 0.92 (12)
7122.22 (14) 54.0024 0.9725 1.80 1.0697 53.0733 0.9811 0.93 (13)
7123.17 (14) 61.1305 0.9237 1.51 1.0325 60.1945 0.9337 0.94 (14)
7124.24 (14) 58.4083 0.8755 1.50 0.9799 57.4649 0.8872 0.94 (14)
7125.18 (14) 55.4898 0.6933 1.25 0.7928 54.5405 0.7092 0.95 (15)
7126.14 (14) 59.0883 0.9788 1.66 1.0842 58.1335 0.9909 0.96 (15)
7127.13 (14) 65.8322 0.8855 1.35 1.0019 64.8723 0.8998 0.96 (16)
7128.16 (14) 75.6578 2.7892 3.69 2.9216 74.6934 2.7941 0.96 (16)
7129.15 (14) 89.0426 0.8074 0.91 0.9616 88.0746 0.8246 0.97 (17)
7130.13 (14) 100.0572 1.1378 1.14 1.3100 99.0864 1.1505 0.97 (17)
7131.17 (14) 113.0345 1.0223 0.90 1.2156 112.0618 1.0368 0.97 (17)
7132.20 (14) 113.6922 1.3928 1.23 1.5872 112.7188 1.4035 0.97 (17)
7133.27 (14) 115.1289 0.7664 0.67 0.9631 114.1559 0.7856 0.97 (17)
7134.27 (14) 116.4568 1.0702 0.92 1.2691 115.4856 1.0838 0.97 (17)
7135.26 (14) 114.6754 1.1792 1.03 1.3752 113.7072 1.1911 0.97 (17)
7136.34 (14) 112.1278 1.0690 0.95 1.2609 111.1646 1.0814 0.96 (16)
7137.37 (14) 105.4288 0.8999 0.85 1.0808 104.4722 0.9134 0.96 (16)
7138.37 (14) 98.8373 1.1089 1.12 1.2791 97.8888 1.1188 0.95 (15)
7139.31 (14) 93.9398 3.5450 3.77 3.7072 93.0008 3.5477 0.94 (14)
7140.30 (14) 85.6620 1.1122 1.30 1.2609 84.7350 1.1194 0.92 (13)
7141.35 (14) 82.8604 0.8452 1.02 0.9893 81.9483 0.8525 0.91 (11)
7142.30 (14) 79.2957 0.9438 1.19 1.0821 78.3996 0.9486 0.896 (96)
7143.20 (14) 77.3629 0.9679 1.25 1.1031 76.4841 0.9710 0.879 (79)
7144.24 (14) 75.4883 0.8876 1.18 1.0198 74.6324 0.8894 0.856 (56)
7145.19 (14) 75.8586 3.3343 4.40 3.4670 75.0265 3.3344 0.832 (32)
7146.18 (14) 75.0865 1.1261 1.50 1.2575 74.2822 1.1261 0.804 (04)
7147.13 (14) 72.5872 1.3103 1.81 1.4377 71.8129 1.3105 0.774 (26)
             
8006.89 (14) 55.4844 0.7062 1.27 0.8058 54.7459 0.7065 0.739 (19)
8014.40 (14) 54.3576 0.6004 1.10 0.6981 53.6196 0.6007 0.738 (19)
8514.68 (14) 57.4075 1.2802 2.23 1.3829 56.7054 1.2804 0.702 (17)

The solvent was 50% butyronitrile (CH3CH2CH2CN) and 50% acetonitrile (CH3CN), the mixture being less susceptible to crystallization during freezing. Uncertainties from the repeated measurements including the solvent were from 0.005% to 0.03%, indicating a very high signal-to-noise ratio (see Figs. 15[link] and 16[link][link]), enabling extraction of the isolated solute spectra (see Figs. 17[link] and 18[link]). Key challenges were the absolute calibration and characterization of the solvent and air path, and the volume change of freezing, together with the treatment of uncertainty within the hybrid technique.

[Figure 15]

Figure 15

Attenuations of the 15 mM and 3 mM solutions of Fc, and of the pure solvent, represented respectively by black diamonds, blue squares and red triangle markers. The uncertainties determined from repeated measurements varied from 0.005% to 0.02%, reflecting the data quality. Well defined peaks from the 15 mM solution, relatively weak peaks from the 3 mM solution and no peaks from the pure solvent confirmed there was no cross contamination from leaking between the chambers. The solutions were confined to three chambers, each of 1.5 mm nominal path length. Reproduced with permission from Islam et al. (2016)[link]. Copyright (2016) American Chemical Society.

[Figure 16]

Figure 16

The attenuation from the 15 mM and 3 mM DmFc solutions (Fc*), and of a blank measurement using an empty chamber, are represented respectively by black diamond markers, blue squares and salmon triangles. The uncertainties determined from the repeated measurements varied from 0.005% to 0.03%, reflecting the data quality. The blank sample produced a smooth curve with substantially less attenuation, contributed primarily by components such as the sample holder, cryostat, detector windows and air path. Reproduced with permission from Islam et al. (2016)[link]. Copyright (2016) American Chemical Society.

[Figure 17]

Figure 17

Normalized XAFS of 15 mM Fc (top) and 3 mM Fc (bottom) with total uncertainties (δtotal), uncertainties contributed by solvent path-length variation ([\delta_{{t_{\rm frac}}}]), statistical uncertainties ([\delta_{\left[{{\mu} / {\rho}}\right]\left[\rho{t}\right]}]), and uncertainties due to background attenuation and dark current (δbkg+dc). Reproduced with permission from Islam et al. (2016)[link]. Copyright (2016) American Chemical Society.

[Figure 18]

Figure 18

Normalized XAFS of 15 mM DmFc (top) and 3 mM DmFc (bottom) with total uncertainties (δtotal), uncertainties contributed by solvent path-length variation ([\delta_{{t_{\rm frac}}}]), statistical uncertainties ([\delta_{\left[{{\mu} /{\rho}}\right]\left[\rho{t}\right]}]), and uncertainties due to background attenuation and dark current (δbkg+dc). Reproduced with permission from Islam et al. (2016)[link]. Copyright (2016) American Chemical Society.

There is moderately strong evidence for three crystal phases of Fc, but more challenging is the determination of their structures (Fig. 19[link]). Note that in this study, it was not required that these frozen solutions (nor the higher-temperature solutions) should show the same structures as either an isolated molecule or a molecule in a crystal.

[Figure 19]

Figure 19

Models of reported crystal structures for Fc at three different temperatures [283 K (a), 173 K (b) and 98 K (c), from Dunitz et al. (1956[link]), Brock & Fu (1997[link]) and Seiler & Dunitz (1982[link]), respectively] showing a range of predictions from conformation analysis. The higher-temperature structures clearly possess a staggered geometry for the cyclopentadienyl rings, while the 98 K measurement suggests a near-eclipsed structure with a relative rotation angle of 9°. Reproduced with permission from Islam et al. (2016)[link]. Copyright (2016) American Chemical Society.

The accuracy of these data sets was a major achievement of the hybrid technique and led to advanced theoretical investigations using the finite-difference method and the new theory FDMX (Bourke et al., 2016b[link]). However, there is still much more to understand about Fc and DmFc in crystalline and solution forms.

18. n-pr Ni and i-pr Ni complexes, 7.9–9.5 keV. XAS, XAFS, structure, Ni conformation, error analysis and grid spacing

The study by Schalken & Chantler (2018)[link] revealed one key problem of many data sets – the grid spacing in energy and the spacing translated to k-space are almost never uniform. Even if the spacing is more-or-less uniform in k-space, there are likely to be some points missing due to data processing and removal due to Bragg glitches (three-beam interactions of the monochromator, unnormalized by an unmatched secondary detector). It is also assumed that the E0 offset energy for the edge and continuum is defined exactly in the process of the transformation to k-space and hence that there is no need for an additional offset parameter for E0. More commonly, the near-edge region has a finer spacing, e.g. 0.5 eV, increasing at some distance above the XANES region, so the grid is not uniform in k-space. Therefore to obtain data points with independent uncertainties and the (correct) propagation of errors, one must process each data point individually (Fig. 20[link]). Then one can model the detailed structure with theory (Fig. 21[link]). Conversely, this study also assessed how to interpolate the data, possibly onto a uniform grid in k-space, post facto with `minimal' distortion of the data and well defined statistical significance. Quite often, and indeed for any current processing in R-space, a fast Fourier transform (FFT) routine is used which assumes and requires a uniform grid in k-space. This study also discussed data sets where the beamtime was spent pursuing high-accuracy data points at fewer energies, versus a strategy where a much higher point density was pursued but with lower accuracy for each point.

[Figure 20]

Figure 20

Quality of the data and background spline for the absorption spectrum with the solvent contribution removed for 15 mM i-pr Ni (top) and n-pr Ni (bottom) for the high-point-accuracy data sets.

[Figure 21]

Figure 21

k2-weighted mu2chi (non-interpolated) output for 15 mM i-pr Ni and n-pr Ni from the high-point-accuracy hybrid experiment.

Around this time, discussions arose through the joint Q2XAFS meetings coordinated by the IUCr Commission on XAFS and the International XAFS Society about appropriate data formats for deposition and tabulations for cross-platform portability (Ravel et al., 2012[link]; Chantler et al., 2012a[link]; Hester, 2016[link]; Abe et al., 2018[link]; Chantler et al., 2018[link], 2019[link]). A key recommendation was that the format should be text-based and readable by humans, but also suitable for input to fitting, analysis and theory software. Secondly, it was recommended that information about the different columns and key issues should be noted in a header. Potential formats could be a .dat format similar to that used for iFEFFit or a format similar to the .cif format, already in use for the description of crystal structures and diffraction experiments. Other formats discussed included the binary HDF5 format, the European XDI format and later a XIF format (Sarangi, 2018[link]).

The data sets discussed in the previous sections of this chapter were presented as typeset tables of data within published articles (e.g. in pdf format), or deposited as text files and readme files (Section 8[link]), or deposited as pdfs of tabulated data (Sections 16[link] and 17[link]). However, by this point and in the following sections, discussions at the Q2XAFS meetings and the joint work of the IUCr Commission on XAFS and the International XAFS Society had shown that it was important to develop standard formats of data sets for direct input into XANES and XAFS fitting packages, for cross-platform portability and for deposition. For the study described in this section a minimalist template for mu2chi, iFEFFit and eFEFFit formats was used, as shown in Table 29[link], which is also available the supporting information to this chapter as the file bz5029sup15.txt. `E' is the energy in eV; `MU' is [μ/ρ] in cm2 g−1 and `MU_ERR' is [\sigma_{\left[{{\mu} / {\rho}}\right]}] in cm2 g−1. The table contains no discussion of relative errors, but presents data for 194 independent energies for 15 mM n-pr Ni under the same conditions as discussed in Section 16[link]. This template focused only on standard processing and packages, and not on the presentation of additional derived results. As a .txt file it was directly machine-readable. Comments, header information and metadata as recommended by the discussions at Q2XAFS are not included here, so the reader should refer to the article by Schalken & Chantler (2018)[link] for these details. This template was later developed into the recommended formats of .cif and .dat (for eFEFFit/iFEFFit), as described in the sections below.

Table 29
15 mM n-pr Ni: .dat tabulation of mass attenuation coefficients MU (= [μ/ρ])

E MU MU_ERR 8337.38 13.8488 0.0907 8436.34 53.7094 0.085
7918.6 14.3975 0.344 8337.85 14.2488 0.0941 8438.54 53.3434 0.0847
7958.94 13.857 0.128 8338.33 14.8512 0.0898 8440.61 53.2192 0.0896
7998.73 12.4021 0.2331 8338.8 15.3278 0.0934 8442.56 53.425 0.0909
8039.15 12.8614 0.1579 8339.28 16.0164 0.0847 8444.65 53.6321 0.0801
8078.88 11.5823 0.2661 8339.75 16.6289 0.0857 8446.72 53.7605 0.0923
8078.93 10.7749 0.2019 8340.23 17.346 0.0886 8448.62 53.812 0.0805
8119.13 11.2833 0.1043 8340.76 18.2675 0.0966 8450.57 54.0264 0.0857
8159.17 10.8239 0.1782 8341.3 19.5157 0.0861 8452.59 54.2818 0.1056
8199.09 11.4329 0.1137 8341.72 20.4088 0.088 8454.49 54.3667 0.1727
8239.54 9.3359 0.2631 8342.26 21.7918 0.087 8456.39 53.9618 0.0885
8278.65 10.6173 0.1075 8342.85 23.6048 0.0978 8458.48 54.1099 0.0858
8283.63 10.4404 0.1593 8343.39 26.0919 0.0865 8460.38 54.1696 0.0949
8288.75 10.9036 0.1055 8343.86 28.1103 0.088 8462.4 53.9662 0.0903
8293.87 10.4362 0.156 8344.4 31.2691 0.0946 8464.49 54.2245 0.0858
8298.76 10.8103 0.1115 8344.88 34.1175 0.0836 8466.45 54.1296 0.0725
8303.65 11.4517 0.0905 8345.35 38.0358 0.0932 8468.85 54.1731 0.0919
8308.43 11.5356 0.1197 8345.83 41.8199 0.0801 8479.07 53.9239 0.0819
8309.38 11.7047 0.1084 8346.42 46.5021 0.0933 8488.88 53.8575 0.082
8310.32 11.471 0.1136 8346.91 50.7247 0.0936 8498.89 53.9639 0.1454
8311.34 11.7723 0.1146 8347.44 55.7999 0.0968 8509.12 52.3359 0.1244
8312.34 11.736 0.1208 8348.52 69.8568 0.0927 8518.93 51.9634 0.0782
8313.46 12.0918 0.1156 8350.6 75.4479 0.0958 8528.96 51.2721 0.1145
8314.46 12.0229 0.1122 8352.64 74.4364 0.0935 8539.26 51.3383 0.0793
8315.41 12.0549 0.1092 8354.67 71.8309 0.0955 8548.96 50.7922 0.0801
8316.42 12.1003 0.1166 8356.7 67.4226 0.087 8559 51.2728 0.0585
8317.49 12.2049 0.1121 8358.61 64.0177 0.104 8569.31 50.5096 0.1136
8318.49 12.3484 0.1109 8360.59 60.7791 0.0932 8579.02 50.6278 0.0894
8319.02 12.7383 0.1151 8362.57 58.2007 0.0833 8589.07 49.8533 0.092
8319.62 12.7988 0.1063 8364.36 55.3938 0.0914 8599.33 49.9905 0.0904
8320.09 12.6816 0.1189 8366.39 53.6771 0.0907 8609.3 49.4738 0.0842
8320.62 12.5552 0.1243 8368.38 51.6385 0.086 8619.42 49.707 0.065
8321.1 12.4834 0.1222 8370.29 50.0682 0.0998 8639.67 48.3695 0.1423
8321.58 12.7043 0.1575 8372.34 48.154 0.1028 8639.73 48.3048 0.1748
8322.05 13.006 0.1163 8374.38 47.3642 0.1276 8659.63 48.2793 0.1011
8322.58 12.7641 0.1307 8376.42 46.7503 0.124 8679.37 47.1344 0.1903
8323.12 12.7819 0.1217 8378.53 47.3096 0.1525 8679.43 46.7633 0.1506
8323.59 12.6516 0.1213 8380.57 48.6553 0.1118 8699.71 47.5279 0.0892
8324.12 12.5933 0.1145 8382.62 50.6055 0.1157 8719.44 47.1829 0.1451
8324.65 12.5628 0.1177 8384.66 52.4124 0.1143 8719.5 46.7319 0.0967
8325.13 12.2543 0.1138 8386.64 53.7908 0.1237 8739.52 47.125 0.0836
8325.66 12.1542 0.1214 8388.58 55.5608 0.1103 8759.7 46.1062 0.0774
8326.15 12.4784 0.108 8390.56 56.4868 0.1096 8779.37 46.5138 0.078
8326.62 12.7858 0.1049 8392.56 57.5525 0.0955 8799.67 45.492 0.0908
8327.15 12.4599 0.1054 8394.43 57.9881 0.1524 8819.54 45.6392 0.0779
8327.57 12.2737 0.1096 8396.35 58.4913 0.1624 8839.82 45.1138 0.1023
8328.04 12.1963 0.1072 8398.35 59.2205 0.1015 8870.07 45.5182 0.0568
8328.57 12.0645 0.1114 8400.34 59.1963 0.1139 8900.11 44.4451 0.1372
8329.05 12.3979 0.1006 8402.33 59.8045 0.1027 8930.22 45.013 0.0553
8329.52 12.2085 0.1041 8404.4 59.1507 0.1189 8960.14 44.2414 0.1012
8330 12.231 0.1335 8406.45 59.1165 0.0928 8960.21 43.8138 0.0909
8330.47 12.3744 0.1135 8408.51 57.9148 0.1654 8990.12 44.4046 0.0601
8331.07 12.4626 0.1045 8410.63 57.7339 0.1247 9020.24 43.6004 0.1897
8331.55 12.6062 0.1041 8412.64 56.6799 0.1288 9060.44 43.9373 0.0634
8331.96 12.4484 0.0969 8414.69 56.0587 0.1063 9100.87 42.0694 0.1487
8332.5 12.6913 0.096 8416.69 55.6385 0.1098 9140.95 42.2971 0.0788
8332.91 12.7562 0.0933 8418.58 55.5027 0.1178 9181.03 41.1502 0.1526
8333.45 12.9581 0.0875 8420.58 55.416 0.0891 9221.1 41.3498 0.0779
8333.86 13.1698 0.1029 8422.53 55.0891 0.1183 9261.02 40.4682 0.2145
8334.34 13.2789 0.0929 8424.35 54.6832 0.0918 9261.09 39.9854 0.1472
8334.87 13.2664 0.1056 8426.35 54.7478 0.1023 9301.07 40.9859 0.1082
8335.29 13.4296 0.0915 8428.37 54.5525 0.0864 9341.17 39.8005 0.1166
8335.82 13.5899 0.0887 8430.25 54.4688 0.0783 9380.95 40.2269 0.0896
8336.31 13.5387 0.0878 8432.26 54.0891 0.2069 9471.67 40.1615 0.0804
8336.84 13.6542 0.1037 8434.39 53.7708 0.0882 9521.81 39.7442 0.1648

19. n-pr Ni and i-pr Ni complexes, 8.14–9.32 keV. XFS, XAFS, nanostructure, fluorescence reference data sets and Ni conformation

Trevorah et al. (2019)[link] presented the first example of data sets collected using fluorescence detection. These data sets were of the same quality as the earlier transmission (XAS) data sets discussed in Section 16[link], and like them include detailed error analysis and uncertainty propagation. These data sets were presented in both eFEFFit/iFEFFit data format (.dat) and also in CIF (.cif) format. These potential `standard formats' have not yet been agreed to by the international community, but are illustrative and can be used and ported as presented. In this section we explicitly present portable data with metadata and headers as discussed by the international community. We recommend this practice for future supplementary information, standards, deposition and storing of data as fulfilling the requirements decided upon during the Q2XAFS meetings.

X-ray absorption is a first-order process (in lowest order) in the Hamiltonian, whereas fluorescence is a second-order process (in lowest order) [see Chapters 2.8 by Chantler (2024)[link] and 3.49 by Glatzel & Ghiringhelli (2024)[link]]. Hence X-ray emission spectroscopy follows the same Hamiltonian whether it is detecting fluorescence in high-resolution fluorescence detection `XAS' (HERFD-XAS) or observing emission fluorescence spectra, often called XES. Technologies such as resonant inelastic X-ray scattering also observe emission and are also types of X-ray emission spectroscopy, although conventionally one axis of the spectrum is labelled as the incident energy (`XAS' or perhaps `XFS') and one is labelled as the emission energy (`XES').

The fluoresence data for 572 independent energies for 15 mM n-pr Ni are presented in Table 30[link] in .dat format. Table 31[link] shows the i-pr Ni fluorescence data in .cif format, with the same columns in the same order. Four files (one in .dat format and one in .cif format for each complex) are available the supporting information to this chapter as the files bz5029sup16.txt to bz5029sup19.txt.

Table 30
15 mM n-pr Ni, 7.9–9.5 keV, in eFEFFit/iFEFFit .dat format

The energy E is in eV, followed by [A\left[{{\mu} / {\rho}}\right]^{*}_{\rm pe}] (Ni) in cm2 g−1, σtotal (cm2 g−1) or [\sigma_{\left[{{\mu} / {\rho}}\right]}], σExperimental (cm2 g−1) i.e. [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}], σpixel or the scaling/absolute transfer uncertainty or [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm cal}}], and σE in eV. The full version of this file is available in the supporting information.

[Scheme scheme1]

Table 31
15 mM i-pr Ni, 7.9–9.5 keV, in .cif format

The energy E is in eV, followed by [A\left[{{\mu} / {\rho}}\right]^{*}_{\rm pe}] (Ni) in cm2 g−1, σtotal(cm2 g−1) or [\sigma_{\left[{{\mu} / {\rho}}\right]}], σExperimental (cm2 g−1) i.e. [\sigma_{\left[{{\mu} /{\rho}}\right]_{\rm rel}}], σpixel or the scaling/absolute transfer uncertainty or [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm cal}}], and σE in eV. The full version of this file is available in the supporting information.

[Scheme scheme2]

One can convert a data file in .cif format to .dat format by commenting out some of the header items and perhaps clarifying some of the descriptions in other parts of the header. Similarly one can convert the .dat header fields into a CIF-like data format. In Tables 30[link] and 31[link], which correspond to Fig. 22[link], the energy E is in eV and is followed by [A\left[{{\mu} / {\rho}}\right]^{*}_{\rm pe}] (for Ni) in cm2 g−1. [A\left[{{\mu} / {\rho}}\right]^{*}_{\rm pe}] is not the same as [μ/ρ] for transmission or XAS experiments because there is intrinsically a scaling and efficiency correction, even if the results of this analysis are in excellent agreement with the results of the corresponding transmission experiments. The raw data for a transmission experiment are attenuation values, from which the photoelectric absorption coefficient [μ/ρ]pe may be extracted, whereas only a core–hole ionization can lead to fluorescence, so fluorescence measurements intrinsically measure the photoelectric coefficient [A\left[{{\mu} / {\rho}}\right]^{*}_{\rm pe}]. Similarly a transmission experiment will measure the attenuation or absorption from all shells and subshells, whereas fluorescence experiments will only measure the observed active edge or subshell, indicated by the label *. Because fluorescence measurements have significant nonlinearity from detector and self-absorption effects and directly measure I/I0, the extracted values typically need to be scaled by a factor A to be consistent with attenuation or absorption measurements. Finally, the selection rules for a first-order process (attenuation) and a second-order process (fluorescence) are in general different. Additional columns in the tables give σtotal (cm2 g−1) or [\sigma_{\left[{{\mu} / {\rho}}\right]}]; σExperimental (cm2 g−1), i.e. [\sigma_{\left[{{\mu} /{\rho}}\right]_{\rm rel}}]; σpixel or the scaling/absolute transfer uncertainty or [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm cal}}]; and σE in eV.

[Figure 22]

Figure 22

(a) Spectra for n-pr Ni corrected using SeAFFluX (Trevorah et al., 2019[link]). (b) Part (a) with scaled overplot of transmission XAS spectra. A dramatic reduction in dispersion is observed. Corrected fluorescence spectra display the expected decreasing trend at higher energies consistent with the absorption data (b). The fluorescence scale has one free parameter ai corresponding to the pixel efficiency normalization.

These data were of sufficient quality to be used for nano­structural analysis, studies of the propagation of uncertainties and for reference standards (Trevorah et al., 2020[link]), see Fig. 23[link]. For data deposition and processing, we recommend a column order with E first, then either [μ/ρ] for transmission measurements (i.e. the attenuation in XAS measurements) or [A\left[{{\mu} / {\rho}}\right]^{*}_{\rm pe}] in cm2 g−1 for fluorescence measurements. These are the typical data processed without uncertainties or uncertainty estimation. Then we recommend that the third column is [\sigma_{\left[{{\mu} /{\rho}}\right]}], which is the uncertainty of the second column, also in cm2 g−1 for simplicity of processing further with programs such as mu2chi, eFEFFit, iFEFFit, Larch or other programs that use this key uncertainty. The fourth column should then represent the estimate of the relative uncertainty σExperimental (cm2 g−1) or [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}], also in cm2 g−1; subsequent columns could contain data related to particular contributions to the uncertainty from different sources of systematic error, e.g. σpixel. For transmission XAS data there should be estimated values of [\left[{{\mu} /{\rho}}\right]_{\rm pe}] and their uncertainties, possibly with an explicit scattering estimate; and perhaps the last column should be σE, preferably with an indication of how the energy was estimated. If values for the imaginary component of the atomic form factor are extracted from the data, these values should also be presented in a column with their uncertainties. Common usage of such data sets might not distinguish important terms. However, distinguishing the use of the term `measured' from a mass attenuation measurement and from a measurement or extraction of a (photoelectric) mass absorption coefficient helps to clarify the importance of the terms, and is certainly important for comparison with and development of theory. The first two columns should be adequate for simple data processing, the first three for processing with uncertainties, and the later columns for investigating and interrogating this and other science more closely. Of course in CIF format every column is labelled, so the columns of data of interest can be easily extracted for any purpose. This is also the case for data in .dat format as long as the columns are labelled.

[Figure 23]

Figure 23

Transmission versus fluorescence spectra for i-pr Ni. The first peak within the Hanning window is in good agreement between the spectra; note the absorption spectrum has a larger amplitude than the fluorescence spectra elsewhere.

20. ZnSe crystal foils, 6.82–15.07 keV. XAS, XAFS, nanostructure

Sier et al. (2020)[link] present XERT measurements and analysis of the binary crystal ZnSe, which has been the focus of a long-standing debate about the origin of anomalous Bijvoet ratios in its diffraction data. For a binary crystal, the concept of Rayleigh scattering is meaningless and instead Bragg/Laue diffraction or thermal diffuse scattering (TDS) dominate the elastic scattering with very different probabilities. Inelastic scattering might be thought of as conventional, but oriented crystals can also possess tensorial properties. The tensorial properties of ZnSe predict that there will be a major anomaly in the inelastic mean free path, especially with respect to the comparative additivity of the photoelectric mass absorption coefficient (Bourke & Chantler, 2014[link]). This work derived and proved the dominance of thermal diffuse scattering (TDS) (Fig. 24[link]) when Bragg/Laue scattering was avoided. There is, of course, another debate as to whether TDS is elastic or inelastic. Finding the answers to some of these questions will require further accurate experiments; other questions might turn out to be semantic.

[Figure 24]

Figure 24

ZnSe binary crystal foils: attenuation of thermal diffuse scattering (blue) and Compton scattering (red) for zinc selenide across the measured energy range.

Three high-purity zinc selenide foils were chosen for this experiment with nominal thicknesses of 25 µm, 50 µm and 100 µm. 561 attenuation coefficient data points were recorded in the energy range 6.818–15.073 keV, with measurements concentrated at the zinc and selenium pre-edge, near-edge and absorption fine-structure regions (Fig. 25[link]). Steps of 0.5 eV were used near the edges.

[Figure 25]

Figure 25

ZnSe binary crystal foils: absolute mass attenuation coefficients [μ/ρ] in cm2 g−1 and structure in the XAFS regions of the zinc (top) and selenium (bottom) K edges.

There were two possible calibrations of the energy: that of 9.6638 (1) keV and 12.6578 (1) keV for the zinc and the selenium K-absorption edges, respectively, from external energy calibration, versus the values from Kraft et al. (1996)[link] for zinc metal [9.66047 (8) keV] and pure selenium (Bearden, 1967[link]; Bearden & Burr, 1967[link]) [12.6578 (7) keV]; and taking the operational experimental edge energy as the lowest energy inflection point, yielding 9.6667 (12) keV and 12.6631 (13) keV for zinc and selenium, respectively. The accuracy was <0.13%, and led to detailed nanostructural analysis of room-temperature ZnSe with full propagation of the uncertainties. Systematic errors due to fluorescence, bandwidth, monochromator hysteresis and drift were all significant (Table 32[link]).

Table 32
Magnitudes of specific experimental systematic errors for ZnSe crystal foils and their correction, and effect of these on final results, absolute accuracy of the full-foil mapping technique and error in the fit of the energy calibration

Notes: (1) Secondary photons from fluorescent scattering. Correction is highest directly above absorption edges, 0 directly below the Zn edge. (2) Correction for bandwidth. Highest at edge energies (9.6667 and 12.6631 keV). (3) Correction for monochromator drift. Highest at 9.3298 keV. (4) Dark current correction and corresponding uncertainty (± 2 counts). (5) Standard errors from counting statistics (variance including precision and systematic errors). (6) Sum of relative uncertainties. (7) Absolute accuracy of the full-foil mapping technique. (8) Blank current correction and corresponding uncertainty. Correction highest at low energies. (9) Error in the fit of the energy calibration data. Minimum 0.88 eV at 12.0503 keV, maximum 1.22 eV at 9.5892 keV.

 MagnitudeUncertainty ( ± 1σ) 
QuantityNear edgeFar edgeNear edgeFar edgeContribution
[\left[{{\mu} /{\rho}}\right]_{\rm rel}] 0.046–0.118% (50 µm) – 0.67% (100 µm) <0.01% 0 Fluorescence [Note (1)]
<11.9% 0 <1.2% 0 Bandwidth [Note (2)]
0 <0.15% 0 <0.016% Monochromator drift [Note (3)]
Up to 3.3% (25 µm) – 40.7% (100 µm) 0.00147–0.0185% Dark current [Note (4)]
0.328–7.237% 2.67 × 10−5% – 4.82 × 10−4% Variance [Note (5)]
    0.00134–0.580% Relative uncertainty [Note (6)]
           
[\left[{{\mu} / {\rho}}\right]_{\rm abs}] 0.129% Full-foil mapping technique [Note (7)]
7.6–25% (100 µm) – 51% (25 µm) 8.32 × 10−6% – 3.6 × 10−5% Blank normalization [Note (8)]
           
E 0.223–0.385% 0.00655–0.0163% Energy [Note (9)]

This data set yielded detailed information on non-atomic and atomic behaviour across wide energy ranges compared with the theory current at that time (Fig. 26[link]). The bond lengths, which were accurate to 0.003 Å to 0.009 Å, or 0.1% to 0.3%, are plausible and physically meaningful (Fig. 27[link]). Importantly, the structures determined independently from the Zn and the Se K edges were in excellent agreement. Small variations from the structure determined by single-crystal diffraction suggest local dynamic motion beyond that usual for a crystal lattice (note that XAFS is sensitive to dynamic correlated motion). The results obtained in this work are the most accurate to date, and comparisons with theoretically determined values of the attenuation show discrepancies from theory of up to 4%, motivating further investigations into the origin of such discrepancies.

[Figure 26]

Figure 26

ZnSe binary crystal foils: comparison of the experimental mass absorption coefficient with two corresponding theoretical results. Left – density normalized at 12 keV; right – density normalized at 15 keV. Top – values of the mass attenuation coefficient as determined by this experiment and those predicted by the FFAST (Chantler, 2000[link]) and XCOM (Berger & Hubbell, 1987[link]) tabulations. Bottom – the percentage discrepancies between the measured data [zero line], FFAST [+] and XCOM [×].

[Figure 27]

Figure 27

ZnSe binary crystal foils: fitted model output (red) with experimental data (blue) and uncertainties for the (top) zinc and (bottom) selenium K edges. The black box indicates the k Hanning window.

Five files, bz5029sup20.txt to bz5029sup24.txt, are available as supporting information to this chapter. bz5029sup20.txt is in .cif format and includes all of the data set across both edges, whereas .dat files conventionally relate to a single edge for processing by mu2chi, eFEFFit, iFEFFit or Athena, for example, so one file for each edge is provided in .dat format (bz5029sup21.txt, bz5029sup22.txt). Similarly the χ versus k spectra are specific to an edge and the relevant data depend on assumptions about E0, spline fitting and background removal. The extracted χ versus k spectra for both the Zn and Se K edges are provided for comparison and fitting with different theoretical approaches (bz5029sup23.txt, bz5029sup24.txt).

Compared with Table 33[link], in the .cif and .dat format files the columns of data are in a different order, so that the values most usually used for data processing are in the earlier columns. For example, in the .cif format file the ordering is E, [μ/ρ], [\sigma_{\left[{{\mu} / {\rho}}\right]}], [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}], [\left[{{\mu} / {\rho}}\right]_{\rm pe}], [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm pe}}] and σE, where all coefficient values are given in cm2 g−1, i.e. in the same units as the coefficient for ease of processing and error propagation. Note that having multiple edges in the data raises a question about how best to deposit the data, as authors may wish to provide mutiple sets of data, for example one data set for each edge, data sets for k2χ versus k or spectra transformed to R-space. Within the .cif format these could in principle all be in the one file, but it might be easiest to collect the data sets together in a dedicated folder or use a hierarchical data format (HDF) to include all processing information and outputs, even including fitting, for example.

Table 33
ZnSe binary crystal foils (Sier et al., 2020[link]): mass attenuation and mass absorption coefficients [μ/ρ] and [\left[{{\mu} / {\rho}}\right]_{\rm {\rm pe}}] with one standard deviation

Relative and total percentage uncertainties in the mass attenuation coefficients [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm {rel}}}] and [\sigma_{\left[{{\mu} / {\rho}}\right]}] are presented with the latter also given in absolute units. The percentage uncertainty in [\left[{{\mu} / {\rho}}\right]_{\rm {pe}}] includes uncertainty in the measurements and in the calculations of thermal diffuse and Compton scattering attenuation. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (eV)σE (eV)[μ/ρ] (cm2 g−1)[\left[{{\mu} / {\rho}}\right]_{\rm pe}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm pe}}] (%)
6818.79 1.11 105.35 104.93 0.00193 0.129 0.136 0.169
7019.86 1.09 97.209 96.790 0.00205 0.129 0.126 0.172
7220.63 1.08 89.978 89.558 0.00195 0.129 0.116 0.176
7421.57 1.06 83.425 83.003 0.00181 0.129 0.108 0.180
7622.32 1.06 77.450 77.028 0.00166 0.129 0.100 0.184
7823.73 1.08 71.908 71.487 0.00175 0.129 0.0928 0.188
8024.10 1.09 67.008 66.588 0.00134 0.129 0.0865 0.192
8124.39 1.10 64.691 64.273 0.00159 0.129 0.0835 0.194
8325.44 1.12 60.479 60.064 0.00166 0.129 0.0781 0.198
8526.33 1.13 56.690 56.279 0.00171 0.129 0.0732 0.202
8727.16 1.15 53.065 52.659 0.00168 0.129 0.0685 0.206
8928.62 1.17 49.847 49.447 0.00210 0.129 0.0644 0.209
9129.51 1.18 46.689 46.298 0.00197 0.129 0.0603 0.213
9329.83 1.20 43.905 43.528 0.0384 0.135 0.0591 0.221
9529.07 1.21 41.394 41.039 0.00229 0.129 0.0534 0.215
9539.42 1.21 41.262 40.909 0.00224 0.129 0.0533 0.215
9549.31 1.21 41.145 40.794 0.00216 0.129 0.0531 0.214
9558.99 1.21 41.017 40.668 0.00249 0.129 0.0530 0.214
9569.01 1.22 40.887 40.540 0.00244 0.129 0.0528 0.214
9579.29 1.22 40.772 40.427 0.00234 0.129 0.0526 0.214
9589.18 1.22 40.689 40.346 0.00244 0.129 0.0525 0.213
9598.63 0.966 40.644 40.303 0.00264 0.129 0.0525 0.213
9600.53 0.966 40.637 40.296 0.00250 0.129 0.0525 0.213
9602.60 0.966 40.609 40.268 0.00243 0.129 0.0524 0.213
9604.67 0.966 40.594 40.253 0.00248 0.129 0.0524 0.213
9606.73 0.966 40.580 40.240 0.00229 0.129 0.0524 0.213
9608.72 0.966 40.575 40.235 0.00237 0.129 0.0524 0.213
9610.72 0.966 40.563 40.224 0.00251 0.129 0.0524 0.213
9612.87 0.966 40.558 40.219 0.00227 0.129 0.0524 0.213
9614.86 0.966 40.554 40.214 0.00264 0.129 0.0524 0.213
9616.77 0.966 40.548 40.209 0.00234 0.129 0.0524 0.213
9618.85 0.966 40.550 40.210 0.00255 0.129 0.0524 0.213
9620.93 0.966 40.555 40.215 0.00216 0.129 0.0524 0.213
9625.34 0.965 40.345 40.005 0.00326 0.129 0.0521 0.213
9626.30 0.965 40.356 40.016 0.00319 0.129 0.0521 0.213
9627.26 0.965 40.356 40.016 0.00329 0.129 0.0521 0.213
9628.22 0.965 40.364 40.024 0.00325 0.129 0.0521 0.213
9629.26 0.965 40.375 40.035 0.00326 0.129 0.0521 0.213
9630.22 0.965 40.375 40.036 0.00292 0.129 0.0521 0.213
9631.10 0.965 40.390 40.050 0.00342 0.129 0.0522 0.213
9632.22 0.965 40.402 40.063 0.00315 0.129 0.0522 0.213
9633.10 0.965 40.413 40.074 0.00317 0.129 0.0522 0.213
9634.06 0.965 40.434 40.095 0.00330 0.129 0.0522 0.213
9634.95 0.965 40.451 40.111 0.00295 0.129 0.0522 0.213
9635.90 0.965 40.473 40.133 0.00315 0.129 0.0523 0.213
9636.95 0.965 40.497 40.157 0.00329 0.129 0.0523 0.213
9637.91 0.965 40.514 40.175 0.00312 0.129 0.0523 0.213
9638.88 0.965 40.548 40.208 0.00321 0.129 0.0524 0.213
9639.91 0.965 40.580 40.240 0.00296 0.129 0.0524 0.213
9640.88 0.965 40.612 40.272 0.00320 0.129 0.0524 0.213
9641.84 0.965 40.657 40.318 0.00310 0.129 0.0525 0.213
9642.81 0.965 40.706 40.366 0.00321 0.129 0.0526 0.213
9643.84 0.965 40.757 40.417 0.00319 0.129 0.0526 0.213
9644.81 0.965 40.813 40.473 0.00326 0.129 0.0527 0.212
9645.86 0.965 40.871 40.531 0.00331 0.129 0.0528 0.212
9646.82 0.965 40.933 40.593 0.00309 0.129 0.0529 0.212
9647.87 0.965 41.015 40.675 0.00320 0.129 0.0530 0.212
9648.91 0.965 41.119 40.779 0.00326 0.129 0.0531 0.212
9649.88 0.965 41.218 40.878 0.00286 0.129 0.0532 0.212
9650.92 0.965 41.337 40.997 0.00291 0.129 0.0534 0.211
9651.89 0.965 41.472 41.132 0.00278 0.129 0.0536 0.211
9652.37 0.965 41.559 41.219 0.00292 0.129 0.0537 0.211
9652.93 0.964 41.663 41.322 0.00277 0.129 0.0538 0.211
9653.42 0.964 41.760 41.419 0.00267 0.129 0.0539 0.211
9653.98 0.964 41.880 41.540 0.00271 0.129 0.0541 0.210
9654.46 0.964 42.009 41.669 0.00311 0.129 0.0542 0.210
9654.94 0.964 42.166 41.826 0.00290 0.129 0.0545 0.210
9655.51 0.964 42.333 41.993 0.00314 0.129 0.0547 0.210
9656.07 0.964 42.521 42.181 0.00303 0.129 0.0549 0.209
9656.63 0.964 42.719 42.378 0.00280 0.129 0.0552 0.209
9657.20 0.964 42.991 42.651 0.00375 0.129 0.0555 0.208
9657.60 0.964 43.258 42.918 0.00367 0.129 0.0559 0.208
9658.16 0.964 43.570 43.229 0.00366 0.129 0.0563 0.207
9658.64 0.964 43.929 43.588 0.00431 0.129 0.0567 0.207
9659.13 0.964 44.435 44.094 0.00502 0.129 0.0574 0.206
9659.61 0.964 44.966 44.625 0.00519 0.129 0.0581 0.205
9660.09 0.964 45.608 45.267 0.00658 0.129 0.0590 0.204
9660.58 0.964 46.425 46.084 0.00887 0.129 0.0601 0.203
9661.07 0.964 47.492 47.151 0.0110 0.130 0.0615 0.201
9661.63 0.964 48.925 48.583 0.0169 0.130 0.0637 0.200
9662.11 0.964 50.832 50.490 0.0282 0.132 0.0672 0.199
9662.60 0.964 53.554 53.212 0.0523 0.139 0.0746 0.203
9663.08 0.964 57.691 57.350 0.0803 0.152 0.0877 0.211
9663.64 0.964 63.219 62.877 0.109 0.169 0.107 0.223
9664.20 0.964 71.136 70.795 0.180 0.222 0.158 0.270
9664.70 0.964 81.538 81.197 0.285 0.313 0.255 0.355
9665.18 0.964 95.272 94.931 0.383 0.404 0.385 0.440
9665.66 0.964 110.15 109.80 0.439 0.458 0.504 0.489
9666.14 0.964 125.20 124.86 0.420 0.439 0.550 0.466
9666.71 0.964 148.00 147.66 0.580 0.594 0.879 0.617
9667.11 0.964 166.54 166.20 0.568 0.582 0.969 0.603
9667.59 0.964 171.23 170.89 0.285 0.312 0.535 0.332
9668.09 0.964 174.18 173.84 0.0986 0.162 0.283 0.182
9668.57 0.964 176.01 175.67 0.0200 0.131 0.230 0.150
9669.05 0.964 176.25 175.91 0.00342 0.129 0.228 0.149
9669.61 0.964 174.99 174.65 0.0181 0.130 0.228 0.150
9670.10 0.964 171.90 171.56 0.0469 0.137 0.236 0.157
9670.50 0.964 167.40 167.06 0.0616 0.143 0.239 0.164
9670.99 0.964 160.81 160.46 0.0499 0.138 0.223 0.160
9671.47 0.964 155.44 155.10 0.0331 0.133 0.207 0.155
9672.04 0.964 150.76 150.42 0.0193 0.131 0.197 0.153
9672.52 0.964 147.74 147.39 0.0109 0.130 0.191 0.153
9673.09 0.964 145.77 145.43 0.00375 0.129 0.188 0.153
9673.49 0.964 145.38 145.03 0.00255 0.129 0.188 0.153
9673.98 0.964 145.80 145.45 0.00332 0.129 0.188 0.153
9674.46 0.964 146.66 146.32 0.00467 0.129 0.189 0.153
9674.94 0.964 147.90 147.56 0.00608 0.129 0.191 0.152
9675.43 0.964 149.27 148.92 0.00705 0.129 0.193 0.152
9675.84 0.964 150.55 150.21 0.00820 0.129 0.195 0.152
9676.40 0.964 151.54 151.20 0.00287 0.129 0.196 0.152
9676.88 0.964 151.82 151.47 0.00259 0.129 0.196 0.152
9677.86 0.964 148.48 148.14 0.00174 0.129 0.192 0.152
9678.74 0.964 142.83 142.48 0.00144 0.129 0.184 0.153
9679.80 0.964 137.76 137.42 0.00153 0.129 0.178 0.154
9680.85 0.963 134.68 134.34 0.00176 0.129 0.174 0.155
9681.82 0.963 133.06 132.72 0.00190 0.129 0.172 0.155
9682.79 0.963 132.24 131.90 0.00204 0.129 0.171 0.155
9683.76 0.963 131.47 131.12 0.00184 0.129 0.170 0.155
9684.73 0.963 131.00 130.65 0.00215 0.129 0.169 0.155
9685.87 0.963 131.13 130.79 0.00246 0.129 0.169 0.155
9686.77 0.963 131.82 131.47 0.00268 0.129 0.170 0.155
9687.81 0.963 132.87 132.52 0.00256 0.129 0.172 0.155
9688.87 0.963 133.96 133.61 0.00270 0.129 0.173 0.155
9689.92 0.963 135.00 134.65 0.00256 0.129 0.174 0.155
9690.90 0.963 135.68 135.33 0.00256 0.129 0.175 0.155
9691.87 0.963 136.15 135.80 0.00260 0.129 0.176 0.155
9693.01 0.963 136.45 136.10 0.00247 0.129 0.176 0.155
9694.06 0.963 136.72 136.37 0.00243 0.129 0.177 0.155
9694.95 0.963 137.07 136.72 0.00258 0.129 0.177 0.155
9696.09 0.963 137.66 137.31 0.00259 0.129 0.178 0.155
9697.14 0.963 138.36 138.01 0.00256 0.129 0.179 0.154
9698.12 0.963 139.11 138.76 0.00268 0.129 0.180 0.154
9699.09 0.963 139.52 139.17 0.00256 0.129 0.180 0.154
9700.07 0.963 139.61 139.26 0.00245 0.129 0.180 0.154
9701.12 0.963 139.47 139.12 0.00227 0.129 0.180 0.154
9702.26 0.963 139.29 138.94 0.00239 0.129 0.180 0.154
9703.15 0.963 139.25 138.90 0.00233 0.129 0.180 0.154
9704.21 0.963 139.34 138.99 0.00247 0.129 0.180 0.155
9705.20 0.963 139.49 139.13 0.00243 0.129 0.180 0.155
9706.25 0.963 139.70 139.34 0.00252 0.129 0.180 0.155
9707.23 0.963 139.87 139.52 0.00250 0.129 0.181 0.155
9708.12 0.963 140.02 139.66 0.00247 0.129 0.181 0.155
9709.18 0.962 140.11 139.75 0.00251 0.129 0.181 0.155
9710.15 0.962 140.13 139.78 0.00247 0.129 0.181 0.155
9711.05 0.962 140.14 139.78 0.00239 0.129 0.181 0.155
9712.03 0.962 140.22 139.86 0.00240 0.129 0.181 0.155
9713.17 0.962 140.42 140.07 0.00254 0.129 0.181 0.155
9714.06 0.962 140.84 140.48 0.00277 0.129 0.182 0.154
9715.04 0.962 141.34 140.98 0.00258 0.129 0.183 0.154
9715.94 0.962 141.83 141.47 0.00260 0.129 0.183 0.154
9716.84 0.962 142.15 141.79 0.00256 0.129 0.184 0.154
9717.89 0.962 142.24 141.88 0.00230 0.129 0.184 0.154
9718.88 0.962 142.04 141.68 0.00234 0.129 0.183 0.154
9719.85 0.962 141.66 141.30 0.00229 0.129 0.183 0.154
9720.92 0.962 141.15 140.80 0.00228 0.129 0.182 0.154
9721.98 0.962 140.36 140.00 0.00201 0.129 0.181 0.155
9723.94 0.962 139.09 138.73 0.00195 0.129 0.180 0.155
9725.90 0.962 138.02 137.66 0.00209 0.129 0.178 0.155
9727.94 0.962 137.15 136.79 0.00226 0.129 0.177 0.155
9730.07 0.962 137.07 136.71 0.00247 0.129 0.177 0.155
9732.11 0.962 137.84 137.48 0.00290 0.129 0.178 0.155
9734.07 0.962 139.17 138.81 0.00295 0.129 0.180 0.155
9736.20 0.961 140.78 140.42 0.00312 0.129 0.182 0.155
9738.33 0.961 141.67 141.31 0.00274 0.129 0.183 0.155
9740.46 0.961 141.89 141.53 0.00251 0.129 0.183 0.155
9742.43 0.961 141.75 141.39 0.00244 0.129 0.183 0.155
9744.48 0.961 141.55 141.19 0.00241 0.129 0.183 0.155
9746.61 0.961 141.39 141.03 0.00254 0.129 0.183 0.155
9748.58 0.961 141.22 140.86 0.00233 0.129 0.182 0.155
9750.47 0.961 141.02 140.66 0.00247 0.129 0.182 0.155
9752.36 0.961 140.60 140.23 0.00220 0.129 0.182 0.155
9754.41 0.961 139.98 139.62 0.00215 0.129 0.181 0.155
9756.38 0.961 139.15 138.79 0.00225 0.129 0.180 0.155
9758.19 0.961 138.42 138.06 0.00234 0.129 0.179 0.155
9760.17 0.961 137.88 137.52 0.00224 0.129 0.178 0.156
9762.14 0.961 137.82 137.45 0.00241 0.129 0.178 0.156
9764.20 0.960 138.10 137.74 0.00259 0.129 0.178 0.156
9766.09 0.960 138.46 138.09 0.00259 0.129 0.179 0.156
9768.15 0.960 138.51 138.14 0.00226 0.129 0.179 0.156
9770.30 0.960 138.00 137.63 0.00218 0.129 0.178 0.156
9772.28 0.960 137.07 136.70 0.00202 0.129 0.177 0.156
9774.26 0.960 136.26 135.89 0.00213 0.129 0.176 0.156
9776.49 0.960 135.75 135.39 0.00218 0.129 0.175 0.156
9778.55 0.960 135.71 135.34 0.00239 0.129 0.175 0.156
9780.62 0.960 135.84 135.47 0.00231 0.129 0.175 0.156
9782.60 0.960 135.97 135.60 0.00237 0.129 0.176 0.156
9784.67 0.960 136.20 135.83 0.00262 0.129 0.176 0.156
9786.73 0.960 136.56 136.19 0.00263 0.129 0.176 0.156
9788.81 0.960 137.06 136.69 0.00278 0.129 0.177 0.156
9790.80 0.960 137.55 137.18 0.00263 0.129 0.178 0.156
9792.78 0.959 138.10 137.73 0.00277 0.129 0.178 0.156
9797.83 0.959 139.26 138.88 0.00336 0.129 0.180 0.156
9802.65 0.959 139.91 139.54 0.00260 0.129 0.181 0.156
9807.64 0.959 140.23 139.86 0.00260 0.129 0.181 0.156
9812.78 0.959 140.28 139.91 0.00215 0.129 0.181 0.156
9817.86 0.959 139.58 139.20 0.00193 0.129 0.180 0.156
9823.11 0.958 138.14 137.76 0.00161 0.129 0.178 0.156
9828.21 0.958 136.56 136.18 0.00191 0.129 0.176 0.157
9833.21 0.958 134.79 134.41 0.00179 0.129 0.174 0.157
9838.14 0.958 133.92 133.54 0.00228 0.129 0.173 0.158
9843.00 0.958 133.57 133.19 0.00228 0.129 0.172 0.158
9848.02 0.957 133.29 132.91 0.00222 0.129 0.172 0.158
9853.05 0.957 134.00 133.62 0.00317 0.129 0.173 0.158
9858.26 0.957 134.99 134.61 0.00290 0.129 0.174 0.158
9863.47 0.957 135.57 135.19 0.00261 0.129 0.175 0.157
9868.51 0.957 135.77 135.38 0.00251 0.129 0.175 0.157
9873.56 0.957 135.89 135.50 0.00232 0.129 0.175 0.157
9878.54 0.956 135.92 135.53 0.00232 0.129 0.175 0.157
9883.34 0.956 135.88 135.50 0.00253 0.129 0.175 0.157
9888.41 0.956 136.12 135.73 0.00251 0.129 0.176 0.157
9893.40 0.956 135.94 135.56 0.00212 0.129 0.176 0.157
9898.65 0.956 135.09 134.71 0.00199 0.129 0.174 0.158
9903.81 0.955 134.40 134.01 0.00217 0.129 0.174 0.158
9908.99 0.955 133.85 133.47 0.00214 0.129 0.173 0.158
9914.26 0.955 132.90 132.51 0.00185 0.129 0.172 0.158
9919.19 0.955 132.00 131.62 0.00183 0.129 0.170 0.158
9924.20 0.955 131.07 130.68 0.00177 0.129 0.169 0.159
9929.06 0.955 130.37 129.98 0.00217 0.129 0.168 0.159
9934.09 0.954 129.98 129.59 0.00229 0.129 0.168 0.159
9939.21 0.954 130.19 129.80 0.00255 0.129 0.168 0.159
9944.33 0.954 130.59 130.20 0.00259 0.129 0.169 0.159
9949.55 0.954 131.02 130.64 0.00260 0.129 0.169 0.159
9954.78 0.954 131.39 131.00 0.00234 0.129 0.170 0.159
9959.66 0.953 131.50 131.12 0.00236 0.129 0.170 0.159
9964.72 0.953 131.54 131.16 0.00236 0.129 0.170 0.159
9969.53 0.953 131.54 131.15 0.00228 0.129 0.170 0.159
9974.51 0.953 131.37 130.98 0.00232 0.129 0.170 0.159
9979.51 0.953 131.15 130.76 0.00229 0.129 0.169 0.159
9984.68 0.953 130.91 130.52 0.00223 0.129 0.169 0.159
9990.03 0.952 130.54 130.15 0.00222 0.129 0.169 0.159
9995.21 0.952 130.05 129.66 0.00200 0.129 0.168 0.159
10000.4 0.952 129.55 129.16 0.00198 0.129 0.167 0.159
10005.2 0.952 129.08 128.69 0.00205 0.129 0.167 0.159
10010.2 0.952 128.67 128.28 0.00227 0.129 0.166 0.159
10015.3 0.951 128.15 127.76 0.00215 0.129 0.165 0.160
10020.1 0.951 127.63 127.24 0.00198 0.129 0.165 0.160
10025.2 0.951 127.26 126.87 0.00218 0.129 0.164 0.160
10030.3 0.951 127.01 126.62 0.00226 0.129 0.164 0.160
10035.7 0.951 126.74 126.35 0.00201 0.129 0.164 0.160
10045.8 0.950 126.36 125.97 0.00235 0.129 0.163 0.160
10055.7 0.950 126.52 126.13 0.00237 0.129 0.163 0.160
10065.7 0.950 126.48 126.08 0.00223 0.129 0.163 0.160
10075.9 0.949 126.37 125.98 0.00203 0.129 0.163 0.160
10086.2 0.949 126.11 125.72 0.00206 0.129 0.163 0.160
10096.2 0.949 125.64 125.25 0.00187 0.129 0.162 0.161
10105.9 0.948 125.03 124.63 0.00193 0.129 0.161 0.161
10115.9 0.948 124.31 123.91 0.00171 0.129 0.160 0.161
             
14871.1 0.983 90.911 90.476 0.0114 0.130 0.118 0.177
14972.2 0.987 89.278 88.843 0.00285 0.129 0.115 0.178
15073.1 0.991 87.756 87.320 0.00311 0.129 0.113 0.179

21. Zinc metal foils, 8.51–11.59 keV: XAS, XAFS, nanostructure, edge jumps, theory

Ekanayake et al. (2021a)[link] continued the detailed investigation of zinc metal, both as XAS and XAFS, with a detailed investigation across the K edge. The analysis of the nano­structure was described in Ekanayake et al. (2021b)[link]. This required a new model for and understanding of fluorescence and fluorescence scattering (Sier et al., 2022[link]). This was the first X-ray extended range technique (XERT)-like experiment carried out at the Australian Synchrotron, and high-accuracy measurements were recorded at 496 energies from 8.51 keV to 11.59 keV. The `relative' accuracy (neglecting the absolute calibration) is better than 0.01–0.027%; the `absolute' accuracy (including all pointwise and scaling uncertainties that were determined) is 0.023–0.036%. The XERT protocol requires that measurements related to dark-current non­linearities, corrections for blank measurements, full-foil mapping to characterize the absolute value of the attenuation, scattering, harmonics and roughness are collected over an extended range of experimental parameter space.

This resulted in better data for analysis, culminating in measurement of mass attenuation coefficients across the zinc K edge to 0.023–0.036% accuracy (Table 34[link]; Figs. 28[link], 29[link] and 30[link]). Dark-current corrections are energy- and structure-dependent, and the magnitude of the corrections reached 57% for thicker samples, but was still large and significant for thin samples. Blank measurements scaled the thin-foil attenuation coefficients by 60% to 500%, and by up to even 90% for thicker foils. Full-foil mapping and characterization corrected discrepancies between foils of up to 20%, rendering the possibility of absolute measurements of attenuation. Fluorescence scattering was also significant. Harmonics, roughness and bandwidth were explored. These corrections are of course thickness-, sample-, composition-, energy-, temperature- and form-dependent, but are likely to be typical for most beamlines.

Table 34
Zn metal foils, 8.51–11.59 keV: uncertainties of mass attenuation coefficients at several systematic correction stages, and the magnitudes of specific systematic corrections

Contributions to measurements are labelled [[{{\mu} / {\rho}}]_{\rm rel}] if they contribute in particular to the relative structure of adjacent points, e.g. the edge shape or the XAFS, and are labelled [[{{\mu}/ {\rho}}]_{\rm abs}] if they primarily scale all values with a slowly varying function. Hence there are two final uncertainties, relating to the absolute value of the mass attenuation coefficient [[{{\mu} / {\rho}}]] and relating to the pointwise and local structure, e.g. for XAFS analysis, [[{{\mu} /{\rho}}]_{\rm rel}]. Notes: (1) Standard errors from counting statistics (variance including precision before systematic corrections). (2) Blank correction and net uncertainty. Large for thin foils. (3) Dark current correction and net uncertainty (0.5 counts). (4) Total dispersion of measurement precision after the corrections above. (5) The harmonic coefficient and contribution is very small in this case. (6) Secondary photons from fluorescent scattering. Correction large for 50 µm sample and directly above absorption edges, 0 below Zn edge. Maximum uncertainty only applies to 50 µm sample. (7) Effect of roughness is greatest for 10 µm sample when attenuation is large. (8) Bandwidth correction greatest for 50 µm sample along the edge where d[μ/ρ]/dE is greatest. (9) Use of nominal thickness and corresponding uncertainty. (10) Use of local integrated column density (ICD) and corresponding uncertainty. (11) Absolute accuracy of the full-foil mapping technique. (12) Error in energy calibration data. Correction minimal at the absorption edge. (13) Relative measurements and uncertainties after correcting for systematic errors. (14) Absolute measurements and uncertainties after normalizing to absolute thickness with full-foil mapping.

QuantityMagnitude of correction [μ/ρ]Uncertainty and variance σ[μ/ρ]Comments
[μ/ρ]rel   <0.319% Variance [Note (1)]
  22–536% (10 µm foil) <1.853% (10 µm) Blank normalization [Note (2)]
  Up to 97% (50 µm foil) <0.133% (100 µm)  
  Up to 57% ± 15% (100 µm) 0.00039–1.46% Dark current [Note (3)]
  Up to 1.31% (10 µm)    
(total)   <0.042% Total variance after corrections [Note (4)]
       
  1–5 × 10−3%   Harmonic correction [Note (5)]
       
(50 µm) <14.2% <10.5% Fluorescence correction [Note (6)]
(25 µm) <0.101% <0.003%  
(10 µm) <0.0123% <0.0003%  
(total) <0.139% <0.028%  
       
(10 µm) <2.52% <0.02% Roughness [Note (7)]
(25 µm) <0.815% <0.015%  
(total) <1.56% <0.0037%  
       
(50 µm) <9.89% <0.239% Bandwidth [Note (8)]
(25 µm) <4.91% <0.119%  
(10 µm) <1.703% <0.041%  
(total) <7.24% <0.0037%  
       
[μ/ρ]abs   <0.037% Nominal thicknesses [Note (9)]
  3.55–7.60% 0.000018–0.024237% Average ICD [Note (10)]
  0.374–7.606% 0.024% Full-foil map [Note (11)]
E (keV) −1 to +3 eV ± 1–3 eV <0.0038% Energy [Note (12)]

QuantityMagnitude range (cm2 g−1)Uncertainty range σ[μ/ρ]Comments
[μ/ρ]rel 34.765–325.321 0.000677–0.027% After systematic corrections [Note (13)]
[μ/ρ]abs 34.765–327.760 0.023–0.0357% After normalizing to absolute thickness from full-foil map [Note (14)]
[Figure 28]

Figure 28

Zn metal foils 8.51–11.59 keV. Mass attenuation coefficients: (a) over the energy range 8.51 keV to 11.59 keV; (b) covering the edge and XAFS region; (c) in the central XAFS region; and (d) absolute and relative percentage uncertainties. The zinc K absorption edge is observed at 9.66 keV and the associated XAFS lies between 9.66 keV and 10.10 keV.

[Figure 29]

Figure 29

The percentage discrepancy between the derived mass attenuation coefficient and the tabulated FFAST values (black bullets) (Chantler, 2000[link]) over the energy range 8.5 keV to 11.59 keV, and the percentage discrepancies between XCOM tabulated values with Hartree–Slater calculations (×) (Berger & Hubbell, 1987[link]), Scofield tabulated values renormalized with Hartree–Fock calculations (*) (Scofield, 1973[link]) and Rae et al. (2010a)[link] measurements (filled squares). The near-edge region has a large discrepancy from current measurements due to the solid-state XAFS structure and the triangle effect. Renormalized Scofield (1973)[link] values deviate dramatically everywhere, implying that the earlier belief that the correct theory lies between the unrenormalized and the renormalized predictions is not valid for these data.

[Figure 30]

Figure 30

Zinc metal foils, 8.51–11.59 keV: data (black) with absolute uncertainties for the fine structure function above the zinc K edge produced by the mu2chi non-interpolation background subtraction software in eFEFFit and the fitted model (red) over a Hanning window k = 4.5 Å−1 to 17 Å−1.

Four light-tight zinc foils from Goodfellow 25 mm × 25 mm in size with nominal thicknesses of 10 µm, 25 µm, 50 µm and 100 µm were chosen such that the log attenuation of the material fell between 0.5 and 6 over the energy range of the measurements at room temperature (Chantler et al., 2001a[link]). One could in principle present data sets for each of these thicknesses, either as `raw' or `corrected' data; however, the figures presented by Ekanayake et al. (2021a[link]) prove that this would in no way be structurally consistent with one another, and of course therefore that none of the data sets would be accurate to the level needed for detailed analysis. Hence pre-processing is important. The mass attenuation coefficient of zinc metal and the mass absorption coefficient were determined to high accuracy using an advanced wiggler beamline, and are in good agreement with values from earlier data sets collected on a bending-magnet beamline. The imaginary component of the atomic form factor and the zinc K-edge jump ratio and jump factor were determined and compared with widely varying results in the literature, representing two attempts at linking XAS and XAFS theory (for the linear or mass absorption coefficient or photoelectric effect) with experimental data. The XAFS analysis shows excellent agreement between the measured and tabulated values, and yields bond lengths and the nanostructure of zinc with uncertainties from 0.1% to 0.3%, or 0.003 Å to 0.008 Å. We observed significant variation from the reported crystal structure, suggesting local dynamic motion of the Zn atoms. XAFS is sensitive to dynamic correlated motion and in principle is capable of observing local dynamic motion beyond the reach of conventional crystallography.

Four files, bz5029sup25.txt to bz5029sup28.txt, are available as supporting information. The data shown in Table 35[link] are available in .dat format in bz5029sup25.txt. The file bz5029sup26.txt, also in .dat format, provides [[{{\mu} / {\rho}}]_{\rm tot}] (cm2 g−1) versus E values with uncertainties suitable for input to eFEFFit (Smale et al., 2006[link]; Schalken & Chantler, 2018[link]), iFEFFit (Newville, 2001[link]), Athena (Ravel & Newville, 2005[link]) and mu2chi (Schalken & Chantler, 2018[link]). bz5029sup27.txt contains the data in .cif format, and bz5029sup28.txt contains χ versus k values with uncertainties for input to eFEFFit, iFEFFit and Athena.

Table 35
Zinc metal foils, 8.51–11.59 keV: mass attenuation coefficients [μ/ρ] and the imaginary component f′′ of the form factor as a function of X-ray energy with one standard deviation

Relative and total percentage uncertainties in the total mass attenuation coefficients [\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm {rel}}}] and [\sigma_{\left[{{\mu} / {\rho}}\right]}] are presented with the latter also given in absolute units. The percentage uncertainty in [\left[{{\mu} / {\rho}}\right]_{\rm pe}] includes uncertainty in the measurements and in the calculations of thermal diffuse and Compton scattering attenuation. (Some rows of values have been omitted for brevity. The full version is available in the supporting information.)

E (eV)σE (eV)[μ/ρ] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]}] (%)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm rel}}] (%)[\left[{{\mu}/ {\rho}}\right]_{\rm pe}] (cm2 g−1)[\sigma_{\left[{{\mu} / {\rho}}\right]_{\rm pe}}] (%)f′′ (e atom−1)
8508.98 0.165 48.672 0.023 0.0026 46.695 0.060 0.617
8549.04 0.168 48.044 0.023 0.0026 46.076 0.061 0.612
8569.06 0.170 47.623 0.023 0.0014 45.660 0.062 0.608
8589.09 0.171 47.457 0.023 0.0034 45.498 0.062 0.607
8609.12 0.173 47.022 0.023 0.0057 45.068 0.063 0.603
8629.15 0.174 46.803 0.023 0.0014 44.854 0.063 0.601
8669.20 0.177 46.259 0.023 0.0034 44.318 0.064 0.597
8709.25 0.180 45.613 0.023 0.0012 43.681 0.065 0.591
8749.31 0.183 45.015 0.023 0.0032 43.092 0.067 0.586
8789.37 0.186 44.424 0.024 0.0010 42.510 0.068 0.581
8829.42 0.189 43.875 0.023 0.0030 41.969 0.069 0.576
8869.47 0.192 43.306 0.023 0.0009 41.409 0.070 0.571
8909.53 0.195 42.747 0.023 0.0047 40.858 0.071 0.566
8949.58 0.198 42.379 0.023 0.0013 40.498 0.072 0.563
8989.64 0.201 41.638 0.023 0.0040 39.766 0.074 0.555
9029.69 0.204 41.132 0.023 0.0021 39.268 0.075 0.551
9069.75 0.207 40.615 0.023 0.0032 38.759 0.076 0.546
9109.80 0.210 40.182 0.024 0.0013 38.334 0.077 0.543
9149.86 0.212 39.536 0.023 0.0032 37.696 0.078 0.536
9189.91 0.215 39.048 0.024 0.0024 37.216 0.080 0.531
9229.97 0.218 38.687 0.023 0.0043 36.864 0.080 0.529
9270.02 0.221 38.104 0.023 0.0015 36.288 0.082 0.523
9310.08 0.224 37.667 0.023 0.0054 35.859 0.083 0.519
9350.13 0.227 37.144 0.023 0.0016 35.344 0.084 0.513
9390.19 0.230 36.676 0.023 0.0029 34.883 0.085 0.509
9413.22 0.232 36.423 0.024 0.0019 34.635 0.086 0.507
9419.22 0.232 36.487 0.023 0.0033 34.700 0.086 0.508
9425.23 0.233 36.425 0.024 0.0013 34.639 0.086 0.507
9431.24 0.233 36.311 0.023 0.0021 34.527 0.086 0.506
9437.25 0.234 36.283 0.023 0.0014 34.499 0.086 0.506
9443.26 0.234 36.131 0.023 0.0032 34.349 0.087 0.504
9449.27 0.234 36.178 0.023 0.0019 34.397 0.087 0.505
9455.27 0.235 36.037 0.023 0.0034 34.257 0.087 0.503
9461.28 0.235 36.038 0.023 0.0009 34.259 0.087 0.504
9467.29 0.236 35.872 0.023 0.0029 34.094 0.087 0.501
9473.30 0.236 35.827 0.023 0.0017 34.050 0.088 0.501
9479.31 0.237 35.779 0.023 0.0045 34.003 0.088 0.501
9485.32 0.237 35.598 0.023 0.0010 33.823 0.088 0.498
9491.32 0.238 35.591 0.023 0.0030 33.818 0.088 0.499
9497.33 0.238 35.504 0.023 0.0018 33.732 0.088 0.498
9503.34 0.238 35.462 0.023 0.0035 33.691 0.088 0.497
9509.35 0.239 35.480 0.024 0.0014 33.710 0.088 0.498
9515.36 0.239 35.358 0.023 0.0036 33.590 0.089 0.497
9521.36 0.240 35.299 0.023 0.0012 33.531 0.089 0.496
9527.37 0.240 35.240 0.023 0.0024 33.474 0.089 0.496
9533.38 0.241 35.184 0.023 0.0013 33.418 0.089 0.495
9539.39 0.241 35.148 0.023 0.0027 33.384 0.089 0.495
9545.40 0.242 35.040 0.024 0.0011 33.277 0.089 0.494
9551.41 0.242 34.991 0.023 0.0051 33.229 0.089 0.493
9557.41 0.242 35.041 0.023 0.0016 33.281 0.089 0.494
9563.42 0.243 34.941 0.023 0.0029 33.182 0.090 0.493
9569.43 0.243 34.973 0.023 0.0012 33.214 0.090 0.494
9575.44 0.244 34.873 0.023 0.0045 33.116 0.090 0.493
9581.45 0.244 34.900 0.024 0.0014 33.144 0.090 0.493
9587.46 0.245 34.819 0.023 0.0038 33.064 0.090 0.493
9593.46 0.245 34.765 0.023 0.0011 33.011 0.090 0.492
9599.47 0.245 34.844 0.023 0.0029 33.091 0.090 0.494
9605.48 0.246 34.881 0.024 0.0011 33.129 0.090 0.494
9611.49 0.246 34.920 0.023 0.0043 33.169 0.090 0.495
9617.50 0.247 34.962 0.024 0.0014 33.213 0.090 0.496
9620.70 0.247 35.031 0.023 0.0031 33.282 0.089 0.497
9621.20 0.247 35.066 0.023 0.0017 33.317 0.089 0.498
9621.70 0.247 35.046 0.023 0.0053 33.297 0.089 0.498
9622.20 0.247 35.078 0.024 0.0020 33.329 0.089 0.498
9622.70 0.247 35.079 0.023 0.0029 33.331 0.089 0.498
9623.20 0.247 35.129 0.023 0.0015 33.380 0.089 0.499
9623.71 0.247 35.121 0.023 0.0029 33.373 0.089 0.499
9624.21 0.247 35.196 0.024 0.0015 33.448 0.089 0.500
9624.71 0.247 35.155 0.023 0.0043 33.407 0.089 0.500
9625.21 0.247 35.194 0.023 0.0012 33.446 0.089 0.500
9625.71 0.247 35.197 0.023 0.0034 33.449 0.089 0.500
9626.21 0.247 35.222 0.023 0.0009 33.474 0.089 0.501
9626.71 0.247 35.238 0.023 0.0028 33.491 0.089 0.501
9627.21 0.248 35.268 0.024 0.0010 33.520 0.089 0.501
9627.71 0.248 35.268 0.023 0.0026 33.520 0.089 0.501
9628.21 0.248 35.314 0.023 0.0012 33.567 0.089 0.502
9628.71 0.248 35.290 0.023 0.0032 33.542 0.089 0.502
9629.21 0.248 35.237 0.023 0.0018 33.490 0.089 0.501
9629.71 0.248 35.294 0.023 0.0035 33.547 0.089 0.502
9630.21 0.248 35.276 0.023 0.0016 33.529 0.089 0.502
9630.71 0.248 35.322 0.023 0.0029 33.575 0.089 0.502
9631.21 0.248 35.344 0.023 0.0012 33.597 0.089 0.503
9631.71 0.248 35.367 0.023 0.0036 33.621 0.089 0.503
9632.22 0.248 35.396 0.023 0.0012 33.649 0.089 0.504
9632.72 0.248 35.420 0.023 0.0022 33.674 0.088 0.504
9633.22 0.248 35.450 0.023 0.0023 33.703 0.088 0.504
9633.72 0.248 35.475 0.023 0.0025 33.728 0.088 0.505
9634.22 0.248 35.488 0.023 0.0021 33.742 0.088 0.505
9634.72 0.248 35.552 0.023 0.0030 33.805 0.088 0.506
9635.22 0.248 35.556 0.023 0.0011 33.810 0.088 0.506
9635.72 0.248 35.636 0.023 0.0027 33.890 0.088 0.507
9636.22 0.248 35.649 0.023 0.0016 33.903 0.088 0.508
9636.72 0.248 35.721 0.023 0.0024 33.975 0.088 0.509
9637.22 0.248 35.700 0.023 0.0013 33.954 0.088 0.508
9637.72 0.248 35.811 0.023 0.0023 34.066 0.088 0.510
9638.22 0.248 35.814 0.023 0.0013 34.069 0.088 0.510
9638.72 0.248 35.930 0.023 0.0039 34.185 0.087 0.512
9639.22 0.248 35.931 0.023 0.0013 34.186 0.087 0.512
9639.73 0.248 36.062 0.023 0.0026 34.317 0.087 0.514
9640.23 0.248 36.070 0.023 0.0008 34.325 0.087 0.514
9640.73 0.249 36.180 0.023 0.0029 34.435 0.087 0.516
9641.23 0.249 36.198 0.024 0.0020 34.453 0.087 0.516
9641.73 0.249 36.315 0.023 0.0026 34.570 0.086 0.518
9642.23 0.249 36.352 0.023 0.0014 34.607 0.086 0.518
9642.73 0.249 36.478 0.023 0.0046 34.733 0.086 0.520
9643.23 0.249 36.523 0.023 0.0016 34.778 0.086 0.521
9643.73 0.249 36.638 0.023 0.0026 34.894 0.086 0.523
9644.23 0.249 36.713 0.023 0.0011 34.969 0.085 0.524
9644.73 0.249 36.824 0.023 0.0044 35.079 0.085 0.526
9645.23 0.249 36.943 0.024 0.0022 35.198 0.085 0.527
9645.73 0.249 37.052 0.023 0.0049 35.308 0.085 0.529
9646.24 0.249 37.201 0.023 0.0021 35.457 0.084 0.531
9646.74 0.249 37.342 0.023 0.0025 35.598 0.084 0.534
9647.24 0.249 37.501 0.024 0.0015 35.757 0.084 0.536
9647.74 0.249 37.666 0.023 0.0029 35.922 0.083 0.538
9648.24 0.249 37.837 0.024 0.0010 36.094 0.083 0.541
9648.74 0.249 38.018 0.023 0.0029 36.274 0.083 0.544
9649.24 0.249 38.232 0.023 0.0016 36.488 0.082 0.547
9649.74 0.249 38.453 0.023 0.0028 36.710 0.082 0.550
9650.24 0.249 38.634 0.023 0.0011 36.891 0.081 0.553
9650.74 0.249 39.001 0.023 0.0032 37.258 0.081 0.559
9651.24 0.249 39.212 0.023 0.0011 37.469 0.080 0.562
9651.74 0.249 39.651 0.023 0.0026 37.908 0.079 0.568
9652.24 0.249 39.953 0.023 0.0009 38.210 0.079 0.573
9652.74 0.249 40.472 0.023 0.0026 38.729 0.078 0.581
9653.25 0.249 40.918 0.023 0.0010 39.175 0.077 0.588
9653.75 0.249 41.541 0.023 0.0027 39.798 0.076 0.597
9654.25 0.250 42.145 0.023 0.0019 40.402 0.075 0.606
9654.75 0.250 42.987 0.023 0.0040 41.244 0.074 0.619
9655.25 0.250 43.869 0.023 0.0040 42.127 0.072 0.632
9655.75 0.250 45.050 0.023 0.0064 43.307 0.070 0.650
9656.25 0.250 46.363 0.023 0.0096 44.621 0.069 0.669
9656.75 0.250 48.188 0.023 0.0177 46.446 0.066 0.697
9657.25 0.250 50.384 0.024 0.0227 48.642 0.064 0.730
9657.75 0.250 53.726 0.024 0.0271 51.984 0.060 0.780
9658.25 0.250 58.365 0.024 0.0218 56.623 0.056 0.850
9658.75 0.250 65.880 0.025 0.0185 64.138 0.052 0.963
9659.25 0.250 77.756 0.029 0.0137 76.015 0.048 1.141
9659.75 0.250 97.000 0.032 0.0122 95.258 0.045 1.430
9660.25 0.250 123.314 0.036 0.0100 121.573 0.043 1.825
9660.75 0.250 153.021 0.033 0.0098 151.279 0.038 2.271
9661.26 0.250 179.796 0.030 0.0096 178.055 0.035 2.673
9661.76 0.250 200.278 0.028 0.0098 198.537 0.031 2.980
9662.26 0.250 216.916 0.027 0.0099 215.175 0.030 3.230
9662.76 0.250 231.009 0.027 0.0102 229.268 0.030 3.442
9663.26 0.250 242.570 0.027 0.0104 240.829 0.030 3.616
9663.76 0.250 251.328 0.028 0.0108 249.587 0.030 3.747
9664.26 0.250 257.017 0.028 0.0112 255.276 0.030 3.833
9664.76 0.250 261.512 0.028 0.0115 259.772 0.030 3.901
9665.26 0.250 266.378 0.028 0.0119 264.637 0.031 3.974
9665.76 0.250 273.201 0.029 0.0122 271.461 0.031 4.077
9666.26 0.250 281.180 0.029 0.0126 279.439 0.031 4.197
9666.76 0.250 290.040 0.030 0.0129 288.299 0.032 4.330
9667.26 0.250 298.021 0.030 0.0130 296.281 0.032 4.450
9667.76 0.251 305.501 0.031 0.0131 303.760 0.032 4.563
9668.27 0.251 311.899 0.031 0.0131 310.159 0.033 4.659
9668.76 0.251 317.850 0.032 0.0129 316.110 0.033 4.749
9669.27 0.251 322.668 0.032 0.0124 320.928 0.033 4.821
9669.77 0.251 326.292 0.032 0.0120 324.552 0.033 4.876
9670.27 0.251 327.760 0.032 0.0115 326.021 0.033 4.898
9670.77 0.251 326.300 0.032 0.0111 324.560 0.033 4.877
9671.27 0.251 320.434 0.032 0.0108 318.694 0.033 4.789
9671.77 0.251 312.342 0.031 0.0106 310.602 0.033 4.667
9672.27 0.251 302.348 0.031 0.0105 300.609 0.032 4.517
9672.77 0.251 292.177 0.030 0.0104 290.437 0.032 4.365
9673.27 0.251 283.354 0.030 0.0103 281.615 0.031 4.232
9673.77 0.251 276.488 0.029 0.0103 274.748 0.031 4.130
9674.27 0.251 271.882 0.029 0.0103 270.143 0.031 4.060
9674.77 0.251 268.794 0.029 0.0103 267.056 0.031 4.014
9675.27 0.251 265.770 0.029 0.0103 264.031 0.031 3.969
9675.78 0.251 264.446 0.029 0.0103 262.707 0.031 3.949
9676.28 0.251 263.758 0.029 0.0102 262.019 0.031 3.939
9676.78 0.251 263.701 0.029 0.0103 261.962 0.031 3.939
9677.28 0.251 264.055 0.029 0.0101 262.317 0.031 3.944
9677.78 0.251 264.341 0.029 0.0101 262.603 0.031 3.949
9678.28 0.251 264.352 0.029 0.0099 262.614 0.031 3.949
9678.78 0.251 263.832 0.029 0.0099 262.094 0.031 3.941
9679.28 0.251 262.828 0.028 0.0097 261.090 0.031 3.926
9679.78 0.251 261.288 0.028 0.0097 259.550 0.031 3.903
9680.28 0.251 259.323 0.028 0.0095 257.585 0.031 3.874
9680.78 0.251 257.207 0.028 0.0096 255.469 0.030 3.843
9681.28 0.252 255.076 0.028 0.0094 253.339 0.030 3.811
9681.78 0.252 253.091 0.028 0.0095 251.353 0.030 3.781
9682.28 0.252 251.428 0.028 0.0094 249.690 0.030 3.756
9682.79 0.252 250.293 0.028 0.0095 248.556 0.030 3.739
9683.29 0.252 249.463 0.028 0.0094 247.725 0.030 3.727
9683.79 0.252 248.980 0.028 0.0095 247.243 0.030 3.720
9684.29 0.252 248.797 0.028 0.0095 247.060 0.030 3.717
9684.79 0.252 248.749 0.028 0.0096 247.012 0.030 3.717
9685.29 0.252 248.872 0.028 0.0096 247.135 0.030 3.719
9685.79 0.252 249.254 0.028 0.0097 247.517 0.030 3.725
9686.29 0.252 249.760 0.028 0.0097 248.023 0.030 3.733
9686.79 0.252 250.666 0.028 0.0099 248.930 0.030 3.746
9687.29 0.252 251.597 0.028 0.0099 249.861 0.030 3.761
9687.79 0.252 252.847 0.028 0.0100 251.110 0.030 3.780
9688.29 0.252 254.156 0.028 0.0100 252.420 0.030 3.800
9688.79 0.252 255.713 0.028 0.0102 253.977 0.030 3.823
9689.29 0.252 257.254 0.028 0.0102 255.518 0.030 3.847
9689.80 0.252 259.052 0.028 0.0103 257.316 0.030 3.874
9690.29 0.252 260.823 0.028 0.0104 259.087 0.031 3.901
9690.80 0.252 262.804 0.028 0.0105 261.068 0.031 3.931
9691.30 0.252 264.602 0.028 0.0105 262.866 0.031 3.958
9691.80 0.252 266.601 0.029 0.0106 264.865 0.031 3.988
9692.30 0.252 268.482 0.029 0.0107 266.747 0.031 4.017
9692.80 0.252 270.467 0.029 0.0107 268.732 0.031 4.047
9693.30 0.252 272.209 0.029 0.0107 270.473 0.031 4.073
9693.80 0.252 273.937 0.029 0.0108 272.201 0.031 4.100
9694.30 0.252 275.389 0.029 0.0108 273.654 0.031 4.122
9694.80 0.253 276.746 0.029 0.0109 275.011 0.031 4.142
9695.30 0.253 277.786 0.029 0.0108 276.051 0.031 4.158
9695.80 0.253 278.692 0.029 0.0109 276.957 0.031 4.172
9696.30 0.253 279.296 0.029 0.0109 277.561 0.031 4.181
9696.80 0.253 279.768 0.029 0.0109 278.033 0.031 4.189
9697.30 0.253 279.890 0.029 0.0108 278.155 0.031 4.191
9697.81 0.253 279.911 0.029 0.0108 278.176 0.031 4.191
9698.31 0.253 279.760 0.029 0.0108 278.026 0.031 4.189
9698.81 0.253 279.508 0.029 0.0106 277.774 0.031 4.186
9699.31 0.253 279.152 0.029 0.0104 277.417 0.031 4.181
9699.81 0.253 278.671 0.029 0.0104 276.937 0.031 4.174
9700.31 0.253 278.190 0.029 0.0103 276.455 0.031 4.167
9701.51 0.253 276.463 0.029 0.0103 274.729 0.031 4.141
9703.31 0.253 272.857 0.029 0.0104 271.124 0.031 4.087
9705.12 0.253 269.696 0.029 0.0105 267.963 0.031 4.041
9706.92 0.253 267.840 0.029 0.0105 266.107 0.031 4.013
9708.82 0.254 267.054 0.029 0.0105 265.322 0.031 4.002
9710.82 0.254 267.835 0.029 0.0104 266.103 0.031 4.015
9712.83 0.254 269.905 0.029 0.0104 268.173 0.031 4.047
9714.83 0.254 271.851 0.029 0.0104 270.119 0.031 4.077
9716.83 0.254 272.548 0.029 0.0105 270.816 0.031 4.089
9718.93 0.254 271.871 0.029 0.0105 270.141 0.031 4.079
9721.04 0.254 271.163 0.029 0.0107 269.432 0.031 4.069
9723.24 0.255 270.873 0.029 0.0108 269.143 0.031 4.066
9725.44 0.255 271.018 0.029 0.0109 269.289 0.031 4.069
9727.65 0.255 271.775 0.029 0.0109 270.046 0.031 4.081
9729.95 0.255 273.198 0.029 0.0108 271.469 0.031 4.104
9732.25 0.255 275.314 0.029 0.0107 273.586 0.031 4.137
9734.66 0.255 277.576 0.029 0.0105 275.849 0.031 4.172
9737.06 0.256 278.807 0.029 0.0103 277.079 0.031 4.192
9739.46 0.256 278.906 0.029 0.0103 277.179 0.031 4.194
9741.96 0.256 277.365 0.029 0.0102 275.639 0.031 4.172
9744.47 0.256 274.397 0.029 0.0102 272.671 0.031 4.128
9746.97 0.256 270.897 0.029 0.0100 269.171 0.031 4.076
9749.58 0.257 268.168 0.029 0.0101 266.442 0.031 4.036
9752.18 0.257 266.777 0.029 0.0101 265.052 0.031 4.016
9754.78 0.257 265.579 0.029 0.0103 263.854 0.031 3.999
9757.49 0.257 264.219 0.028 0.0103 262.495 0.031 3.979
9760.29 0.257 263.063 0.028 0.0104 261.340 0.031 3.963
9762.99 0.258 263.024 0.028 0.0105 261.301 0.031 3.964
9765.80 0.258 264.655 0.028 0.0107 262.933 0.031 3.990
9768.70 0.258 266.848 0.029 0.0107 265.126 0.031 4.024
9771.51 0.258 269.014 0.029 0.0107 267.293 0.031 4.058
9774.41 0.258 270.977 0.029 0.0106 269.257 0.031 4.089
9777.41 0.259 273.313 0.029 0.0106 271.593 0.031 4.126
9780.42 0.259 275.143 0.029 0.0105 273.424 0.031 4.155
9783.42 0.259 275.581 0.029 0.0106 273.862 0.031 4.163
9786.53 0.259 274.586 0.029 0.0104 272.867 0.031 4.149
9789.63 0.259 273.362 0.029 0.0104 271.644 0.031 4.132
9792.74 0.260 272.464 0.029 0.0102 270.746 0.031 4.119
9795.94 0.260 271.772 0.029 0.0102 270.056 0.031 4.110
9799.14 0.260 270.984 0.029 0.0100 269.268 0.031 4.100
9802.35 0.260 269.850 0.029 0.0100 268.134 0.031 4.084
9805.65 0.261 268.386 0.029 0.0099 266.671 0.031 4.063
9809.06 0.261 266.895 0.029 0.0101 265.180 0.031 4.041
9812.36 0.261 265.041 0.028 0.0101 263.327 0.031 4.015
9815.77 0.261 263.025 0.028 0.0102 261.311 0.031 3.985
9819.27 0.262 261.300 0.028 0.0102 259.587 0.031 3.960
9822.68 0.262 261.155 0.028 0.0102 259.443 0.031 3.959
9826.18 0.262 262.625 0.028 0.0102 260.913 0.031 3.983
9829.79 0.262 264.513 0.028 0.0103 262.802 0.031 4.014
9833.39 0.263 265.642 0.028 0.0102 263.932 0.031 4.032
9837.00 0.263 266.086 0.029 0.0103 264.377 0.031 4.041
9840.70 0.263 265.925 0.029 0.0103 264.216 0.031 4.040
9844.41 0.263 266.038 0.029 0.0103 264.330 0.031 4.043
9848.11 0.264 266.140 0.029 0.0102 264.432 0.031 4.046
9851.92 0.264 266.415 0.029 0.0103 264.708 0.031 4.052
9855.72 0.264 266.817 0.029 0.0101 265.111 0.031 4.060
9859.53 0.265 267.005 0.029 0.0101 265.299 0.031 4.064
9863.43 0.265 266.689 0.029 0.0099 264.985 0.031 4.061
9867.34 0.265 266.228 0.029 0.0099 264.524 0.031 4.055
9871.34 0.265 265.103 0.029 0.0098 263.399 0.031 4.040
9875.35 0.266 263.439 0.028 0.0099 261.736 0.031 4.016
             
11570.56 0.390 163.799 0.024 0.0061 162.358 0.032 2.919
11582.58 0.391 163.366 0.024 0.0019 161.926 0.032 2.914
11594.60 0.392 162.914 0.024 0.0061 161.476 0.032 2.909

22. XANES, pre-edge spectra and other modalities

All of the data sets which report detailed XAFS also report detailed XANES and pre-edge spectra. It might seem obvious that transmission (i.e. XAS) data sets with a fine grid spacing will provide the best XANES and pre-edge detail and structure. However, many XANES and pre-edge spectra are currently collected using fluorescence spectroscopy; care must be taken to define the region of interest explicitly or implicitly by the detector chain, and also the lower cut-off for onset of characteristic fluorescence. Many experiments measure and report XANES/pre-edge spectra only, especially in reaction or evolution environments, so while the individual data sets might be small, data collection results in a significant number of data files. These can be extremely valuable, if difficult to calibrate or normalize (Streltsov et al., 2018[link]). A key question about any data set, on a par with the challenge of spacing and grid uniformity, is the beamline or extracted resolution (the resolution after data-uncertainty determination and propagation, ready for fitting in k- or R-space). Separately, there are exciting developments for modalities such as RIXS or HERFD that are ongoing.

Acknowledgements

The author acknowledges all experimental and analytical coauthors and conceptual contributions to this work, and acknowledges the Australian National Beamline Facility, the Australian Synchrotron and the Advanced Photon Source in particular.

Supporting information





























References

First citationAbe, H., Aquilanti, G., Boada, R., Bunker, B., Glatzel, P., Nachtegaal, M. & Pascarelli, S. (2018). J. Synchrotron Rad. 25, 972–980.Google Scholar
First citationAberdam, D. et al. (1980). Tech. Rep. European Synchrotron Research Facility. Grenoble, France.Google Scholar
First citationAsakura, K., Abe, H. & Kimura, M. (2018). J. Synchrotron Rad. 25, 967–971.Google Scholar
First citationBaltazar-Rodrigues, J. & Cusatis, C. (2001). Nucl. Instrum. Methods Phys. Res. B, 179, 325–333.Google Scholar
First citationBearden, J. A. (1967). Rev. Mod. Phys. 39, 78–124.Google Scholar
First citationBearden, J. A. & Burr, F. A. (1967). Rev. Mod. Phys. 39, 125–142.Google Scholar
First citationBerger, M. J. & Hubbell, J. H. (1987). XCOM: Photon Cross Sections on a Personal Computer. Tech. Rep. NBSIR-87–3597. National Bureau of Standards, Washington, DC, USA.Google Scholar
First citationBerger, M. J., Hubbell, J. H., Seltzer, S. M., Coursey, J. S. & Zucker, D. S. (1999). XCOM: Photon Cross Section Database Version 1.2. Tech. Rep. National Institute of Standards and Technology, Gaithersburg, USA. https://physics.nist.gov/xcom .Google Scholar
First citationBest, S. P. & Chantler, C. T. (2024). Int. Tables Crystallogr. I, ch. 3.14, 375–394 .Google Scholar
First citationBourke, J. D. & Chantler, C. T. (2010a). Nucl. Instrum. Methods Phys. Res. A, 619, 33–36.Google Scholar
First citationBourke, J. D. & Chantler, C. T. (2010b). Phys. Rev. Lett. 104, 206601.Google Scholar
First citationBourke, J. D. & Chantler, C. T. (2012). J. Phys. Chem. A, 116, 3202–3205.Google Scholar
First citationBourke, J. D. & Chantler, C. T. (2014). J. Electron Spectrosc. Relat. Phenom. 196, 142–145.Google Scholar
First citationBourke, J. D. & Chantler, C. T. (2015). J. Phys. Chem. Lett. 6, 314–319.Google Scholar
First citationBourke, J. D., Chantler, C. T. & Joly, Y. (2016a). J. Synchrotron Rad. 23, 551–559.Google Scholar
First citationBourke, J. D., Chantler, C. T. & Witte, C. (2007). Phys. Lett. A, 360, 702–706.Google Scholar
First citationBourke, J. D., Islam, M. T., Best, S. P., Tran, C. Q., Wang, F. & Chantler, C. T. (2016b). J. Phys. Chem. Lett. 7, 2792–2796.Google Scholar
First citationBritton, D. & Pignolet, L. H. (1989). Acta Cryst. C45, 819–821.Google Scholar
First citationBrock, C. P. & Fu, Y. (1997). Acta Cryst. B53, 928–938.Google Scholar
First citationBunker, G. (2010). Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy. Cambridge University Press.Google Scholar
First citationChantler, C. T. (1995). J. Phys. Chem. Ref. Data, 24, 71–643.Google Scholar
First citationChantler, C. T. (2000). J. Phys. Chem. Ref. Data, 29, 597–1056.Google Scholar
First citationChantler, C. T. (2024). Int. Tables Crystallogr. I, ch. 2.8, 88–99 .Google Scholar
First citationChantler, C. T., Aquilanti, G., Diaz-Moreno, S. & Brois, V. (2019). Mater. Struct. Chem. Biol. Phys. Technol. 26, 108–111.Google Scholar
First citationChantler, C. T., Barnea, Z., Tran, C. Q., Rae, N. A. & de Jonge, M. D. (2012a). J. Synchrotron Rad. 19, 851–862.Google Scholar
First citationChantler, C. T. & Bourke, J. D. (2010). J. Phys. Chem. Lett. 1, 2422–2427.Google Scholar
First citationChantler, C. T. & Bourke, J. D. (2014a). J. Phys. Chem. A, 118, 909–914.Google Scholar
First citationChantler, C. T. & Bourke, J. D. (2014b). J. Phys. Condens. Matter, 26, 145401.Google Scholar
First citationChantler, C. T. & Bourke, J. D. (2014c). Phys. Rev. B, 90, 174306.Google Scholar
First citationChantler, C. T. & Bourke, J. D. (2019). Ultramicroscopy, 201, 38–48.Google Scholar
First citationChantler, C. T., Bunker, B. A., Abe, H., Kimura, M., Newville, M. & Welter, E. (2018). J. Synchrotron Rad. 25, 935–943.Google Scholar
First citationChantler, C. T., Islam, M. T., Best, S. P., Tantau, L. J., Tran, C. Q., Cheah, M. H. & Payne, A. T. (2015). J. Synchrotron Rad. 22, 1008–1021.Google Scholar
First citationChantler, C. T., Olsen, K., Dragoset, R., Kishore, A., Kotochigova, S. & Zucker, D. (2000). X-ray Form Factor, Attenuation and Scattering Tables, Version 2.0. https://dx.doi.org/10.18434/T4HS32 .Google Scholar
First citationChantler, C. T., Rae, N. A., Islam, M. T., Best, S. P., Yeo, J., Smale, L. F., Hester, J., Mohammadi, N. & Wang, F. (2012b). J. Synchrotron Rad. 19, 145–158.Google Scholar
First citationChantler, C. T., Tran, C. Q. & Barnea, Z. (2010). J. Appl. Cryst. 43, 64–69.Google Scholar
First citationChantler, C. T., Tran, C. Q., Barnea, Z., Paterson, D., Cookson, D. J. & Balaic, D. X. (2001a). Phys. Rev. A, 64, 062506.Google Scholar
First citationChantler, C. T., Tran, C. Q., Paterson, D., Barnea, Z. & Cookson, D. J. (2001b). Radiat. Phys. Chem. 61, 347–350.Google Scholar
First citationChantler, C. T., Tran, C. Q., Paterson, D., Cookson, D. & Barnea, Z. (2001c). Phys. Lett. A, 286, 338–346.Google Scholar
First citationCosgriff, E., Chantler, C. T., Witte, C., Smale, L. F. & Tran, C. Q. (2005). Phys. Lett. A, 343, 174–180.Google Scholar
First citationCoster, D. & Veldkamp, J. (1931). Z. Phys. 70, 306–316.Google Scholar
First citationCreagh, D. C. (1999). In International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson & E. Prince, Section 4.2.6, X-ray dispersion corrections, pp. 242–258. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citationCreagh, D. C. & Hubbell, J. H. (1987). Acta Cryst. A43, 102–112.Google Scholar
First citationCreagh, D. C. & Hubbell, J. H. (1990). Acta Cryst. A46, 402–408.Google Scholar
First citationCullen, D. E., Hubbell, J. H. & Kissel, L. (1997). Lawrence Livermore National Laboratory Report, 6, UCRL–50400 Rev 5. Lawrence Livermore National Laboratory, USA.Google Scholar
First citationde Jonge, M. D., Barnea, Z., Tran, C. Q. & Chantler, C. T. (2004a). Meas. Sci. Technol. 15, 1811–1822.Google Scholar
First citationde Jonge, M. D., Barnea, Z., Tran, C. Q. & Chantler, C. T. (2004b). Phys. Rev. A, 69, 022717.Google Scholar
First citationde Jonge, M. D., Tran, C. Q., Chantler, C. T., Barnea, Z., Dhal, B. B., Cookson, D. J., Lee, W. & Mashayekhi, A. (2005). Phys. Rev. A, 71, 032702.Google Scholar
First citationde Jonge, M. D., Tran, C. Q., Chantler, C. T., Barnea, Z., Dhal, B. B., Paterson, D., Kanter, E. P., Southworth, S. H., Young, L., Beno, M. A., Linton, J. A. & Jennings, G. (2007). Phys. Rev. A, 75, 032702.Google Scholar
First citationDoniach, S., Hodgson, K., Lindau, I., Pianetta, P. & Winick, H. (1997). J. Synchrotron Rad. 4, 380–395.Google Scholar
First citationDunitz, J. D., Orgel, L. E. & Rich, A. (1956). Acta Cryst. 9, 373–375.Google Scholar
First citationEkanayake, R. S. K., Chantler, C. T., Sier, D., Schalken, M. J., Illig, A. J., de Jonge, M. D., Johannessen, B., Kappen, P. & Tran, C. Q. (2021a). J. Synchrotron Rad. 28, 1476–1491.Google Scholar
First citationEkanayake, R. S. K., Chantler, C. T., Sier, D., Schalken, M. J., Illig, A. J., de Jonge, M. D., Johannessen, B., Kappen, P. & Tran, C. Q. (2021b). J. Synchrotron Rad. 28, 1492–1503. Google Scholar
First citationFox, M. R., Orioli, P. L., Lingafelter, E. C. & Sacconi, L. (1964). Acta Cryst. 17, 1159–1166.Google Scholar
First citationFricke, H. (1920). Phys. Rev. 16, 202–215.Google Scholar
First citationGerward, L. (1981). J. Phys. B At. Mol. Opt. Phys. 14, 3389–3395.Google Scholar
First citationGerward, L. (1989). J. Phys. B At. Mol. Opt. Phys. 22, 1963–1969.Google Scholar
First citationGerward, L., Guilbert, N., Jensen, K. B. & Levring, H. (2004). Radiat. Phys. Chem. 71, 653–654.Google Scholar
First citationGlatzel, P. & Ghiringhelli, G. (2024). Int. Tables Crystallogr. I, ch. 3.49, 586–591 .Google Scholar
First citationGlover, J. L. & Chantler, C. T. (2007). Meas. Sci. Technol. 18, 2916–2920.Google Scholar
First citationGlover, J. L. & Chantler, C. T. (2009). X-ray Spectrom. 38, 510–512.Google Scholar
First citationGlover, J. L., Chantler, C. T., Barnea, Z., Rae, N. A. & Tran, C. Q. (2010). J. Phys. B At. Mol. Opt. Phys. 43, 085001.Google Scholar
First citationGlover, J. L., Chantler, C. T., Barnea, Z., Rae, N. A., Tran, C. Q., Creagh, D. C., Paterson, D. & Dhal, B. B. (2008). Phys. Rev. A, 78, 052902.Google Scholar
First citationGlover, J. L., Chantler, C. T. & de Jonge, M. D. (2009). Phys. Lett. A, 373, 1177–1180.Google Scholar
First citationGuda, A. A., Guda, S. A., Lomachenko, K. A., Soldatov, M. A., Pankin, I. A., Soldatov, A. V., Braglia, L., Bugaev, A. L., Martini, A., Signorile, M., Groppo, E., Piovano, A., Borfecchia, E. & Lamberti, C. (2019). Catal. Today, 336, 3–21.Google Scholar
First citationGuda, A. A., Guda, S. A., Martini, A., Bugaev, A. L., Soldatov, M. A., Soldatov, A. V. & Lamberti, C. (2020). Radiat. Phys. Chem. 175, 108430–1.Google Scholar
First citationHenke, B. L., Gullikson, E. M. & Davis, J. C. (1993). At. Data Nucl. Data Tables, 54, 181–342.Google Scholar
First citationHester, J. R. (2016). Data Sci. J. 15, 1–17.Google Scholar
First citationHubbell, J. H. (1994). NIST Internal Report 5437. National Institute of Standards and Technology, Gaithersburg, USA.Google Scholar
First citationHubbell, J. H. (1996). NIST Internal Report 5893. National Institute of Standards and Technology, Gaithersburg, USA.Google Scholar
First citationHubbell, J. H., Gimm, H. A. & Øverbø, I. (1980). J. Phys. Chem. Ref. Data, 9, 1023–1148.Google Scholar
First citationHubbell, J. H. & Øverbø, I. (1979). J. Phys. Chem. Ref. Data, 8, 69–106.Google Scholar
First citationHubbell, J. H., Veigele, W. J., Briggs, E. A., Brown, R. T., Cromer, D. T. & Howerton, R. J. (1975). J. Phys. Chem. Ref. Data, 4, 471–538.Google Scholar
First citationIslam, M. T., Best, S. P., Bourke, J. D., Tantau, L. J., Tran, C. Q., Wang, F. & Chantler, C. T. (2016). J. Phys. Chem. C, 120, 9399–9418.Google Scholar
First citationIslam, M. T., Chantler, C. T., Cheah, M. H., Tantau, L. J., Tran, C. Q. & Best, S. P. (2015). J. Synchrotron Rad. 22, 1475–1491.Google Scholar
First citationIslam, M. T., Rae, N. A., Glover, J. L., Barnea, Z. & Chantler, C. T. (2010a). Nucl. Instrum. Methods Phys. Res. A, 619, 44–46.Google Scholar
First citationIslam, M. T., Rae, N. A., Glover, J. L., Barnea, Z., de Jonge, M. D., Tran, C. Q., Wang, J. & Chantler, C. T. (2010b). Phys. Rev. A, 81, 022903.Google Scholar
First citationIslam, M. T., Tantau, L. J., Rae, N. A., Barnea, Z., Tran, C. Q. & Chantler, C. T. (2014). J. Synchrotron Rad. 21, 413–423.Google Scholar
First citationJoly, Y. (2001). Phys. Rev. B, 63, 125120–125130.Google Scholar
First citationJoly, Y., Cabaret, D., Renevier, H. & Natoli, C. R. (1999). Phys. Rev. Lett. 82, 2398–2401.Google Scholar
First citationKas, J. J., Rehr, J. J., Glover, J. L. & Chantler, C. T. (2010). Nucl. Instrum. Methods Phys. Res. A, 619, 28–32.Google Scholar
First citationKievit, B. & Lindsay, G. A. (1930). Phys. Rev. 36, 648–664.Google Scholar
First citationKodre, A., Padežnik Gomilšek, J., Mihelič, A. & Arčon, I. (2006). Radiat. Phys. Chem. 75, 188–194.Google Scholar
First citationKraft, S., Stümpel, J., Becker, P. & Kuetgens, U. (1996). Rev. Sci. Instrum. 67, 681–687.Google Scholar
First citationLapeyre, C., Petiau, J., Calas, G., Gauthier, F. & Gombert, J. (1983). Bull. Minéral. 106, 77–85.Google Scholar
First citationLindsay, G. A. (1931). Z. Phys. 71, 735–738.Google Scholar
First citationLynch, D. W. (1997). J. Synchrotron Rad. 4, 334–343.Google Scholar
First citationLytle, F. (1965). Physics of Non-Crystalline Solids, edited by J. Prins, pp. 12–30. Amsterdam: North Holland.Google Scholar
First citationLytle, F. (1966). Advances in X-Ray Analysis, Vol. 9, Proceedings of the Fourteenth Annual Conference on Applications of X-Ray Analysis, edited by G. R. Mallett, M. J. Fay & W. M. Mueller, pp. 398–409. New York: Springer.Google Scholar
First citationLytle, F., Sayers, D. & Stern, E. (1975). Phys. Rev. B, 11, 4825–4835.Google Scholar
First citationMartini, A., Guda, S. A., Guda, A. A., Smolentsev, G. A. A., Algasov, A., Usoltsev, O., Soldatov, M. A., Bugaev, A., Rusalev, Y., Lamberti, C. & Soldatov, A. V. (2020). Comput. Phys. Commun. 250, 107064–1.Google Scholar
First citationMathew, K., Zheng, C., Winston, D., Chen, C., Dozier, A., Rehr, J. J., Ong, S. P. & Persson, K. A. (2018). Sci. Data, 5, 180151.Google Scholar
First citationMika, J. F., Martin, L. J. & Barnea, Z. (1985). J. Phys. C, 18, 5215–5223.Google Scholar
First citationNewville, M. (2001). J. Synchrotron Rad. 8, 96–100.Google Scholar
First citationNewville, M. (2004). Fundamentals of XAFS. Consortium for Advanced Radiation Sources, University of Chicago, USA.Google Scholar
First citationNordfors, B. (1960). Arkiv Fysik, pp. 1–2.Google Scholar
First citationPerkins, S. T., Cullen, D. E., Chen, M. H., Hubbell, J. H., Rathkopf, J. & Scofield, J. H. (1991). Lawrence Livermore Laboratory Report UCRL-50400. Lawrence Livermore Laboratory, USA.Google Scholar
First citationRae, N. A., Chantler, C. T., Barnea, Z., de Jonge, M. D., Tran, C. Q. & Hester, J. R. (2010a). Phys. Rev. A, 81, 022904.Google Scholar
First citationRae, N. A., Glover, J. L. & Chantler, C. T. (2010b). Nucl. Instrum. Methods Phys. Res. A, 619, 47–50.Google Scholar
First citationRae, N. A., Islam, M. T., Chantler, C. T. & de Jonge, M. D. (2010c). Nucl. Instrum. Methods Phys. Res. A, 619, 147–149.Google Scholar
First citationRavel, B., Hester, J. R., Solé, V. A. & Newville, M. (2012). J. Synchrotron Rad. 19, 869–874.Google Scholar
First citationRavel, B. & Newville, M. (2005). J. Synchrotron Rad. 12, 537–541.Google Scholar
First citationSandiago, T. K. U., Umesh, T. K. & Gowda, R. (1997). Pramana – J. Phys. 48, 1077–1090.Google Scholar
First citationSarangi, R. (2018). J. Synchrotron Rad. 25, 944–952.Google Scholar
First citationSchalken, M. J. & Chantler, C. T. (2018). J. Synchrotron Rad. 25, 920–934.Google Scholar
First citationSchaupp, D., Schumacher, M., Smend, F., Rullhusen, P. & Hubbell, J. H. (1983). J. Phys. Chem. Ref. Data, 12, 467–512.Google Scholar
First citationScofield, J. H. (1973). Lawrence Livermore Laboratory Report UCRL-51326. Lawrence Livermore Laboratory, USA.Google Scholar
First citationSeiler, P. & Dunitz, J. D. (1982). Acta Cryst. B38, 1741–1745.Google Scholar
First citationSier, D., Cousland, G. P., Trevorah, R. M., Ekanayake, R. S. K., Tran, C. Q., Hester, J. R. & Chantler, C. T. (2020). J. Synchrotron Rad. 27, 1262–1277. Google Scholar
First citationSier, D., Ekanayake, R. S. K. & Chantler, C. T. (2022). X-ray Spectrom. 51, 91–100.Google Scholar
First citationSmale, L. F., Chantler, C. T., de Jonge, M. D., Barnea, Z. & Tran, C. Q. (2006). Radiat. Phys. Chem. 75, 1559–1563.Google Scholar
First citationStanglmeier, F., Lengeler, B., Weber, W., Göbel, H. & Schuster, M. (1992). Acta Cryst. A48, 626–639.Google Scholar
First citationStrange, R. W. & Feiters, M. C. (2008). Curr. Opin. Struct. Biol. 18, 609–616.Google Scholar
First citationStreltsov, V. A., Ekanayake, R. S., Drew, S. C., Chantler, C. T. & Best, S. P. (2018). Inorg. Chem. 57, 11422–11435.Google Scholar
First citationTajuddin, A., Chong, C., Shukri, A., Bandyopadhyay, T. & Bradley, D. (1995). Appl. Radiat. Isot. 46, 113–115.Google Scholar
First citationTantau, L. J., Chantler, C. T., Bourke, J. D., Islam, M. T., Payne, A. T., Rae, N. A. & Tran, C. Q. (2015). J. Phys. Condens. Matter, 27, 266301.Google Scholar
First citationTantau, L. J., Islam, M. T., Payne, A. T., Tran, C. Q., Cheah, M. H., Best, S. P. & Chantler, C. T. (2014). Radiat. Phys. Chem. 95, 73–77.Google Scholar
First citationTimoshenko, J., Anspoks, A., Cintins, A., Kuzmin, A., Purans, J. & Frenkel, A. I. (2018). Phys. Rev. Lett. 120, 225502–1.Google Scholar
First citationTimoshenko, J., Lu, D., Lin, Y. & Frenkel, A. I. (2017). J. Phys. Chem. Lett. 8, 5091–5098.Google Scholar
First citationTran, C. Q., Barnea, Z., de Jonge, M. D., Dhal, B. B., Paterson, D., Cookson, D. J. & Chantler, C. T. (2003a). X-ray Spectrom. 32, 69–74.Google Scholar
First citationTran, C. Q., Chantler, C. T. & Barnea, Z. (2003b). Phys. Rev. Lett. 90, 257401.Google Scholar
First citationTran, C. Q., Chantler, C. T., Barnea, Z. & de Jonge, M. D. (2004a). Rev. Sci. Instrum. 75, 2943–2949.Google Scholar
First citationTran, C. Q., Chantler, C. T., Barnea, Z., de Jonge, M. D., Dhal, B. B., Chung, C. T. Y., Paterson, D. & Wang, J. (2005). J. Phys. B At. Mol. Opt. Phys. 38, 89–107.Google Scholar
First citationTran, C. Q., Chantler, C. T., Barnea, Z., Paterson, D. & Cookson, D. J. (2003c). Phys. Rev. A, 67, 042716.Google Scholar
First citationTran, C. Q., Jonge, M. D., Barnea, Z. & Chantler, C. T. (2004b). J. Phys. B At. Mol. Opt. Phys. 37, 3163–3176.Google Scholar
First citationTrevorah, R. M., Chantler, C. T. & Schalken, M. J. (2019). IUCrJ, 6, 586–602.Google Scholar
First citationTrevorah, R. M., Chantler, C. T. & Schalken, M. J. (2020). J. Phys. Chem. A, 124, 1634–1647.Google Scholar
First citationWang, D., Ding, X., Wang, X., Yang, H., Zhou, H., Shen, X. & Zhu, G. (1992). Nucl. Instrum. Methods Phys. Res. B, 71, 241–248.Google Scholar
First citationWitte, C., Chantler, C. T., Cosgriff, E. C. & Tran, C. Q. (2006). Radiat. Phys. Chem. 75, 1582–1585.Google Scholar
First citationWong, J. (1999). Reference X-ray Spectra of Metal Foils. EXAFS Materials, Inc., 871 El Cerro Blvd, Danville, CA, USA.Google Scholar
First citationZheng, C., Mathew, K., Chen, C., Chen, Y. M., Tang, H. M., Dozier, A., Kas, J. J., Vila, F. D., Rehr, J. J., Piper, L. F. J., Persson, K. A. & Ong, S. P. (2018). npj Comput. Mater. 4, 12.Google Scholar








































to end of page
to top of page