UNIQUE AXIS c, CELL CHOICE 1
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(0, 1/2, 1/2); (2)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| (0, 0, 0)+ (0, 1/2, 1/2)+ |
| (1) x, y, z | (2) x + 1/2, y, -z | |
|
I Maximal translationengleiche subgroups
[2] A1 (1, P1) | 1+ | a, 1/2(b - c), 1/2(b + c)
|
|
II Maximal klassengleiche subgroups
- Loss of centring translations
[2] P11a (7) | 1; 2 | | |
[2] P11n (7, P11a) | 1; 2 + (0, 1/2, 1/2) | a - b, b, c | 0, 0, 1/4 |
[3] c' = 3c
| A11a (9) | <2> | a, b, 3c | | A11a (9) | <2 + (0, 0, 2)> | a, b, 3c | 0, 0, 1 | A11a (9) | <2 + (0, 0, 4)> | a, b, 3c | 0, 0, 2 |
|
[3] a' = 3a
A11a (9) | <2 + (1, 0, 0)> | 3a, b, c | |
[3] a' = 3a, b' = -2a + b
A11a (9) | <2 + (1, 0, 0)> | 3a, -2a + b, c | |
[3] a' = 3a, b' = -4a + b
A11a (9) | <2 + (1, 0, 0)> | 3a, -4a + b, c | |
[3] b' = 3b
- Series of maximal isomorphic subgroups
[p] c' = pc
A11a (9) | <2 + (0, 0, 2u)> | a, b, pc | 0, 0, u | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p] a' = pa, b' = -2qa + b
A11a (9) | <2 + (p/2 - 1/2, 0, 0)> | pa, -2qa + b, c | | | p > 2; 0 ≤ q < p no conjugate subgroups |
|
[p] b' = pb
A11a (9) | <2> | a, pb, c | | | p > 2 no conjugate subgroups |
|
I Minimal translationengleiche supergroups
[2] A112/a (15); [2] Cmc21 (36); [2] Ccc2 (37); [2] Ama2 (40); [2] Aea2 (41); [2] Fdd2 (43); [2] Iba2 (45); [2] Ima2 (46); [3] P3c1 (158); [3] P31c (159); [3] R3c (161) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations
[2] a' = 1/2a A11m (8); [2] b' = 1/2b, c' = 1/2c P11a (7) |