International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 2.2, pp. 223-224   | 1 | 2 |

Section 2.2.5.7. Determinantal formulae

C. Giacovazzoa*

aDipartimento Geomineralogico, Campus Universitario, I-70125 Bari, Italy
Correspondence e-mail: c.giacovazzo@area.ba.cnr.it

2.2.5.7. Determinantal formulae

| top | pdf |

In a crystal structure with N identical atoms the joint probability distribution of n normalized s.f.'s [E_{{\bf h}_{1} + {\bf k}}, E_{{\bf h}_{2} + {\bf k}}, \ldots, E_{{\bf h}_{n} + {\bf k}}] under the following conditions:

  • (a) the structure is kept fixed whereas k is the primitive random variable;

  • (b) [E_{{\bf h}_{i} - {\bf h}_{j}},\ i, j = 1, \ldots, n], have values which are known a priori; is given (Tsoucaris, 1970[link]) [see also Castellano et al. (1973[link]) and Heinermann et al. (1979[link])] by [P(E_{1}, E_{2}, \ldots, E_{n}) = (2\pi)^{-n/2} D_{n}^{-1/2} \exp (-{\textstyle{1 \over 2}} Q_{n}) \eqno(2.2.5.27)] for cs. structures and [P(E_{1}, E_{2}, \ldots, E_{n}) = (2\pi)^{-n} D_{n}^{-1/2} \exp (-Q_{n}) \eqno(2.2.5.28)] for ncs. structures. In (2.2.5.27)[link] and (2.2.5.28)[link] we have denoted [\displaylines{D_{n} = \lambda,\qquad Q_{n} = \textstyle\sum\limits_{p, \,  q = 1}^{n} \Lambda_{pq} E_{p} E_{q}^{*}\cr E_{j} = E_{{\bf h}_{j} + {\bf k}},\qquad U_{pq} = U_{{\bf h}_{p} - {\bf h}_{q}},\qquad j, p, q = 1, \ldots, n.}] [\Lambda_{pq}] is an element of [\boldlambda ^{-1}], and [\boldlambda ] is the covariance matrix with elements [\displaylines{\langle E_{{\bf h}_{p} + {\bf k}} E_{{\bf h}_{q} + {\bf k}}\rangle = U_{{\bf h}_{p} - {\bf h}_{q}}\cr \boldlambda = \left|\matrix{1 &U_{12} &\ldots &U_{1q} &\ldots &U_{1n}\cr U_{21} &1 &\ldots &U_{2q} &\ldots &U_{2n}\cr \vdots &\vdots &\ddots &\vdots &\ddots &\vdots\cr U_{p1} &U_{p2} &\ldots &U_{pq} &\ldots &U_{pn}\cr \vdots &\vdots &\ddots &\vdots &\ddots &\vdots\cr U_{n1} &U_{n2} &\ldots &U_{nq} &\ldots &1\cr}\right|.}] [\lambda] is a K–H determinant: therefore [D_{n} \geq 0]. Let us call [\Delta_{n + 1} = {1 \over N} \left|\matrix{1 &U_{12} &\ldots &U_{1n} &E_{{\bf h}_{1} + {\bf k}}\cr U_{21} &1 &\ldots &U_{2n} &E_{{\bf h}_{2} + {\bf k}}\cr \vdots &\vdots &\ddots &\vdots &\vdots\cr U_{n1} &U_{n2} &\ldots &1 &E_{{\bf h}_{n} + {\bf k}}\cr E_{-{\bf h}_{1} - {\bf k}} &E_{-{\bf h}_{2} - {\bf k}} &\ldots &E_{-{\bf h}_{n} - {\bf k}} &N\cr}\right|\hbox{;}] the K–H determinant obtained by adding to [\boldlambda ] the last column and line formed by [E_{1}, E_{2}, \ldots, E_{n}], and [E_{1}^{*}, E_{2}^{*}, \ldots, E_{n}^{*}], respectively. Then (2.2.5.27)[link] and (2.2.5.28)[link] may be written [\eqalignno{&P(E_{1}, E_{2}, \ldots, E_{n})\cr &\quad = (2\pi)^{-n/2} D_{n}^{-1/2} \exp \left[N {\Delta_{n + 1} - D_{n}\over 2D_{n}}\right] &(2.2.5.29)}] and [\eqalignno{&P(E_{1}, E_{2}, \ldots, E_{n})\cr &\quad= (2\pi)^{-n} D_{n}^{-1/2} \exp \left[N {\Delta_{n + 1} - D_{n}\over D_{n}}\right], &(2.2.5.30)}] respectively. Because [D_{n}] is a constant, the maximum values of the conditional joint probabilities (2.2.5.29)[link] and (2.2.5.30)[link] are obtained when [\Delta_{n + 1}] is a maximum. Thus the maximum determinant rule may be stated (Tsoucaris, 1970[link]; Lajzérowicz & Lajzérowicz, 1966[link]): among all sets of phases which are compatible with the inequality [\Delta_{n + 1} (E_{1}, E_{2}, \ldots, E_{n}) \geq 0] the most probable one is that which leads to a maximum value of [\Delta_{n + 1}].

    If only one phase, i.e. [\varphi_{q}], is unknown whereas all other phases and moduli are known then (de Rango et al., 1974[link]; Podjarny et al., 1976[link]) for cs. crystals [P^{\pm} (E_{q}) \simeq 0.5 + 0.5 \ \tanh \ \left\{\pm |E_{q}| \textstyle\sum\limits_{p = 1 \atop p \neq q}^{n} \Lambda_{pq} E_{p}\right\}, \eqno(2.2.5.31)] and for ncs. crystals [P(\varphi_{q}) = [2\pi I_{0} (G_{q})]^{-1} \exp \{G_{q} \cos (\varphi_{q} - \theta_{q})\}, \eqno(2.2.5.32)] where [G_{q} \exp (i\theta_{q}) = 2 |E_{q}| \textstyle\sum\limits_{p \neq q = 1}^{n} \Lambda_{pq} E_{p}.] Equations (2.2.5.31)[link] and (2.2.5.32)[link] generalize (2.2.5.11)[link] and (2.2.5.7)[link], respectively, and reduce to them for [n = 3]. Fourth-order determinantal formulae estimating triplet invariants in cs. and ncs. crystals, and making use of the entire data set, have recently been secured (Karle, 1979[link], 1980[link]).

Advantages, limitations and applications of determinantal formulae can be found in the literature (Heinermann et al., 1979[link]; de Rango et al., 1975[link], 1985[link]). Taylor et al. (1978[link]) combined K–H determinants with a magic-integer approach. The computing time, however, was larger than that required by standard computing techniques. The use of K–H matrices has been made faster and more effective by de Gelder et al. (1990[link]) (see also de Gelder, 1992[link]). They developed a phasing procedure (CRUNCH) which uses random phases as starting points for the maximization of the K–H determinants.

References

First citation Castellano, E. E., Podjarny, A. D. & Navaza, J. (1973). A multivariate joint probability distribution of phase determination. Acta Cryst. A29, 609–615.Google Scholar
First citation Gelder, R. de (1992). Thesis. University of Leiden, The Netherlands.Google Scholar
First citation Gelder, R. de, de Graaff, R. A. G. & Schenk, H. (1990). On the construction of Karle–Hauptman matrices. Acta Cryst. A46, 688–692.Google Scholar
First citation Heinermann, J. J. L., Krabbendam, H. & Kroon, J. (1979). The joint probability distribution of the structure factors in a Karle–Hauptman matrix. Acta Cryst. A35, 101–105.Google Scholar
First citation Karle, J. (1979). Triple phase invariants: formula for centric case from fourth-order determinantal joint probability distributions. Proc. Natl Acad. Sci. USA, 76, 2089–2093.Google Scholar
First citation Karle, J. (1980). Triplet phase invariants: formula for acentric case from fourth-order determinantal joint probability distributions. Proc. Natl Acad. Sci. USA, 77, 5–9.Google Scholar
First citation Lajzérowicz, J. & Lajzérowicz, J. (1966). Loi de distribution des facteurs de structure pour un répartition non uniforme des atomes. Acta Cryst. 21, 8–12.Google Scholar
First citation Podjarny, A. D., Yonath, A. & Traub, W. (1976). Application of multivariate distribution theory to phase extension for a crystalline protein. Acta Cryst. A32, 281–292.Google Scholar
First citation Rango, C. de, Mauguen, Y. & Tsoucaris, G. (1975). Use of high-order probability laws in phase refinement and extension of protein structures. Acta Cryst. A31, 227–233.Google Scholar
First citation Rango, C. de, Mauguen, Y., Tsoucaris, G., Dodson, E. J., Dodson, G. G. & Taylor, D. J. (1985). The extension and refinement of the 1.9 Å spacing isomorphous phases to 1.5 Å spacing in 2Zn insulin by determinantal methods. Acta Cryst. A41, 3–17.Google Scholar
First citation Rango, C. de, Tsoucaris, G. & Zelwer, C. (1974). Phase determination from the Karle–Hauptman determinant. II. Connexion between inequalities and probabilities. Acta Cryst. A30, 342–353.Google Scholar
First citation Taylor, D. J., Woolfson, M. M. & Main, P. (1978). On the application of phase relationships to complex structures. XV. Magic determinants. Acta Cryst. A34, 870–883.Google Scholar
First citation Tsoucaris, G. (1970). A new method for phase determination. The maximum determinant rule. Acta Cryst. A26, 492–499.Google Scholar








































to end of page
to top of page