International
Tables for
Crystallography
Volume B
Reciprocal Space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 5.3, p. 564   | 1 | 2 |

Section 5.3.7.4. Neutron diffraction topography and other imaging methods

M. Schlenkera* and J.-P. Guigaya,b

aLaboratoire Louis Néel du CNRS, BP 166, F-38042 Grenoble CEDEX 9, France, and  bEuropean Synchrotron Radiation Facility, BP 220, F-38043 Grenoble, France
Correspondence e-mail:  schlenk@polycnrs-gre.fr

5.3.7.4. Neutron diffraction topography and other imaging methods

| top | pdf |

These are the neutron form of the `topographic' or diffraction imaging techniques, in which an image of a single crystal is obtained through the local variations in Bragg-diffracted intensity due to inhomogeneities in the sample. It is briefly described in Chapter 2.8[link] of IT C. It was pioneered by Doi et al. (1971)[link] and by Ando & Hosoya (1972)[link]. Like its X-ray counterpart, neutron topography can reveal isolated defects, such as dislocations (Schlenker et al., 1974[link]; Malgrange et al., 1976[link]). Because of the small neutron fluxes available, it is not very convenient for this purpose, since the resolution is poor or the exposure times are very long. On the other hand, the very low absorption of neutrons in most materials makes it quite convenient for observing the gross defect structure in samples that would be too absorbing for X-rays (Tomimitsu & Doi, 1974[link]; Baruchel et al., 1978[link]; Tomimitsu et al., 1983[link]; Kvardakov et al., 1992[link]), or the spatial modulation of distortion due to vibration, for example in quartz (Michalec et al., 1975[link]), and resonant magnetoelastic effects (Kvardakov & Somenkov, 1991[link]). In particular, virtual slices of bulky as-grown samples can be investigated without cutting them using neutron section topography or neutron tomography (Schlenker et al., 1975[link]; Davidson & Case, 1976[link]).

Neutron topography also shows the salient dynamical interference effect, viz Pendellösung, visually, in the form of fringes (Kikuta et al., 1971[link]; Malgrange et al., 1976[link]; Tomimitsu & Zeyen, 1978[link]). Its unique feature, however, is the possibility of observing and directly characterizing inhomogeneities in the magnetic structure, i.e. magnetic domains of all kinds [ferromagnetic domains (Schlenker & Shull, 1973[link]) and antiferromagnetic domains ­of various sorts (Schlenker & Baruchel, [link]1978), including spin-density wave domains (Ando & Hosoya, 1972,[link] 1978[link]; Davidson et al., 1974[link]), 180° or time-reversed domains in some materials and helimagnetic or chirality domains (Baruchel et al., 1990[link])], or coexisting phases at a first-order phase transition (Baruchel, 1989[link]). In such cases, the contrast is primarily due to local variations in the structure factor, a situation very unusual in X-ray topography, and good crystal quality, leading to dynamical scattering behaviour, is essential in the observation process only in a few cases (Schlenker et al., 1978[link]). It is often crucial, however, for making the domain structure simple enough to be resolved, in particular in the case of antiferromagnetic domains.

Imaging can also be performed for samples that need be neither crystals nor perfect. Phase-contrast imaging of a specimen through which the neutrons are transmitted can be performed in a neutron interferometer. It has been shown to reveal thickness variations by Bauspiess et al. (1978)[link] and ferromagnetic domains by Schlenker et al. (1980)[link]. The same papers showed that phase edges show up as contrast when one of the interferometer paths is blocked, i.e. when the sample is placed effectively between perfect, identical crystals set for diffraction in a non-dispersive setting. Under the name of neutron radiography with refraction contrast, this technique, essentially a form of Schlieren imaging, was further developed by Podurets, Somenkov & Shil'shtein (1989)[link], Podurets, Somenkov, Chistyakov & Shil'shtein (1989)[link], and Podurets et al. (1991)[link], who were able to image internal ferromagnetic domain walls in samples 10 mm thick.

References

First citation Ando, M. & Hosoya, S. (1972). Q-switch and polarization domains in antiferromagnetic chromium observed with neutron-diffraction topography. Phys. Rev. Lett. 29, 281–285.Google Scholar
First citation Ando, M. & Hosoya, S. (1978). Size and behavior of antiferromagnetic domains in Cr directly observed with X-ray and neutron topography. J. Appl. Phys. 49, 6045–6051.Google Scholar
First citation Baruchel, J. (1989). The contribution of neutron and synchrotron radiation topography to the investigation of first-order magnetic phase transitions. Phase Transit. 14, 21–29.Google Scholar
First citation Baruchel, J., Schlenker, M. & Palmer, S. B. (1990). Neutron diffraction topographic investigations of “exotic” magnetic domains. Nondestruct. Test. Eval. 5, 349–367.Google Scholar
First citation Baruchel, J., Schlenker, M., Zarka, A. & Pétroff, J. F. (1978). Neutron diffraction topographic investigation of growth defects in natural lead carbonate single crystals. J. Cryst. Growth, 44, 356–362.Google Scholar
First citation Bauspiess, W., Bonse, U., Graeff, W., Schlenker, M. & Rauch, H. (1978). Result shown in Bonse (1979).Google Scholar
First citation Davidson, J. B. & Case, A. L. (1976). Applications of the fly's eye neutron camera: diffraction tomography and phase transition studies. Proceedings of the conference on neutron scattering, Gatlinburg, Tennessee, USERDA CONF 760601-P2, 1124–1135. Oak Ridge, Tennessee: Oat Ridge National Laboratory.Google Scholar
First citation Davidson, J. B., Werner, S. A. & Arrott, A. S. (1974). Neutron microscopy of spin density wave domains in chromium. Proceedings of the 19th annual conference on magnetism and magnetic materials, edited by C. D. Graham and J. J. Rhyne. AIP Conf. Proc. 18, 396–400.Google Scholar
First citation Doi, K., Minakawa, N., Motohashi, H. & Masaki, N. (1971). A trial of neutron diffraction topography. J. Appl. Cryst. 4, 528–530.Google Scholar
First citation Kikuta, S., Kohra, K., Minakawa, N. & Doi, K. (1971). An observation of neutron Pendellösung fringes in a wedge-shaped silicon single crystal. J. Phys. Soc. Jpn, 31, 954–955.Google Scholar
First citation Kvardakov, V. V. & Somenkov, V. A. (1991). Neutron diffraction study of nonlinear magnetoacoustic effects in perfect crystals of FeBO3 and α-Fe2O3. J. Moscow Phys. Soc. 1, 33–57.Google Scholar
First citation Kvardakov, V. V., Somenkov, V. A. & Shil'shtein, S. Sh. (1992). Study of defects in cuprate single crystals by the neutron topography and selective etching methods. Superconductivity, 5, 623–629.Google Scholar
First citation Malgrange, C., Pétroff, J. F., Sauvage, M., Zarka, A. & Englander, M. (1976). Individual dislocation images and Pendellösung fringes in neutron topographs. Philos. Mag. 33, 743–751.Google Scholar
First citation Michalec, R., Mikula, P., Sedláková, L., Chalupa, B., Zelenka, J., Petržílka, V. & Hrdlička, Z. (1975). Effects of thickness-shear vibrations on neutron diffraction by quartz single crystals. J. Appl. Cryst. 8, 345–351.Google Scholar
First citation Podurets, K. M., Sokol'skii, D. V., Chistyakov, R. R. & Shil'shtein, S. Sh. (1991). Reconstruction of the bulk domain structure of silicon iron single crystals from neutron refraction images of internal domain walls. Sov. Phys. Solid State, 33, 1668–1672.Google Scholar
First citation Podurets, K. M., Somenkov, V. A., Chistyakov, R. R. & Shil'shtein, S. Sh. (1989). Visualization of internal domain structure of silicon iron crystals by using neutron radiography with refraction contrast. Physica B, 156–157, 694–697.Google Scholar
First citation Podurets, K. M., Somenkov, V. A. & Shil'shtein, S. Sh. (1989). Neutron radiography with refraction contrast. Physica B, 156–157, 691–693.Google Scholar
First citation Schlenker, M. & Baruchel, J. (1978). Neutron techniques for the observation of ferro- and antiferromagnetic domains. J. Appl. Phys. 49, 1996–2001.Google Scholar
First citation Schlenker, M., Baruchel, J., Perrier de la Bathie, R. & Wilson, S. A. (1975). Neutron-diffraction section topography: observing crystal slices before cutting them. J. Appl. Phys. 46, 2845–2848.Google Scholar
First citation Schlenker, M., Baruchel, J., Pétroff, J. F. & Yelon, W. B. (1974). Observation of subgrain boundaries and dislocations by neutron diffraction topography. Appl. Phys. Lett. 25, 382–384.Google Scholar
First citation Schlenker, M., Bauspiess, W., Graeff, W., Bonse, U. & Rauch, H. (1980). Imaging of ferromagnetic domains by neutron interferometry. J. Magn. Magn. Mater. 15–18, 1507–1509.Google Scholar
First citation Schlenker, M., Linares-Galvez, J. & Baruchel, J. (1978). A spin-related contrast effect: visibility of 180° ferromagnetic domain walls in unpolarized neutron diffraction topography. Philos. Mag. B, 37, 1–11.Google Scholar
First citation Schlenker, M. & Shull, C. G. (1973). Polarized neutron techniques for the observation of ferromagnetic domains. J. Appl. Phys. 44, 4181–4184.Google Scholar
First citation Tomimitsu, H. & Doi, K. (1974). A neutron diffraction topographic observation of strain field in a hot-pressed germanium crystal. J. Appl. Cryst. 7, 59–64.Google Scholar
First citation Tomimitsu, H., Doi, K. & Kamada, K. (1983). Neutron diffraction topographic observation of substructures in Cu-based alloys. Physica B, 120, 96–102.Google Scholar
First citation Tomimitsu, H. & Zeyen, C. (1978). Neutron diffraction topographic observation of twinned silicon crystal. Jpn. J. Appl. Phys. 3, 591–592.Google Scholar








































to end of page
to top of page