|
Axes |
Coordinates |
Wyckoff positions |
|
|
|
2a |
2b |
2c |
2d |
2e |
2f |
2g |
2h |
4i |
4j |
4k |
|
|
|
|
|
|
|
4l |
4m |
4n |
4o |
4p |
4q |
8r |
I Maximal translationengleiche subgroups |
[2] P2cm (28) |
|
x, y, z + (1/4) |
2c |
2c |
2c |
2c |
2a |
2a |
2b |
2b |
2 × 2a |
2 × 2b |
4d |
Pma2 |
c, -b, a |
z + (1/4), -y, x |
|
|
|
|
4d |
4d |
4d |
4d |
4d |
2 × 2c |
2 × 4d |
[2] Pc2m (28) |
|
x, y, z + (1/4) |
2c |
2c |
2c |
2c |
2a |
2b |
2a |
2b |
4d |
4d |
2 × 2a |
Pma2 |
c, a, b |
z + (1/4), x, y |
|
|
|
|
2 × 2b |
4d |
4d |
4d |
4d |
2 × 2c |
2 × 4d |
[2] Pcc2 (27) |
|
|
2a |
2d |
2b |
2c |
2a |
2c |
2b |
2d |
4e |
4e |
4e |
|
|
|
|
|
|
|
4e |
2 × 2a |
2 × 2d |
2 × 2b |
2 × 2c |
4e |
2 × 4e |
[2] P222 (16) |
|
x, y, z + (1/4) |
2q |
2t |
2s |
2r |
1a; 1d |
1b; 1f |
1c; 1g |
1e; 1h |
2i; 2j |
2k; 2l |
2m; 2n |
|
|
|
|
|
|
|
2o; 2p |
2 × 2q |
2 × 2t |
2 × 2s |
2 × 2r |
4u |
2 × 4u |
[2] P2/c11(13) |
|
|
2a |
2b |
2d |
2c |
2e |
2e |
2f |
2f |
2 × 2e |
2 × 2f |
4g |
P12/c1 |
-b, a, c |
-y, x, z |
|
|
|
|
4g |
4g |
4g |
4g |
4g |
4g |
2 × 4g |
[2] P12/c1(13) |
|
|
2a |
2b |
2c |
2d |
2e |
2f |
2e |
2f |
4g |
4g |
2 × 2e |
|
|
|
|
|
|
|
2 × 2f |
4g |
4g |
4g |
4g |
4g |
2 × 4g |
[2] P112/m (10) |
|
1a; 1b |
1g; 1h |
1d; 1e |
1c; 1f |
2i |
2k |
2j |
2l |
4o |
4o |
4o |
|
|
|
|
|
|
|
4o |
2 × 2i |
2 × 2l |
2 × 2j |
2 × 2k |
2m; 2n |
2 × 4o |
II Maximal klassengleiche subgroups |
Enlarged unit cell, non-isomorphic |
[2] Ccce (68) |
2a, 2b, c |
(1/2)x, (1/2)y, z + (1/4); +((1/2), 0, 0) (origin 1) |
8g |
8h |
8d |
8c |
4a; 4b |
8e |
8f |
8h |
2 × 8e |
16i |
2 × 8f |
|
origin 2: |
(1/2)x, (1/2)y + (1/4), z; +((1/2), 0, 0) |
|
|
|
|
16i |
2 × 8g |
2 × 8h |
16i |
16i |
16i |
2 × 16i |
[2] Ccce (68) |
2a, 2b, c |
(1/2)x + (1/4), (1/2)y, z + (1/4); +((1/2), 0, 0) (origin 1) |
8c |
8d |
8h |
8g |
8e |
4a; 4b |
8h |
8f |
2 × 8e |
16i |
16i |
|
origin 2: |
(1/2)x + (1/4), (1/2)y + (1/4), z; +((1/2), 0, 0) |
|
|
|
|
2 × 8f |
16i |
16i |
2 × 8h |
2 × 8g |
16i |
2 × 16i |
[2] Ccce (68) |
2a, 2b, c |
(1/2)x, (1/2)y - (1/4), z + (1/4); +((1/2), 0, 0) (origin 1) |
8d |
8c |
8g |
8h |
8f |
8h |
4a; 4b |
8e |
16i |
2 × 8e |
2 × 8f |
|
origin 2: |
(1/2)x, (1/2)y, z; +((1/2), 0, 0) |
|
|
|
|
16i |
16i |
16i |
2 × 8g |
2 × 8h |
16i |
2 × 16i |
[2] Ccce (68) |
2a, 2b, c |
(1/2)x + (1/4), (1/2)y - (1/4), z + (1/4); +((1/2), 0, 0) |
8h |
8g |
8c |
8d |
8h |
8f |
8e |
4a; 4b |
16i |
2 × 8e |
16i |
|
origin 2: |
(1/2)x + (1/4), (1/2)y, z; +((1/2), 0, 0) (origin 1) |
|
|
|
|
2 × 8f |
2 × 8h |
2 × 8g |
16i |
16i |
16i |
2 × 16i |
[2] Cccm (66) |
2a, 2b, c |
(1/2)x, (1/2)y, z; +((1/2), 0, 0) |
4c; 4d |
4e; 4f |
8l |
8l |
4a; 4b |
8g |
8h |
8k |
2 × 8g |
16m |
2 × 8h |
|
|
|
|
|
|
|
16m |
8i; 8j |
2 × 8k |
16m |
16m |
2 × 8l |
2 × 16m |
[2] Cccm (66) |
2a, 2b, c |
(1/2)x + (1/4), (1/2)y, z; +((1/2), 0, 0) |
8l |
8l |
4e; 4f |
4c; 4d |
8g |
4a; 4b |
8k |
8h |
2 × 8g |
16m |
16m |
|
|
|
|
|
|
|
2 × 8h |
16m |
16m |
2 × 8k |
8i; 8j |
2 × 8l |
2 × 16m |
[2] Cccm (66) |
2a, 2b, c |
(1/2)x, (1/2)y + (1/4), z; +((1/2), 0, 0) |
8l |
8l |
4c; 4d |
4e; 4f |
8h |
8k |
4a; 4b |
8g |
16m |
2 × 8g |
2 × 8h |
|
|
|
|
|
|
|
16m |
16m |
16m |
8i; 8j |
2 × 8k |
2 × 8l |
2 × 16m |
[2] Cccm (66) |
2a, 2b, c |
(1/2)x + (1/4), (1/2)y + (1/4), z; +((1/2), 0, 0) |
4e; 4f |
4c; 4d |
8l |
8l |
8k |
8h |
8g |
4a; 4b |
16m |
2 × 8g |
16m |
|
|
|
|
|
|
|
2 × 8h |
2 × 8k |
8i; 8j |
16m |
16m |
2 × 8l |
2 × 16m |
[2] Pcca (54) |
2a, b, c |
(1/2)x, y, z; +((1/2), 0, 0) |
4a |
4e |
4b |
4d |
4c |
4d |
4c |
4e |
8f |
8f |
2 × 4c |
|
|
|
|
|
|
|
8f |
8f |
2 × 4e |
8f |
2 × 4d |
8f |
2 × 8f |
[2] Pcca (54) |
2a, b, c |
(1/2)x + (1/4), y, z; +((1/2), 0, 0) |
4d |
4b |
4e |
4a |
4d |
4c |
4e |
4c |
8f |
8f |
8f |
|
|
|
|
|
|
|
2 × 4c |
2 × 4d |
8f |
2 × 4e |
8f |
8f |
2 × 8f |
[2] Pccb (54) |
a, 2b, c |
x, (1/2)y, z; +(0, (1/2), 0) |
4a |
4e |
4d |
4b |
4c |
4c |
4d |
4e |
2 × 4c |
8f |
8f |
Pcca |
2b, -a, c |
(1/2)y, -x, z; +((1/2), 0, 0) |
|
|
|
|
8f |
8f |
2 × 4e |
2 × 4d |
8f |
8f |
2 × 8f |
[2] Pccb (54) |
a, 2b, c |
x, (1/2)y + (1/4), z; +(0, (1/2), 0) |
4d |
4b |
4a |
4e |
4d |
4e |
4c |
4c |
8f |
2 × 4c |
8f |
Pcca |
2b, -a, c |
(1/2)y + (1/4), -x, z; +((1/2), 0, 0) |
|
|
|
|
8f |
2 × 4d |
8f |
8f |
2 × 4e |
8f |
2 × 8f |
[2] Pcnm (53) |
2a, b, c |
(1/2)x, y, z; +((1/2), 0, 0) |
2a; 2b |
4h |
2c; 2d |
4h |
4e |
4g |
4f |
4g |
8i |
8i |
8i |
Pmna |
c, -b, 2a |
z, -y, (1/2)x; +(0, 0, (1/2)) |
|
|
|
|
2 × 4g |
2 × 4e |
8i |
2 × 4f |
8i |
2 × 4h |
2 × 8i |
[2] Pcnm (53) |
2a, b, c |
(1/2)x + (1/4), y, z; +((1/2), 0, 0) |
4h |
2c; 2d |
4h |
2a; 2b |
4g |
4e |
4g |
4f |
8i |
8i |
2 × 4g |
Pmna |
c, -b, 2a |
z, -y, (1/2)x + (1/4); +(0, 0, (1/2)) |
|
|
|
|
8i |
8i |
2 × 4f |
8i |
2 × 4e |
2 × 4h |
2 × 8i% |
|
|
[2] Pncm (53) |
a, 2b, c |
x, (1/2)y, z; +(0, (1/2), 0) |
2a; 2b |
4h |
4h |
2c; 2d |
4e |
4f |
4g |
4g |
8i |
2 × 4g |
8i |
Pmna |
c, a, 2b |
z, x, (1/2)y; +(0, 0, (1/2)) |
|
|
|
|
8i |
2 × 4e |
8i |
8i |
2 × 4f |
2 × 4h |
2 × 8i |
[2] Pncm (53) |
a, 2b, c |
x, (1/2)y + (1/4), z; +(0, (1/2), 0) |
4h |
2c; 2d |
2a; 2b |
4h |
4g |
4g |
4e |
4f |
2 × 4g |
8i |
8i |
Pmna |
c, a, 2b |
z, x, (1/2)y + (1/4); +(0, 0, (1/2)) |
|
|
|
|
8i |
8i |
2 × 4f |
2 × 4e |
8i |
2 × 4h |
2 × 8i |
[2] Pcna (50) |
2a, b, c |
(1/2)x + (1/4), y, z + (1/4); +((1/2), 0, 0) (origin 1) |
4e |
4h |
4f |
4g |
4i |
2a; 2b |
4j |
2c; 2d |
2 × 4i |
2 × 4j |
8m |
|
origin 2: |
(1/2)x, y, z; +((1/2), 0, 0) |
|
|
|
|
4k; 4l |
8m |
2 × 4h |
8m |
2 × 4g |
8m |
2 × 8m |
Pban |
c, 2a, b |
z + (1/4), (1/2)x + (1/4), y; +(0, (1/2), 0) (origin 1) |
|
|
|
|
|
|
|
|
|
|
|
|
origin 2: |
z, (1/2)x, y; +(0, (1/2), 0) |
|
|
|
|
|
|
|
|
|
|
|
[2] Pcna (50) |
2a, b, c |
(1/2)x, y, z + (1/4); +((1/2), 0, 0) (origin 1) |
4g |
4f |
4h |
4e |
2a; 2b |
4i |
2c; 2d |
4j |
2 × 4i |
2 × 4j |
4k; 4l |
|
origin 2: |
(1/2)x + (1/4), y, z; +((1/2), 0, 0) |
|
|
|
|
8m |
2 × 4g |
8m |
2 × 4h |
8m |
8m |
2 × 8m |
Pban |
c, 2a, b |
z + (1/4), (1/2)x, y; +(0, (1/2), 0) (origin 1) |
|
|
|
|
|
|
|
|
|
|
|
|
origin 2: |
z, (1/2)x + (1/4), y; +(0, (1/2), 0) |
|
|
|
|
|
|
|
|
|
|
|
[2] Pncb (50) |
a, 2b, c |
x, (1/2)y + (1/4), z + (1/4); +(0, (1/2), 0) (origin 1) |
4e |
4j |
4i |
4f |
4g |
4h |
2a; 2b |
2c; 2d |
8m |
4k; 4l |
2 × 4g |
|
origin 2: |
x, (1/2)y, z; +(0, (1/2), 0) |
|
|
|
|
2 × 4h |
8m |
2 × 4j |
2 × 4i |
8m |
8m |
2 × 8m |
Pban |
2b, c, a |
(1/2)y + (1/4), z + (1/4), x; +((1/2), 0, 0) (origin 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
(1/2)y, z, x; +((1/2), 0, 0) (origin 2) |
|
|
|
|
|
|
|
|
|
|
|
[2] Pncb (50) |
a, 2b, c |
x, (1/2)y, z + (1/4); +(0, (1/2), 0) (origin 1) |
4i |
4f |
4e |
4j |
2a; 2b |
2c; 2d |
4g |
4h |
4k; 4l |
8m |
2 × 4g |
|
origin 2: |
x, (1/2)y + (1/4), z; +(0, (1/2), 0) |
|
|
|
|
2 × 4h |
2 × 4i |
8m |
8m |
2 × 4j |
8m |
2 × 8m |
Pban |
2b, c, a |
(1/2)y, z + (1/4), x; +((1/2), 0, 0) (origin 1) |
|
|
|
|
|
|
|
|
|
|
|
|
origin 2: |
(1/2)y + (1/4), z, x; +((1/2), 0, 0) |
Enlarged unit cell, isomorphic |
[2] Pccm |
2a, b, c |
(1/2)x, y, z; |
2a; 2d |
4q |
2b; 2c |
4q |
2e; 2f |
4i |
2g; 2h |
4j |
2 × 4i |
2 × 4j |
4k; 4l |
|
|
+((1/2), 0, 0) |
|
|
|
|
8r |
4m; 4p |
8r |
4n; 4o |
8r |
2 × 4q |
2 × 8r |
[2] Pccm |
2a, b, c |
(1/2)x + (1/4), y, z; |
4q |
2b; 2c |
4q |
2a; 2d |
4i |
2e; 2f |
4j |
2g; 2h |
2 × 4i |
2 × 4j |
8r |
|
|
+((1/2), 0, 0) |
|
|
|
|
4k; 4l |
8r |
4n; 4o |
8r |
4m; 4p |
2 × 4q |
2 × 8r |
[3] Pccm |
3a, b, c |
(1/3)x, y, z; |
2a; 4q |
2b; 4q |
2c; 4q |
2d; 4q |
2e; 4i |
2f; 4i |
2g; 4j |
2h; 4j |
3 × 4i |
3 × 4j |
4k; 8r |
|
|
±((1/3), 0, 0) |
|
|
|
|
4l; 8r |
4m; 8r |
4n; 8r |
4o; 8r |
4p; 8r |
3 × 4q |
3 × 8r |
[p] Pccm |
pa, b, c |
(1/p)x, y, z; |
2a; |
2b; |
2c; |
2d; |
2e; |
2f; |
2g; |
2h; |
p × 4i |
p × 4j |
4k; |
|
|
+((u/p), 0, 0) |
((p - 1)/2) × 4q |
((p - 1)/2) × 4q |
((p - 1)/2) × 4q |
((p - 1)/2) × 4q |
((p - 1)/2) × 4i |
((p - 1)/2) × 4i |
((p - 1)/2) × 4j |
((p - 1)/2) × 4j |
|
|
((p - 1)/2) × 8r |
|
p = prime > 2; |
|
|
|
|
4l; |
4m; |
4n; |
4o; |
4p; |
p × 4q |
p × 8r |
|
u = 1, . . ., p - 1 |
|
|
|
|
((p - 1)/2) × 8r |
((p - 1)/2) × 8r |
((p - 1)/2) × 8r |
((p - 1)/2) × 8r |
((p - 1)/2) × 8r |
|
|
[2] Pccm |
a, 2b, c |
x, (1/2)y, z; |
2a; 2c |
4q |
4q |
2b; 2d |
2e; 2g |
2f; 2h |
4k |
4l |
4i; 4j |
8r |
2 × 4k |
|
|
+(0, (1/2), 0) |
|
|
|
|
2 × 4l |
4m; 4o |
8r |
8r |
4n; 4p |
2 × 4q |
2 × 8r |
[2] Pccm |
a, 2b, c |
x, (1/2)y + (1/4), z; |
4q |
2b; 2d |
2a; 2c |
4q |
4k |
4l |
2e; 2g |
2f; 2h |
8r |
4i; 4j |
2 × 4k |
|
|
+(0, (1/2), 0) |
|
|
|
|
2 × 4l |
8r |
4n; 4p |
4m; 4o |
8r |
2 × 4q |
2 × 8r |
[3] Pccm |
a, 3b, c |
x, (1/3)y, z; |
2a; 4q |
2b; 4q |
2c; 4q |
2d; 4q |
2e; 4k |
2f; 4l |
2g; 4k |
2h; 4l |
4i; 8r |
4j; 8r |
3 × 4k |
|
|
±(0, (1/3), 0) |
|
|
|
|
3 × 4l |
4m; 8r |
4n; 8r |
4o; 8r |
4p; 8r |
3 × 4q |
3 × 8r |
[p] Pccm |
a, pb, c |
x, (1/p)y, z; |
2a; |
2b; |
2c; |
2d; |
2e; |
2f; |
2g; |
2h; |
4i; |
4j; |
p × 4k |
|
|
+(0, (u/p), 0) |
((p - 1)/2) × 4q |
((p - 1)/2) × 4q |
((p - 1)/2) × 4q |
((p - 1)/2) × 4q |
((p - 1)/2) × 4k |
((p - 1)/2) × 4l |
((p - 1)/2) × 4k |
((p - 1)/2) × 4l |
((p - 1)/2) × 8r |
((p - 1)/2) × 8r |
|
|
p = prime > 2; |
|
|
|
|
p × 4l |
4m; |
4n; |
4o; |
4p; |
p × 4q |
p × 8r |
|
u = 1, . . ., p - 1 |
|
|
|
|
|
((p - 1)/2) × 8r |
((p - 1)/2) × 8r |
((p - 1)/2) × 8r |
((p - 1)/2) × 8r |
|
|
[3] Pccm |
a, b, 3c |
x, y, (1/3)z; |
2a; 4m |
2b; 4n |
2c; 4o |
2d; 4p |
2e; 4m |
2f; 4p |
2g; 4o |
2h; 4n |
4i; 8r |
4j; 8r |
4k; 8r |
|
|
±(0, 0, (1/3)) |
|
|
|
|
4l; 8r |
3 × 4m |
3 × 4n |
3 × 4o |
3 × 4p |
4q; 8r |
3 × 8r |
[p] Pccm |
a, b, pc |
x, y, (1/p)z; |
2a; |
2b; |
2c; |
2d; |
2e; |
2f; |
2g; |
2h; |
4i; |
4j; |
4k; |
|
|
+(0, 0, (u/p)) |
((p - 1)/2) × 4m |
((p - 1)/2) × 4n |
((p - 1)/2) × 4o |
((p - 1)/2) × 4p |
((p - 1)/2) × 4m |
((p - 1)/2) × 4p |
((p - 1)/2) × 4o |
((p - 1)/2) × 4n |
((p - 1)/2) × 8r |
((p - 1)/2) × 8r |
((p - 1)/2) × 8r |
|
p = prime > 2; |
|
|
|
|
4l; |
p × 4m |
p × 4n |
p × 4o |
p × 4p |
4q; |
p × 8r |
|
u = 1, . . ., p - 1 |
|
|
|
|
((p - 1)/2) × 8r |
|
|
|
|
((p - 1)/2) × 8r |
|