Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4); (7)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) x, y, -z | (5) -y, x - y, -z | (6) -x + y, -x, -z | (7) y, x, -z | (8) x - y, -y, -z | (9) -x, -x + y, -z | (10) y, x, z | (11) x - y, -y, z | (12) -x, -x + y, z |
|
I Maximal translationengleiche subgroups
[2] P-611 (174, P-6) | 1; 2; 3; 4; 5; 6 |
|
|
[2] P31m (157) | 1; 2; 3; 10; 11; 12 |
|
|
[2] P321 (150) | 1; 2; 3; 7; 8; 9 |
|
|
| [3] Pm2m (38, Amm2) | 1; 4; 7; 10 | c, -a + b, -a - b
|
| [3] Pm2m (38, Amm2) | 1; 4; 8; 11 | c, -a - 2b, a
|
| [3] Pm2m (38, Amm2) | 1; 4; 9; 12 | c, 2a + b, b
|
|
|
II Maximal klassengleiche subgroups
[2] c' = 2c
P-62c (190) | <2; 7; 4 + (0, 0, 1)> | a, b, 2c | |
P-62c (190) | <2; 4; 7 + (0, 0, 1)> | a, b, 2c | 0, 0, 1/2 |
P-62m (189) | <2; 4; 7> | a, b, 2c | |
P-62m (189) | <2; (4; 7) + (0, 0, 1)> | a, b, 2c | 0, 0, 1/2 |
[3] c' = 3c
| P-62m (189) | <2; 4; 7> | a, b, 3c | | P-62m (189) | <2; (4; 7) + (0, 0, 2)> | a, b, 3c | 0, 0, 1 | P-62m (189) | <2; (4; 7) + (0, 0, 4)> | a, b, 3c | 0, 0, 2 |
|
[3] a' = 3a, b' = 3b
H-62m (187, P-6m2) | <2; 4; 7> | a - b, a + 2b, c | |
[4] a' = 2a, b' = 2b
| P-62m (189) | <2; 4; 7> | 2a, 2b, c | | P-62m (189) | <4; (2; 7) + (1, -1, 0)> | 2a, 2b, c | 1, 0, 0 | P-62m (189) | <4; 2 + (1, 2, 0); 7 + (-1, 1, 0)> | 2a, 2b, c | 0, 1, 0 | P-62m (189) | <4; 7; 2 + (2, 1, 0)> | 2a, 2b, c | 1, 1, 0 |
|
- Series of maximal isomorphic subgroups
[p] c' = pc
P-62m (189) | <2; (4; 7) + (0, 0, 2u)> | a, b, pc | 0, 0, u | | p > 1; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p2] a' = pa, b' = pb
P-62m (189) | <4; 2 + (u + v, -u + 2v, 0); 7 + (u - v, -u + v, 0)> | pa, pb, c | u, v, 0 | | p > 1; p ≠ 3; 0 ≤ u < p; 0 ≤ v < p p2 conjugate subgroups for the prime p |
|
I Minimal translationengleiche supergroups
[2] P6/mmm (191); [2] P63/mcm (193) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations