Origin on 3
Asymmetric unit:
|
0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1; x ≤ (1 + y)/2; y ≤ min(1 - x, (1 + x)/2) |
Vertices |
0, 0, 0 |
1/2, 0, 0 |
2/3, 1/3, 0 |
1/3, 2/3, 0 |
0, 1/2, 0 |
0, 0, 1 |
1/2, 0, 1 |
2/3, 1/3, 1 |
1/3, 2/3, 1 |
0, 1/2, 1 |
|
(1) 1 |
(2) 3+ 0, 0, z |
(3) 3- 0, 0, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2)
Multiplicity, Wyckoff letter, Site symmetry |
Coordinates |
Reflection conditions |
|
|
|
General:
|
|
(1) x, y, z |
(2) -y, x - y, z |
(3) -x + y, -x, z |
|
no conditions |
|
|
Special: as above, plus
|
|
|
no extra conditions |
|
|
no extra conditions |
|
|
no extra conditions |
Symmetry of special projections
Along [001] p3 a' = a b' = b Origin at 0, 0, z |
Along [100] p1 a' = 1/2(a + 2b) b' = c Origin at x, 0, 0 |
Along [210] p1 a' = 1/2b b' = c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
IIb
|
[3] P32 (c' = 3c) (145); [3] P31 (c' = 3c) (144); [3] R3 (a' = a - b, b' = a + 2b, c' = 3c) (146); [3] R3 (a' = 2a + b, b' = -a + b, c' = 3c) (146) |
Maximal isomorphic subgroups of lowest index
IIc
|
[2] P3 (c' = 2c) (143); [3] H3 (a' = 3a, b' = 3b) (P3, 143) |
Minimal non-isomorphic supergroups
I
|
[2] P-3 (147); [2] P312 (149); [2] P321 (150); [2] P3m1 (156); [2] P31m (157); [2] P3c1 (158); [2] P31c (159); [2] P6 (168); [2] P63 (173); [2] P-6 (174) |
II
|
[3] R3(obverse) (146); [3] R3(reverse) (146) |