Pccm No. 49 P2/c2/c2/m D2h3


Axes Coordinates Wyckoff positions
2a 2b 2c 2d 2e 2f 2g 2h 4i 4j 4k
4l 4m 4n 4o 4p 4q 8r
I Maximal translationengleiche subgroups
[2] P2cm (28) x, y, z + (1/4) 2c 2c 2c 2c 2a 2a 2b 2b 2 × 2a 2 × 2b 4d
[conventional setting]Pma2 c, -b, a z + (1/4), -y, x 4d 4d 4d 4d 4d 2 × 2c 2 × 4d
[2] Pc2m (28) x, y, z + (1/4) 2c 2c 2c 2c 2a 2b 2a 2b 4d 4d 2 × 2a
[conventional setting]Pma2 c, a, b z + (1/4), x, y 2 × 2b 4d 4d 4d 4d 2 × 2c 2 × 4d
[2] Pcc2 (27) 2a 2d 2b 2c 2a 2c 2b 2d 4e 4e 4e
4e 2 × 2a 2 × 2d 2 × 2b 2 × 2c 4e 2 × 4e
[2] P222 (16) x, y, z + (1/4) 2q 2t 2s 2r 1a; 1d 1b; 1f 1c; 1g 1e; 1h 2i; 2j 2k; 2l 2m; 2n
2o; 2p 2 × 2q 2 × 2t 2 × 2s 2 × 2r 4u 2 × 4u
[2] P2/c11(13) 2a 2b 2d 2c 2e 2e 2f 2f 2 × 2e 2 × 2f 4g
[conventional setting]P12/c1 -b, a, c -y, x, z 4g 4g 4g 4g 4g 4g 2 × 4g
[2] P12/c1(13) 2a 2b 2c 2d 2e 2f 2e 2f 4g 4g 2 × 2e
2 × 2f 4g 4g 4g 4g 4g 2 × 4g
[2] P112/m (10) 1a; 1b 1g; 1h 1d; 1e 1c; 1f 2i 2k 2j 2l 4o 4o 4o
4o 2 × 2i 2 × 2l 2 × 2j 2 × 2k 2m; 2n 2 × 4o
II Maximal klassengleiche subgroups
   Enlarged unit cell, non-isomorphic
[2] Ccce (68) 2a, 2b, c (1/2)x, (1/2)y, z + (1/4); +((1/2), 0, 0) (origin 1) 8g 8h 8d 8c 4a; 4b 8e 8f 8h 2 × 8e 16i 2 × 8f
origin 2: (1/2)x, (1/2)y + (1/4), z; +((1/2), 0, 0) 16i 2 × 8g 2 × 8h 16i 16i 16i 2 × 16i
[2] Ccce (68) 2a, 2b, c (1/2)x + (1/4), (1/2)y, z + (1/4); +((1/2), 0, 0) (origin 1) 8c 8d 8h 8g 8e 4a; 4b 8h 8f 2 × 8e 16i 16i
origin 2: (1/2)x + (1/4), (1/2)y + (1/4), z; +((1/2), 0, 0) 2 × 8f 16i 16i 2 × 8h 2 × 8g 16i 2 × 16i
[2] Ccce (68) 2a, 2b, c (1/2)x, (1/2)y - (1/4), z + (1/4); +((1/2), 0, 0) (origin 1) 8d 8c 8g 8h 8f 8h 4a; 4b 8e 16i 2 × 8e 2 × 8f
origin 2: (1/2)x, (1/2)y, z; +((1/2), 0, 0) 16i 16i 16i 2 × 8g 2 × 8h 16i 2 × 16i
[2] Ccce (68) 2a, 2b, c (1/2)x + (1/4), (1/2)y - (1/4), z + (1/4); +((1/2), 0, 0) 8h 8g 8c 8d 8h 8f 8e 4a; 4b 16i 2 × 8e 16i
origin 2: (1/2)x + (1/4), (1/2)y, z; +((1/2), 0, 0) (origin 1) 2 × 8f 2 × 8h 2 × 8g 16i 16i 16i 2 × 16i
[2] Cccm (66) 2a, 2b, c (1/2)x, (1/2)y, z; +((1/2), 0, 0) 4c; 4d 4e; 4f 8l 8l 4a; 4b 8g 8h 8k 2 × 8g 16m 2 × 8h
16m 8i; 8j 2 × 8k 16m 16m 2 × 8l 2 × 16m
[2] Cccm (66) 2a, 2b, c (1/2)x + (1/4), (1/2)y, z; +((1/2), 0, 0) 8l 8l 4e; 4f 4c; 4d 8g 4a; 4b 8k 8h 2 × 8g 16m 16m
2 × 8h 16m 16m 2 × 8k 8i; 8j 2 × 8l 2 × 16m
[2] Cccm (66) 2a, 2b, c (1/2)x, (1/2)y + (1/4), z; +((1/2), 0, 0) 8l 8l 4c; 4d 4e; 4f 8h 8k 4a; 4b 8g 16m 2 × 8g 2 × 8h
16m 16m 16m 8i; 8j 2 × 8k 2 × 8l 2 × 16m
[2] Cccm (66) 2a, 2b, c (1/2)x + (1/4), (1/2)y + (1/4), z; +((1/2), 0, 0) 4e; 4f 4c; 4d 8l 8l 8k 8h 8g 4a; 4b 16m 2 × 8g 16m
2 × 8h 2 × 8k 8i; 8j 16m 16m 2 × 8l 2 × 16m
[2] Pcca (54) 2a, b, c (1/2)x, y, z; +((1/2), 0, 0) 4a 4e 4b 4d 4c 4d 4c 4e 8f 8f 2 × 4c
8f 8f 2 × 4e 8f 2 × 4d 8f 2 × 8f
[2] Pcca (54) 2a, b, c (1/2)x + (1/4), y, z; +((1/2), 0, 0) 4d 4b 4e 4a 4d 4c 4e 4c 8f 8f 8f
2 × 4c 2 × 4d 8f 2 × 4e 8f 8f 2 × 8f
[2] Pccb (54) a, 2b, c x, (1/2)y, z; +(0, (1/2), 0) 4a 4e 4d 4b 4c 4c 4d 4e 2 × 4c 8f 8f
[conventional setting]Pcca 2b, -a, c (1/2)y, -x, z; +((1/2), 0, 0) 8f 8f 2 × 4e 2 × 4d 8f 8f 2 × 8f
[2] Pccb (54) a, 2b, c x, (1/2)y + (1/4), z; +(0, (1/2), 0) 4d 4b 4a 4e 4d 4e 4c 4c 8f 2 × 4c 8f
[conventional setting]Pcca 2b, -a, c (1/2)y + (1/4), -x, z; +((1/2), 0, 0) 8f 2 × 4d 8f 8f 2 × 4e 8f 2 × 8f
[2] Pcnm (53) 2a, b, c (1/2)x, y, z; +((1/2), 0, 0) 2a; 2b 4h 2c; 2d 4h 4e 4g 4f 4g 8i 8i 8i
[conventional setting]Pmna c, -b, 2a z, -y, (1/2)x; +(0, 0, (1/2)) 2 × 4g 2 × 4e 8i 2 × 4f 8i 2 × 4h 2 × 8i
[2] Pcnm (53) 2a, b, c (1/2)x + (1/4), y, z; +((1/2), 0, 0) 4h 2c; 2d 4h 2a; 2b 4g 4e 4g 4f 8i 8i 2 × 4g
[conventional setting]Pmna c, -b, 2a z, -y, (1/2)x + (1/4); +(0, 0, (1/2)) 8i 8i 2 × 4f 8i 2 × 4e 2 × 4h 2 × 8i%
[2] Pncm (53) a, 2b, c x, (1/2)y, z; +(0, (1/2), 0) 2a; 2b 4h 4h 2c; 2d 4e 4f 4g 4g 8i 2 × 4g 8i
[conventional setting]Pmna c, a, 2b z, x, (1/2)y; +(0, 0, (1/2)) 8i 2 × 4e 8i 8i 2 × 4f 2 × 4h 2 × 8i
[2] Pncm (53) a, 2b, c x, (1/2)y + (1/4), z; +(0, (1/2), 0) 4h 2c; 2d 2a; 2b 4h 4g 4g 4e 4f 2 × 4g 8i 8i
[conventional setting]Pmna c, a, 2b z, x, (1/2)y + (1/4); +(0, 0, (1/2)) 8i 8i 2 × 4f 2 × 4e 8i 2 × 4h 2 × 8i
[2] Pcna (50) 2a, b, c (1/2)x + (1/4), y, z + (1/4); +((1/2), 0, 0) (origin 1) 4e 4h 4f 4g 4i 2a; 2b 4j 2c; 2d 2 × 4i 2 × 4j 8m
origin 2: (1/2)x, y, z; +((1/2), 0, 0) 4k; 4l 8m 2 × 4h 8m 2 × 4g 8m 2 × 8m
[conventional setting]Pban c, 2a, b z + (1/4), (1/2)x + (1/4), y; +(0, (1/2), 0) (origin 1)
origin 2: z, (1/2)x, y; +(0, (1/2), 0)
[2] Pcna (50) 2a, b, c (1/2)x, y, z + (1/4); +((1/2), 0, 0) (origin 1) 4g 4f 4h 4e 2a; 2b 4i 2c; 2d 4j 2 × 4i 2 × 4j 4k; 4l
origin 2: (1/2)x + (1/4), y, z; +((1/2), 0, 0) 8m 2 × 4g 8m 2 × 4h 8m 8m 2 × 8m
[conventional setting]Pban c, 2a, b z + (1/4), (1/2)x, y; +(0, (1/2), 0) (origin 1)
origin 2: z, (1/2)x + (1/4), y; +(0, (1/2), 0)
[2] Pncb (50) a, 2b, c x, (1/2)y + (1/4), z + (1/4); +(0, (1/2), 0) (origin 1) 4e 4j 4i 4f 4g 4h 2a; 2b 2c; 2d 8m 4k; 4l 2 × 4g
origin 2: x, (1/2)y, z; +(0, (1/2), 0) 2 × 4h 8m 2 × 4j 2 × 4i 8m 8m 2 × 8m
[conventional setting]Pban 2b, c, a (1/2)y + (1/4), z + (1/4), x; +((1/2), 0, 0) (origin 1)
(1/2)y, z, x; +((1/2), 0, 0) (origin 2)
[2] Pncb (50) a, 2b, c x, (1/2)y, z + (1/4); +(0, (1/2), 0) (origin 1) 4i 4f 4e 4j 2a; 2b 2c; 2d 4g 4h 4k; 4l 8m 2 × 4g
origin 2: x, (1/2)y + (1/4), z; +(0, (1/2), 0) 2 × 4h 2 × 4i 8m 8m 2 × 4j 8m 2 × 8m
[conventional setting]Pban 2b, c, a (1/2)y, z + (1/4), x; +((1/2), 0, 0) (origin 1)
origin 2: (1/2)y + (1/4), z, x; +((1/2), 0, 0)
   Enlarged unit cell, isomorphic
[2] Pccm 2a, b, c (1/2)x, y, z; 2a; 2d 4q 2b; 2c 4q 2e; 2f 4i 2g; 2h 4j 2 × 4i 2 × 4j 4k; 4l
+((1/2), 0, 0) 8r 4m; 4p 8r 4n; 4o 8r 2 × 4q 2 × 8r
[2] Pccm 2a, b, c (1/2)x + (1/4), y, z; 4q 2b; 2c 4q 2a; 2d 4i 2e; 2f 4j 2g; 2h 2 × 4i 2 × 4j 8r
+((1/2), 0, 0) 4k; 4l 8r 4n; 4o 8r 4m; 4p 2 × 4q 2 × 8r
[3] Pccm 3a, b, c (1/3)x, y, z; 2a; 4q 2b; 4q 2c; 4q 2d; 4q 2e; 4i 2f; 4i 2g; 4j 2h; 4j 3 × 4i 3 × 4j 4k; 8r
±((1/3), 0, 0) 4l; 8r 4m; 8r 4n; 8r 4o; 8r 4p; 8r 3 × 4q 3 × 8r
[p] Pccm pa, b, c (1/p)x, y, z; 2a; 2b; 2c; 2d; 2e; 2f; 2g; 2h; p × 4i p × 4j 4k;
+((u/p), 0, 0) ((p - 1)/2) × 4q ((p - 1)/2) × 4q ((p - 1)/2) × 4q ((p - 1)/2) × 4q ((p - 1)/2) × 4i ((p - 1)/2) × 4i ((p - 1)/2) × 4j ((p - 1)/2) × 4j ((p - 1)/2) × 8r
p = prime > 2; 4l; 4m; 4n; 4o; 4p; p × 4q p × 8r
u = 1, . . ., p - 1 ((p - 1)/2) × 8r ((p - 1)/2) × 8r ((p - 1)/2) × 8r ((p - 1)/2) × 8r ((p - 1)/2) × 8r
[2] Pccm a, 2b, c x, (1/2)y, z; 2a; 2c 4q 4q 2b; 2d 2e; 2g 2f; 2h 4k 4l 4i; 4j 8r 2 × 4k
+(0, (1/2), 0) 2 × 4l 4m; 4o 8r 8r 4n; 4p 2 × 4q 2 × 8r
[2] Pccm a, 2b, c x, (1/2)y + (1/4), z; 4q 2b; 2d 2a; 2c 4q 4k 4l 2e; 2g 2f; 2h 8r 4i; 4j 2 × 4k
+(0, (1/2), 0) 2 × 4l 8r 4n; 4p 4m; 4o 8r 2 × 4q 2 × 8r
[3] Pccm a, 3b, c x, (1/3)y, z; 2a; 4q 2b; 4q 2c; 4q 2d; 4q 2e; 4k 2f; 4l 2g; 4k 2h; 4l 4i; 8r 4j; 8r 3 × 4k
±(0, (1/3), 0) 3 × 4l 4m; 8r 4n; 8r 4o; 8r 4p; 8r 3 × 4q 3 × 8r
[p] Pccm a, pb, c x, (1/p)y, z; 2a; 2b; 2c; 2d; 2e; 2f; 2g; 2h; 4i; 4j; p × 4k
+(0, (u/p), 0) ((p - 1)/2) × 4q ((p - 1)/2) × 4q ((p - 1)/2) × 4q ((p - 1)/2) × 4q ((p - 1)/2) × 4k ((p - 1)/2) × 4l ((p - 1)/2) × 4k ((p - 1)/2) × 4l ((p - 1)/2) × 8r ((p - 1)/2) × 8r
p = prime > 2; p × 4l 4m; 4n; 4o; 4p; p × 4q p × 8r
u = 1, . . ., p - 1 ((p - 1)/2) × 8r ((p - 1)/2) × 8r ((p - 1)/2) × 8r ((p - 1)/2) × 8r
[3] Pccm a, b, 3c x, y, (1/3)z; 2a; 4m 2b; 4n 2c; 4o 2d; 4p 2e; 4m 2f; 4p 2g; 4o 2h; 4n 4i; 8r 4j; 8r 4k; 8r
±(0, 0, (1/3)) 4l; 8r 3 × 4m 3 × 4n 3 × 4o 3 × 4p 4q; 8r 3 × 8r
[p] Pccm a, b, pc x, y, (1/p)z; 2a; 2b; 2c; 2d; 2e; 2f; 2g; 2h; 4i; 4j; 4k;
+(0, 0, (u/p)) ((p - 1)/2) × 4m ((p - 1)/2) × 4n ((p - 1)/2) × 4o ((p - 1)/2) × 4p ((p - 1)/2) × 4m ((p - 1)/2) × 4p ((p - 1)/2) × 4o ((p - 1)/2) × 4n ((p - 1)/2) × 8r ((p - 1)/2) × 8r ((p - 1)/2) × 8r
p = prime > 2; 4l; p × 4m p × 4n p × 4o p × 4p 4q; p × 8r
u = 1, . . ., p - 1 ((p - 1)/2) × 8r ((p - 1)/2) × 8r


Nonconventional settings
        interchange letters and sequences in Hermann-Mauguin symbols, axes and coordinates:
Pmaa CA abca abca xyzx
Pbmb CB abca abca xyzx










































to end of page
to top of page