Origin on 1 1 2
Asymmetric unit: | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1 |
Symmetry operations
(1) 1 | (2) 2 0, 0, z | (3) a x, 1/4, z | (4) b 1/4, y, z |
Generators selected (1); t (1, 0, 0); t (0, 1, 0); t (0, 0, 1); (2); (3)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||
General: | |||||||||
|
| 0kl : k = 2n h0l : h = 2n h00 : h = 2n 0k0 : k = 2n |
Special: as above, plus | |||||||
|
| hkl : h+k=2n | |||||
|
| hkl : h+k=2n |
Symmetry of special projections
Along [001] p 2 g g a' = a b' = b Origin at 0, 0, z | Along [100] p 1 m 1 a' = 1/2b b' = c Origin at x, 0, 0 | Along [010] p 1 1 m a' = c b' = 1/2a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | [2] P 1 a 1 (P c, 7) | 1; 3 | |
[2] P b 1 1 (P c, 7) | 1; 4 | ||
[2] P 1 1 2 (P 2, 3) | 1; 2 |
IIa | none |
IIb | [2] P n n 2 (c' = 2c) (34); [2] P n a 21 (c' = 2c) (33); [2] P b n 21 (c' = 2c) (P n a 21, 33) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P b a 2 (c' = 2c) (32); [3] P b a 2 (a' = 3a or b' = 3b) (32) |
Minimal non-isomorphic supergroups
I | [2] P b a n (50); [2] P c c a (54); [2] P b a m (55); [2] P 4 b m (100); [2] P 42 b c (106); [2] P -4 b 2 (117) |
II | [2] C m m 2 (35); [2] A e a 2 (41); [2] B b e 2 (A e a 2); [2] I b a 2 (45); [2] P b m 2 (a' = 1/2a) (P m a 2); [2] P m a 2 (b' = 1/2b) (28) |