UNIQUE AXIS b, CELL CHOICE 1
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 0); (2)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| (0, 0, 0)+ (1/2, 1/2, 0)+ |
| (1) x, y, z | (2) x, -y, z + 1/2 | |
|
I Maximal translationengleiche subgroups
[2] C1 (1, P1) | 1+ | 1/2(a - b), 1/2(a + b), c
|
|
II Maximal klassengleiche subgroups
- Loss of centring translations
[2] P1c1 (7) | 1; 2 | | |
[2] P1n1 (7, P1c1) | 1; 2 + (1/2, 1/2, 0) | a, b, -a + c | 0, 1/4, 0 |
[3] b' = 3b
| C1c1 (9) | <2> | a, 3b, c | | C1c1 (9) | <2 + (0, 2, 0)> | a, 3b, c | 0, 1, 0 | C1c1 (9) | <2 + (0, 4, 0)> | a, 3b, c | 0, 2, 0 |
|
[3] c' = 3c
C1c1 (9) | <2 + (0, 0, 1)> | a, b, 3c | |
[3] a' = a - 2c, c' = 3c
C1c1 (9) | <2 + (0, 0, 1)> | a - 2c, b, 3c | |
[3] a' = a - 4c, c' = 3c
C1c1 (9) | <2 + (0, 0, 1)> | a - 4c, b, 3c | |
[3] a' = 3a
- Series of maximal isomorphic subgroups
[p] b' = pb
C1c1 (9) | <2 + (0, 2u, 0)> | a, pb, c | 0, u, 0 | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p] a' = a - 2qc, c' = pc
C1c1 (9) | <2 + (0, 0, p/2 - 1/2)> | a - 2qc, b, pc | | | p > 2; 0 ≤ q < p no conjugate subgroups |
|
[p] a' = pa
C1c1 (9) | <2> | pa, b, c | | | p > 2 no conjugate subgroups |
|
I Minimal translationengleiche supergroups
[2] C12/c1 (15); [2] Cmc21 (36); [2] Ccc2 (37); [2] Ama2 (40); [2] Aea2 (41); [2] Fdd2 (43); [2] Iba2 (45); [2] Ima2 (46); [3] P3c1 (158); [3] P31c (159); [3] R3c (161) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations
[2] c' = 1/2c C1m1 (8); [2] a' = 1/2a, b' = 1/2b P1c1 (7) |