International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 3.4, pp. 163-165

Section 3.4.1.3. Single crystals (small molecules)

P. F. Lindleya

a ESRF, Avenue des Martyrs, BP 220, F-38043 Grenoble CEDEX, France

3.4.1.3. Single crystals (small molecules)

| top | pdf |

3.4.1.3.1. General

| top | pdf |

Small single crystals of inorganic and organic materials, suitable for intensity data collection, are normally glued to the end of a glass or vitreous silica fibre, or capillary (Denne, 1971b[link]; Stout & Jensen, 1968[link]). A simple device that fits onto a conventional microscope stage to facilitate the procedure of cementing a single crystal to a glass fibre has been constructed by Bretherton & Kennard (1976[link]). The support is in turn fixed to a metal pin that fits onto a goniometer head. For preliminary studies, plasticine or wax are useful fixatives, since it is then relatively easy to alter the orientation of the support, and hence the crystal, as required. For data-collection purposes, the support should be firmly fixed or glued to the goniometer head pin. The fibre should be sufficiently thin to minimize absorption effects but thick enough to form a rigid support. The length of the fibre is usually about 10 mm. Kennard (1994[link]) has described a macroscope that allows specimens to be observed remotely during data collection and can also be used for measurement of crystal faces for absorption correction. Large specimens can be directly mounted onto a camera or onto a specially designed goniometer (Denne, 1971a[link]; Shaham, 1982[link]). A method using high-temperature diffusion to bond ductile single crystals to a metal backing, for strain-free mounting, has been described by Black, Burdette & Early (1986[link]).

Prior to crystal mounting, it is always prudent to determine the nature of any spatial constraints that are applicable for the proposed experiment. Some diffractometers have relatively little translational flexibility, and the length of the fibre mount or capillary is critical. For some low-temperature devices where the cooling gas stream is coaxial with the specimen mount, the orientation of the fibre (and crystal) on the goniometer head may also need careful alignment.

Many proprietary adhesives can be used (see Table 3.4.1.2[link]), but it should be remembered that adhesives such as epoxy resins are often permanent, and attempts to dismount specimens lead to crystal damage. Some adhesives contain organic solvents that may react with the sample, and others may be X-ray sensitive and deteriorate with exposure. In low-temperature work, some adhesives shrink or become brittle. Ideally, the adhesive should have the same thermal characteristics as the crystal and its mount. An account of how strong stresses on adhesives, typically used to mount single crystals, induced by low and high temperatures is given by Argoud & Muller (1989a[link]). The stresses appear to cause anisotropic modifications to secondary extinction, leading to discrepancies in the intensities of symmetry-related reflections. Beeswax and paraffin wax were found to be free from such stresses. Crystals that are sensitive to air can be mounted inside capillary tubes or other containers, as listed in Table 3.4.1.1[link]. A useful summary of the methods available has been provided by Rao (1989[link]). All adhesives and containers will give diffraction patterns, typically comprising diffuse bands, that contribute to the general background, and that may change with ageing. Minimal amounts of adhesive and thin-walled capillaries should be used. If the background diffraction is critical, it is highly recommended that diffraction patterns of the container and/or adhesive are recorded separately as controls.

Table 3.4.1.2| top | pdf |
Single-crystal mounting – adhesives

AdhesiveTemperature range (K)Comments
Durofix, Duco cement etc. (celluloid composition dissolved in organic solvent)93 to 373 Dries rapidly
Shellac dissolved in alcohol< 423 Correct amount of solvent is critical
Fish glue (e.g. Seccotine) < 423 Unsuitable for humid atmospheres
Dental cement 93 to 573 Adheres well to glass or asbestos, but not metals
Epoxy resin (epichlorohydrin, e.g. Araldite)93 to 373 Permanent fixing, fast (minutes) and slow (hours) available. `Uncured' adhesive, i.e. minus hardener, useful for cryogenic mounting
Vacuum grease (e.g. Apiezon)< 473Can protect crystal from moisture
Silicone high-vacuum grease < 373Can protect crystal from moisture
Vaseline Low temperatures down to liquid helium
Canada balsam< 333Dilute with xylene
Mixture of wax and resin, ∼1:193 to 303
Aluminium< 873Large crystals set in molten metal, irradiate only protruding part of crystal
Aluminium cement < 1973 Irradiate only protruding part of crystal
These glues tend to pull in setting and may require adjustment during the drying process.
Useful adhesives if the crystal requires grinding to shape after fixing.

The morphology of a given crystal will normally dictate the way that it is mounted, particularly for data-collection purposes. Thus, prismatic crystals and needle-shaped crystals are usually mounted with the longest dimension parallel to the fibre, in order to minimize systematic errors due to absorption. Jeffery (1971[link]) and Wood, Tode & Welberry (1985[link]) have described devices for shaping crystals into spheres and cylinders, respectively. A solvent lathe whereby a string moistened with solvent is used to shape the crystal is described by Stout & Jensen (1968[link]).

3.4.1.3.2. Non-ambient conditions

| top | pdf |

As in the case of polycrystalline samples, a number of devices have been described to study single crystals at elevated pressures and at a range of temperatures. The mounting of the sample is very dependent on the device and radiation used. In recent years, the field of high-pressure crystallography has expanded significantly, and several sample holders based on the diamond-anvil cell have been reported for pressures up to 10 GPa. Recent papers include those by Alkire, Larson, Vergamini, Schirber & Morosin (1985[link]) for neutron diffraction, and Malinowski (1987[link]) and Leszczynski, Podlasin & Suski (1993[link]) for X-ray diffraction.

Various types of furnace have been designed for high-temperature studies of single crystals. These are based either on radiative heat transfer mechanisms [e.g. Swanson & Prewitt (1986[link]); temperatures up to 1400 K], electrically heated gas streams [e.g. Tsukimura, Sato-Sorensen & Ghose (1989[link]); temperatures up to 1600 K], or flame heaters [e.g. Miyata, Ishizawa, Minato & Iwai (1979[link]); temperatures up to 2600 K]. Furnaces specific to Weissenberg geometry (Adlhart, Tzafaras, Sueno, Jagodzinski & Huber, 1982[link]) and Laue diffraction (Bhat, Clark, El Korashy & Roberts, 1990[link]) have also been reported. There are many techniques available for mounting single crystals for high-temperature diffraction (Hazen & Finger, 1982[link]), and a detailed account using an MgO-based ceramic cement is given by Swanson & Prewitt (1986[link]). A recent paper by Peterson (1992[link]) summarizes previous work in the design of high-temperature furnaces and describes a flame-heated gas-flow furnace operating in the range 373 to 1573 K. For this system, the crystals can be mounted either directly onto the thermocouple bead with a paste of fine platinum particles and oil, particularly useful if the crystal is to be exposed to a gas mixture that controls oxygen fugacity, or sealed under high vacuum in an ampoule made from 0.2 or 0.3 mm diameter silica capillary. In the latter case, the main support for the crystal is a 0.2 mm Pt wire threaded through a 0.3 mm diameter silica glass capillary. A 0.05 mm Pt/13Rh lead is welded to the end of this support to form the thermocouple bead. The wire is then wound around the outside of the capillary. A 0.05 mm Pt lead is welded to the other end of the 0.2 mm Pt wire and is threaded through a hole in the capillary near the base. The whole assembly can be mounted on a goniometer head that has only translational adjustments. For neutron diffraction, Lorenz, Neder, Marxreiter, Frey & Schneider (1993[link]) have described a mirror furnace operating upto 2300 K. The sample support is normally a thin ceramic tube or rod of Al2O3 or ZrO2 to which the sample may be glued with a ceramic cement. Neder, Frey & Schulz (1990[link]) have described a versatile holder for high-temperature neutron studies. One part of the crystal is ground away to leave a stem, which is then fixed to an alumina rod with a ceramic glue based on zirconia. The ceramic glue is surrounded by a cylinder of BN to minimize spurious scattering.

A comprehensive account of low-temperature diffraction is given by Rudman (1976[link]). Procedures for the selection and transfer of crystals to diffractometers have been described by Boese & Bläser (1989[link]) and Kottke & Stalke (1993[link]). These procedures are applicable down to temperatures of 213 and 193 K, respectively. The latter authors do not recommend the use of capillaries, but describe a device employing the oil-drop mounting technique pioneered by Hope (1987[link], 1988[link]). Lippman & Rudman (1976[link]) have used a mechanically refrigerated gas stream to achieve temperatures down to approximately 150 K, and the use of liquid nitrogen extends the range to 77 K. Devices such as the Oxford Cryostream can be readily fitted to diffractometers and other types of camera. Closed-cycle refrigerators, liquid-helium-based devices (e.g. Henriksen, Larsen & Rasmussen, 1986[link]; Argoud & Muller, 1989b[link]; Zobel & Luger, 1990[link]; Graafsma, Sagerman & Coppens, 1991[link]; Toyoshima, Hoya & Ohshima, 1991[link]) further extend the low-temperature limit to 5 K, but often involve substantial blind regions and collision zones. For sample mounting in these devices, it is essential to have good heat conduction to the crystal. Zobel & Luger (1990[link]) describe a taper-formed sample holder made of special copper screwed to the cold head. A steel injection needle with a Be wire inside (0.3 mm diameter and exactly 2 mm in length) is fitted into a 0.5 mm bore hole. The crystal is glued with Araldite to the Be needle, which has little X-ray absorption but good heat conduction. In addition to diffractometer-based devices, Moret & Dallé (1994[link]) have described an adaptation of the closed-cycle refrigerator for a precession goniometer, and various authors have reported systems utilizing Weissenberg geometry for both X-rays and neutrons (e.g. Hohlwein & Wright, 1981[link]; Adlhart & Huber, 1982[link]; Allen et al., 1982[link]). Reference should be made to the individual papers for methods of mounting, including spatial and any other constraints.

References

First citation Adlhart, W. & Huber, H. (1982). A low-temperature X-ray Weissenberg goniometer with closed-cycle cooling to about 28 K. J. Appl. Cryst. 15, 241–244.Google Scholar
First citation Adlhart, W., Tzafaras, N., Sueno, S., Jagodzinski, H. & Huber, H. (1982). An X-ray camera for single-crystal studies at high temperatures under controlled atmosphere. J. Appl. Cryst. 15, 236–240.Google Scholar
First citation Alkire, R. W., Larson, A. C., Vergamini, P. J., Schirber, J. E. & Morosin, B. (1985). High-pressure single-crystal neutron diffraction (to 20 kbar) using a pulsed source: preliminary investigation of Tl3PSe4. J. Appl. Cryst. 18, 145–149.Google Scholar
First citation Allen, S., Cosier, J., Glazer, A. M., Hastings, T. J., Smith, D. T. & Wood, I. G. (1982). A microprocessor-controlled continuous-flow cryostat for single-crystal X-ray diffraction in the range 10–300 K. J. Appl. Cryst. 15, 382–387.Google Scholar
First citation Argoud, R. & Muller, J. (1989a). Effect of stress from the glue on single-crystal X-ray intensities at high or low temperatures. J. Appl. Cryst. 22, 378–380. Google Scholar
First citation Argoud, R. & Muller, J. (1989b). Magnetically coupled crystal holder and liquid-helium cryostat for X-ray four-circle diffractometer studies between 5 and 300 K. J. Appl. Cryst. 22, 584–591.Google Scholar
First citation Bhat, H. L., Clark, S. M., El Korashy, A. & Roberts, K. J. (1990). A furnace for in situ synchrotron Laue diffraction and its application to studies of solid-state phase transformations. J. Appl. Cryst. 23, 545–549.Google Scholar
First citation Black, D. R., Burdette, H. E. & Early, J. G. (1986). Diffusion bonding of ductile single crystals for strain-free mounting. J. Appl. Cryst. 19, 279–280.Google Scholar
First citation Boese, R. & Bläser, D. (1989). A procedure for the selection and transferring of crystals at low temperatures to diffractometers. J. Appl. Cryst. 22, 394–395.Google Scholar
First citation Bretherton, L. & Kennard, C. H. L. (1976). Crystal mounter. J. Appl. Cryst. 9, 416.Google Scholar
First citation Denne, W. A. (1971a). A new concept in goniometer head design. J. Appl. Cryst. 4, 60–66.Google Scholar
First citation Denne, W. A. (1971b). A technique for the rigid mounting of crystals in X-ray diffractometry. J. Appl. Cryst. 4, 400.Google Scholar
First citation Graafsma, H., Sagerman, G. & Coppens, P. (1991). Closed-cycle helium cryostat for the Huber 511.1 diffractometer circle. J. Appl. Cryst. 24, 961–962.Google Scholar
First citation Hazen, R. M. & Finger, L. W. (1982). Comparative crystal chemistry, pp. 5–16. New York: Wiley. Google Scholar
First citation Henriksen, K., Larsen, F. K. & Rasmussen, S. E. (1986). Mounting a 10 K cooling device without rotating seals on a four-circle diffractometer. J. Appl. Cryst. 19, 390–394.Google Scholar
First citation Hohlwein, D. & Wright, A. F. (1981). A low-temperature Weissenberg camera for neutrons. J. Appl. Cryst. 14, 82–84. Google Scholar
First citation Hope, H. (1987). Experimental organometallic chemistry. Am. Chem. Soc. Symp. Ser., No. 357. Washington, DC: American Chemical Society.Google Scholar
First citation Hope, H. (1988). Cryocrystallography of biological macromolecules: a generally applicable method. Acta Cryst. B44, 22–26.Google Scholar
First citation Jeffery, J. W. (1971). Methods in X-ray crystallography, pp. 149–169, 441–444. London/New York: Academic Press. Google Scholar
First citation Kennard, C. H. L. (1994). Direct observation of a crystal during X-ray data collection using a macroscope. J. Appl. Cryst. 27, 668–669.Google Scholar
First citation Kottke, T. & Stalke, D. (1993). Crystal handling at low temperatures. J. Appl. Cryst. 26, 616–619.Google Scholar
First citation Leszczynski, M., Podlasin, S. & Suski, T. (1993). A 109 Pa high-pressure cell for X-ray and optical measurements. J. Appl. Cryst. 26, 1–4.Google Scholar
First citation Lippman, R. & Rudman, R. (1976). A mechanically refrigerated gas stream (to −120°C) and some useful accessories. J. Appl. Cryst. 9, 220–222.Google Scholar
First citation Lorenz, G., Neder, R. B., Marxreiter, J., Frey, F. & Schneider, J. (1993). A mirror furnace for neutron diffraction up to 2300 K. J. Appl. Cryst. 26, 632–635.Google Scholar
First citation Malinowski, M. (1987). A diamond high-pressure cell for X-ray diffraction on a single crystal. J. Appl. Cryst. 20, 379–382.Google Scholar
First citation Miyata, T., Ishizawa, N., Minato, I. & Iwai, S. (1979). Gas-flame heating equipment providing temperatures up to 2600 K for the four-circle diffractometer. J. Appl. Cryst. 12, 303–305.Google Scholar
First citation Moret, R. & Dallé, D. (1994). A novel X-ray precession goniometer for use with stationary single crystals in special environments. Adaptation of a closed-cycle refrigerator. J. Appl. Cryst. 27, 637–646.Google Scholar
First citation Neder, R. B., Frey, F. & Schulz, H. (1990). Defect structure of zirconia (Zr0.85Ca0.15O1.85) at 290 and 1550 K. Acta Cryst. A46, 799–809.Google Scholar
First citation Peterson, R. C. (1992). A flame-heated gas-flow furnace for single-crystal X-ray diffraction. J. Appl. Cryst. 25, 545–548.Google Scholar
First citation Rao, Ch. P. (1989). Easy and economic ways of handling air-sensitive crystals for X-ray diffraction studies. J. Appl. Cryst. 22, 182–183.Google Scholar
First citation Rudman, R. (1976). Low-temperature X-ray diffraction: apparatus and techniques, Chap. 6, pp. 161–179. New York/London: Plenum.Google Scholar
First citation Shaham, H. (1982). A goniometer for large single crystals. J. Appl. Cryst. 15, 469.Google Scholar
First citation Stout, G. H. & Jensen, L. H. (1968). X-ray structure determination: a practical guide, Chap. 4, pp. 71–79. London: Macmillan. Google Scholar
First citation Swanson, D. K. & Prewitt, C. T. (1986). A new radiative single-crystal diffractometer microfurnace incorporating MgO as a high-temperature cement and internal temperature calibrant. J. Appl. Cryst. 19, 1–6.Google Scholar
First citation Toyoshima, N., Hoya, H. & Ohshima, K.-I. (1991). A simple device for mounting a vacuum chamber on a four-circle diffractometer with central χ circle. J. Appl. Cryst. 24, 1074–1075.Google Scholar
First citation Tsukimura, K., Sato-Sorensen, Y. & Ghose, S. (1989). A gas-flow furnace for X-ray crystallography. J. Appl. Cryst. 22, 401–405.Google Scholar
First citation Wood, R. A., Tode, G. E. & Welberry, T. R. (1985). A lathe-like crystal grinder for grinding pre-aligned crystals into cylindrical cross section. J. Appl. Cryst. 18, 371–372.Google Scholar
First citation Zobel, D. & Luger, P. (1990). A small 50 K device for a quarter-circle Eulerian cradle diffractometer. J. Appl. Cryst. 23, 175–179.Google Scholar








































to end of page
to top of page