International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.3, pp. 95-96

Section 1.3.7.3. Wave propagation in a nonlinear elastic medium

A. Authiera* and A. Zarembowitchb

a Institut de Minéralogie et de la Physique des Milieux Condensés, Bâtiment 7, 140 rue de Lourmel, 75015 Paris, France, and bLaboratoire de Physique des Milieux Condensés, Université P. et M. Curie, 75252 Paris CEDEX 05, France
Correspondence e-mail:  aauthier@wanadoo.fr

1.3.7.3. Wave propagation in a nonlinear elastic medium

| top | pdf |

As an example, let us consider the case of a plane finite amplitude wave propagating along the [x_1] axis. The displacement components in this case become [u_1 = u_1(X_1,t);\quad u_2 = u_2(X_1,t)\semi\quad u_3 = u_3(X_1,t). ]Thus, the Jacobian matrix [\alpha_{ij}] reduces to [J = \pmatrix {\alpha_{11} &0 &0\cr \alpha_{21} &0 &0\cr \alpha_{31} &0 &0\cr}. ]

The Lagrangian strain matrix is [equation (1.3.6.8)[link]] [S = \textstyle{1\over 2}\displaystyle \left(J^T J - \delta \right). ]The only nonvanishing strain components are, therefore, [\eqalign{S_{11} &= \textstyle{1\over 2}\displaystyle \left(\alpha_{11}^2 + \alpha_{21}^2 + \alpha_{31}^2\right) -1\cr &= {\partial u_1\over \partial X_1} + \textstyle{1\over 2}\displaystyle \left[\left({\partial u_1\over \partial X_1}\right)^2 + \left({\partial u_2\over \partial X_1}\right)^2 + \left({\partial u_3\over \partial X_1}\right)^2\right]\cr S_{12} &= S_{21} = \textstyle{1\over 2}\displaystyle{\partial u_2\over \partial X_1}\cr S_{13} &= S_{31} = \textstyle{1\over 2}\displaystyle{\partial u_3\over \partial X_1}\cr} ]and the strain invariants reduce to [I_1 = S_{11} ; \ \ I_2 = - (S_{12}S_{21} + S_{13}S_{31}); \ \ I_3 = 0. ]

1.3.7.3.1. Isotropic media

| top | pdf |

In this case, the strain-energy density becomes [\eqalignno{\Phi &= \textstyle{1\over 2}\displaystyle (\lambda+2\mu)(S_{11})^2 + 2 \mu(S_{12}S_{21} + S_{13}S_{31}) + \textstyle{1\over 3}\displaystyle (l+2m)(S_{11}){}^3&\cr &\quad + 2m S_{11}\left(S_{12}S_{21} + S_{13}S_{31}\right). &(1.3.7.6)\cr} ]Differentiating (1.3.7.6)[link] with respect to the strains, we get [\openup4.5pt\eqalign{{\partial \Phi \over \partial S_{11}} & = (\lambda+2\mu)S_{11} + (l+2m)(S_{11}){}^2 + 2m \left(S_{12}S_{21} + S_{13}S_{31}\right)\cr {\partial \Phi \over \partial S_{12}} & =2 \mu S_{21} + 2m S_{11}S_{21}\cr {\partial \Phi \over \partial S_{13}} & = 2\mu S_{31} + 2m S_{11}S_{31}\cr {\partial \Phi \over \partial S_{21}} & = 2 \mu S_{12} + 2m S_{11}S_{12}\cr {\partial \Phi \over \partial S_{31}} & =2\mu S_{13} + 2m S_{11}S_{13}.\cr} ] All the other [{\partial \Phi / \partial S_{ij}} = 0].

From (1.3.7.5)[link], we derive the stress components: [\openup6pt\eqalign{T_{11} &= \alpha_{1k}{\partial \Phi \over \partial S_{1k}}\semi \ \ T_{12} = \alpha_{2k}{\partial \Phi \over \partial S_{1k}}\semi \ \ T_{13} = \alpha_{3k}{\partial \Phi \over \partial S_{1k}}\semi \cr T_{21} &= \alpha_{1k}{\partial \Phi \over \partial S_{2k}}\semi \ \ T_{22} = \alpha_{2k}{\partial \Phi \over \partial S_{2k}}\semi \ \ T_{23} = \alpha_{3k}{\partial \Phi \over \partial S_{2k}}\semi\cr T_{31} &= \alpha_{1k}{\partial \Phi \over \partial S_{3k}}\semi \ \ T_{32} = \alpha_{2k}{\partial \Phi \over \partial S_{3k}}\semi \ \ T_{33} = \alpha_{3k}{\partial \Phi \over \partial S_{3k}}.\cr} ]Note that this tensor is not symmetric.

For the particular problem discussed here, the three components of the equation of motion are [\eqalign{\rho u_1'' &= {\rm d}T_{11}/{\rm d}X_1,\cr \rho u_2'' &= {\rm d}T_{21}/{\rm d}X_1,\cr \rho u_3'' &= {\rm d}T_{31}/{\rm d}X_1.\cr} ]

If we retain only terms up to the quadratic order in the displacement gradients, we obtain the following equations of motion: [\eqalign{\rho u_{1}'' &= (\lambda + 2\mu){\partial^{2} u_{1} \over \partial X_{1}^{2}} + [3(\lambda + 2\mu) + 2(l + 2m)] {\partial u_{1} \over \partial X_{1}}{\partial^{2} u_{1} \over \partial X_{1}^{2}}\cr &\quad + (\lambda + 2\mu + m) \left[{\partial u_{2} \over \partial X_{1}}{\partial^{2} u_{2} \over \partial X_{1}^{2}} + {\partial u_{3} \over \partial X_{1}}{\partial^{2} u_{3} \over \partial X_{1}^{2}}\right]\cr \rho u_{2}'' &= \mu{\partial^{2} u_{2} \over \partial X_{1}^{2}} + (\lambda + 2\mu + m) \left[{\partial u_{1} \over \partial X_{1}}{\partial^{2} u_{2} \over \partial X_{1}^{2}} + {\partial u_{2} \over \partial X_{1}}{\partial^{2} u_{1} \over \partial X_{1}^{2}}\right]\cr \rho u_{3}'' &= \mu{\partial^{2} u_{3} \over \partial X_{1}^{2}} + (\lambda + 2\mu + m)\left[{\partial u_{1} \over \partial X_{1}}{\partial^{2} u_{3} \over \partial X_{1}^{2}} + {\partial u_{3} \over \partial X_{1}}{\partial^{2} u_{1} \over \partial X_{1}^{2}}\right].\cr} \eqno(1.3.7.7) ]

1.3.7.3.2. Cubic media (most symmetrical groups)

| top | pdf |

In this case, the strain-energy density becomes [\eqalignno{\Phi &= \textstyle{1\over 2}\displaystyle c_{11} (S_{11})^{2} + c_{44} \left[(S_{12})^{2} + (S_{21})^{2} + (S_{31})^{2} + (S_{13})^{2}\right]&\cr &\quad+ c_{111}(S_{11})^{3} + \textstyle{1\over 2}\displaystyle c_{166} S_{11} \left[(S_{12})^{2} + (S_{21})^{2} + (S_{31})^{2}+ (S_{13})^{2}\right].\cr &&(1.3.7.8)\cr} ]Differentiating (1.3.7.8)[link] with respect to the strain, one obtains [\eqalign{{\partial \Phi \over S_{11}} &= c_{11} S_{11} + 3c_{111}(S_{11})^{2} + \textstyle{1\over 2}\displaystyle c_{166} [(S_{12})^{2} + (S_{21})^{2}\cr&\quad + (S_{31})^{2} + (S_{13})^{2})]\cr {\partial \Phi \over S_{21}} &= 2c_{44}S_{21} + c_{166}S_{11}S_{21}\cr \noalign{\vskip6pt}{\partial \Phi \over S_{31}} &= 2c_{44}S_{31} + c_{166}S_{11}S_{31}.\cr} ]All other [\partial \Phi / S_{ij} = 0]. From (1.3.7.5)[link], we derive the stress components: [\eqalign{T_{11} &= \alpha_{1k}{\partial \Phi \over \partial S_{1k}}\cr \noalign{\vskip5pt} T_{21} &= \alpha_{1k}{\partial \Phi \over \partial S_{2k}}\cr\noalign{\vskip5pt} T_{31} &= \alpha_{1k}{\partial \Phi \over \partial S_{3k}}.\cr} ]In this particular case, the three components of the equation of motion are [\eqalign{\rho u_{1}'' &= \hbox{d}T_{11}/\hbox{d}X_{1}\cr \rho u_{2}'' &= \hbox{d}T_{21}/\hbox{d}X_{1}\cr \rho u_{3}'' &= \hbox{d}T_{31}/\hbox{d}X_{1}.\cr} ]

If we retain only terms up to the quadratic order in the displacement gradients, we obtain the following equations of motion: [\eqalign{\rho u_{1}'' &= c_{11}{\partial^{2} u_{1} \over \partial X_{1}^{2}} + [3c_{11} + c_{111}] {\partial u_{1} \over \partial X_{1}}{\partial^{2} u_{1} \over \partial X_{1}^{2}}\cr &\quad + (c_{11} + c_{166}) \left[{\partial u_{2} \over \partial X_{1}}{\partial^{2} u_{2} \over \partial X_{1}^{2}} + {\partial u_{3} \over \partial X_{1}}{\partial^{2} u_{3} \over \partial X_{1}^{2}}\right]\cr \rho u_{2}'' &= c_{44}{\partial^{2} u_{2} \over \partial X_{1}^{2}} + (c_{11} + c_{166}) \left[{\partial u_{1} \over \partial X_{1}}{\partial^{2} u_{2} \over \partial X_{1}^2} + {\partial u_{2} \over \partial X_{1}}{\partial^{2} u_{1} \over \partial X_{1}^{2}}\right]\cr \rho u_{3}'' &= c_{44}{\partial^{2} u_{3} \over \partial X_{1}^{2}} + (c_{11} + c_{166}) \left[{\partial u_{1} \over \partial X_{1}}{\partial^{2} u_{3} \over \partial X_{1}^{2}} + {\partial u_{3} \over \partial X_{1}}{\partial^{2} u_{1} \over \partial X_{1}^{2}}\right],\cr} \eqno(1.3.7.9) ]which are identical to (1.3.7.7)[link] if we put [c_{11} = \lambda + 2\mu\semi \quad c_{44} = \mu\semi \quad c_{111} = 2(l + 2m)\semi \quad c_{166} = m. ]








































to end of page
to top of page